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ABSTRACT This paper presents a novel metamaterial based on Jerusalem cross structure with interdigital
technique to be applied for dual-band systems. The proposed structure can operate at resonant frequencies
of 1.8 and 5.5 GHz for LTE and WLAN bands, respectively. The interdigital structure was added to connect
at the end of the Jerusalem cross structure in order to control the resonant frequencies and to promote
for permittivity adjustment. The proposed metamaterial unit cell was designed to achieve the simulated
dual-band operation with bandwidths of 1.70 ~ 1.95 GHz at 1.8 GHz and 5.06 ~ 6.04 GHz at 5.5 GHz,
respectively. The unit cell size is reduced from A/2 to A/4 which is much smaller than the conventional
structure. The 5 x 5 unit cells of metamaterials were implemented as a reflector for a dipole antenna resulting
in dual-band operation with bandwidths of 1.58 ~ 1.88 GHz at 1.8 band and 5.05 ~ 5.68 GHz at 5.5 band,
respectively. Besides, the dipole antenna with the proposed metamaterial reflector has measured gains up to
8.23 dBi at 1.8 GHz and 8.30 dBi at 5.5 GHz, respectively. Moreover, the shape of metamaterial structure
is symmetrical, so it can be used for dual linear polarization. Also, the antenna with the proposed reflector
has low profile with the distance of A/8 between radiator and reflector. Therefore, the proposed metamaterial
can be applied for any antenna applicable for LTE and WLAN applications.

INDEX TERMS Dual-band, metamaterial, Jerusalem cross structure, interdigital.

I. INTRODUCTION

Nowadays, demand for wireless communication technology
in LTE and WLAN systems is soaring, according to high
internet usage growth. Therefore, there are needs for contin-
uous improvement in data transmission and multi-frequency
operation. Metamaterials have been popularly used in a
variety of applications, especially to increase antenna per-
formances in wireless communication systems [1]. Many
researches have applied metamaterials to modify the elec-
tromagnetic properties [2] used in conjunction with antennas
to increase efficiencies of transmitting and receiving signals.
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They can be used as reflector [3], director [4], absorber [5],
dielectric [6], etc. In previous researches on metamaterials,
the unit cell was designed to be used for multi-frequency
operation by using a double square ring structure [7]-[9].
In this design, the first and second resonant frequencies can
be altered by adjusting the outer and inner ring parame-
ters, respectively. However, the proposed metamaterial con-
sists of many layers of materials, resulting in complicated
structure. In [10], a triple-band resonator was employed for
negative permittivity metamaterial operated in C-band and
X-band. The unit cell consists of open delta structure within
square ring. In addition, Jerusalem cross structure was pre-
sented in [11]. In this structure, the number of legs at the
end must be increased in order to make multiple frequency
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FIGURE 1. The proposed metamaterial and unit cell.

bands. However, the structures of the metamaterials as men-
tioned above are difficult to design, implement and modify,
as results in restrictions on the use for antennas. Many tech-
niques have been applied to create the metamaterials used for
multi-frequency band operation. The unit cell with Jerusalem
cross structure proposed in [12]-[14] is able to clearly adjust
the frequency band but its structure has a length of A /2 which
is large and this technique can be used in E-plane and H-plane
when connecting with antenna. Therefore, many researchers
were interested in the interdigital technique to reduce the size
of unit cell [15]-[17]. With the interdigital structure, the size
of unit cell can be reduced from A /2 to A /4 [18], [19], which
is the same electrical length. The interdigital connection at
the end of unit cell structure will clearly affect the second
resonant frequency adjustment, and it also affects the change
of the permittivity of the metamaterial in which operating fre-
quency has negative permittivity (ENG) [20], [21]. Therefore,
in this research we propose to design a dual-band metamate-
rial used for LTE and WLAN systems at 1.8 GHz and 5.5 GHz
frequency bands by using the Jerusalem cross structure with
interdigital technique. The unit cell is designed with size
reduction from A/2 to A/4 which is much smaller than the
conventional structure. Also, the antenna with the reflector
using the proposed unit cells has low profile with the distance
of A/8 between radiator and reflector. Moreover, it has linear
polarization in both vertical and horizontal planes or dual
polarization, and higher performances including higher gains
in both of operated frequency bands. Details of the design will
be shown in the next section. Then, the simulation of unit cell
and measurement of the proposed structure will be shown and
discussed in section 3. Finally, conclusions will be given.

Il. DESIGN OF UNITCELL

The simple design of dual-band metamaterial, whose unit
cell includes Jerusalem cross structure with interdigital part
is shown in Fig. 1. The GML-1000 substrate with & =
3.2, thickness of 0.762 mm, and loss tangent of 0.004, is
employed. The unit cell is designed at the first resonant
frequency of 1.8 GHz and the second resonant frequency
of 5.5 GHz, respectively. The equivalent circuit of designed
metamaterial unit cell is shown in Fig. 2(a). By modifying
unit cell, the Jerusalem cross structure which includes the
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FIGURE 2. A dual-band metamaterial based on Jerusalem cross structure
and interdigital part: (a) the equivalent circuit, (b) comparison the size

between conventional structure and Jerusalem cross structure with
interdigital part (c) the geometrical diagram of unit cell.

size of cross line and the capacitance of interdigital structure
can reduce both resonant frequencies. In the circuit model,
the inductors and capacitors are added caused by the inter-
digital structure. The adjustment in capacitance ‘Ci’ affects
a significant shift in the second resonant frequency. The
value of capacitance is increased by increasing the number of
fingers of interdigital structure, thus the gaps between fingers
involve with the increase in the E-field.

Fig. 2(b) also shows the impedance of the transmission
line (Za) that affects the resonant frequency. By having the
electrical length 6, = 2(6; + 6,), where 6; = 6, = 6,
the stepped impedance of the transmission line can be deter-
mined by using (1)—(2), where f; and f, are the fundamental
and second resonance frequencies, respectively. The electri-
cal lengths can be derived as [22]-[25]:

1
Oy = 2tan" ! [ ——— 1
a an <7Tf] Zaci) (1a)
64y = 21 — 2tan™ " (wfrZ,C;) (1b)
The parameter Ci can be determined as
1
G = (et )W3(8r+ D[0.1(n — 3) +0.11] )

1

where 0ap and fa; are the electrical lengths of the first
and second resonance frequencies, respectively. Ci is the
capacitance of the interdigital part, W is the total length
of interdigital part, W3 is the length of finger, and n is
the number of fingers. From (1b), it can be seen that the
parameter Ci has an effect on the second resonant frequency
but has little effect on the fundamental frequency due to (1a).
This can be explained by the fact that Ci can shift the sec-
ond resonant frequency and reduce an electrical length of
the resonator in unit cell to around A/4. Additionally, with
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FIGURE 3. The simulation result of (a) the S-parameters, (b) the effective
permittivity, (c) the effective permeability, and (d) the index of refraction.
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FIGURE 4. The E-field of Jerusalem cross structure with Interdigital at

(a) 1.8 GHz, and (b) 5.5 GHz.

FIGURE 5. The H-field of Jerusalem cross structure with Interdigital part

at (a) 1.8 GHz, and (b) 5.5 GHz.

(b)

15
11.3
9.48
862
821
g.02
786
757
7
5.93
3.89
o

15
11.3
9.48
8,62
821
a.0z
7.86
7.57
7
593
3.89
0

FIGURE 6. The surface current of unit cell at (a) 1.8 GHz, and (b) 5.5 GHz.

the proposed unit cell structure, its permittivity could be
flexibly adjusted. In the boundary condition, the direction
of propagation (k) and the E-H field are in z direction and
y-Xx axis, respectively. To analyze the characteristics of the
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FIGURE 7. The simulation results of (a) the magnitude of (S,;), (b) the phase of S5, (c) the effective permittivity, and (d) the effective permeability.

metamaterial structure, the S-parameters are extracted to cal-
culate the effective permittivity (gefr), and permeability ((Lefr)
that are derived as follows [26]-[28],

2 1—(S2+S
Effective permittivity, &, = ( ) X [M} 3)

jkd )" | T+ Sa1+51)
2 1—(S21—S
Effective permeability, p, = (—) X [M} 4
Jkd 14+(S21 =811

where k is the wave number, d is the thickness of substrate,
S11 is reflection coefficient, and S;; is transmission coeffi-
cient. By using the CST simulation software, which is based
on the finite-element method, the geometrical parameters
of Wi, Wy, W3, Wy, W5,W¢ and g; are obtained to be
22.53 mm, 0.94 m, 1.66 mm, 3.47 mm, 4.60 mm, 23.04 and
0.20 mm, respectively. The overall size of unit cell is 3.0 x
3.0 cm?, which is more compact compared to the conven-
tional structure as shown in Fig. 2(b).

Ill. RESULTS AND DISCUSSION

A. METAMATERIAL UNIT CELL

Fig. 3(a) displays the simulated results of the conventional
Jerusalem structure compared to the proposed structure. It is
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found that the combination of Jerusalem cross structure and
interdigital part can control obviously the second resonant
frequency but affect little the first resonant frequency and
also change the value of material properties as shown in
Fig. 3(b)-(d). In Figs. 4(a) and (b), the E-field occurs in
the y-axis at the resonant frequency of 1.8 GHz and the
intensity of the E-field is higher than the second resonant
frequency of 5.5 GHz. In the case of the x-axis, the inten-
sity of the E-field at the resonant frequency of 1.8 GHz
is less than the second resonant frequency of 5.5 GHz but
the H-field hardly appears during interdigital part at both
resonant frequencies of 1.8 GHz and 5.5 GHz. as shown
Figs. 5(a). and (b).

For better illustration about the structure that affected the
resonance frequency using interdigital technique, the sur-
face currents at both resonance frequencies are displayed
in Figs. 6(a) and (b). Fig. 7 displays the simulated results of
the proposed structure to apprehend change of the capaci-
tance according to the number n of interdigital part, causing
the shift of the resonant frequencies, especially the second
resonant frequency. In Fig. 7(a), at n = 19, the consequence
from the simulation found that there are resonant frequencies

VOLUME 8, 2020
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FIGURE 8. The simulation results of (a) the magnitude of (S,;), and
(b) the effective permittivity.

of 1.8 GHz and 5.5 GHz by the observation from transmis-
sion coefficient (S,;) that covers the bands of 1.8 GHz and
5.5 GHz, respectively as designed. In addition, the conjuga-
tion of Jerusalem cross structure and interdigital part affects
especially to the density of E-field, resulting in the value of
permittivity change plentifully but it has inappreciable effect
on H-field. Moreover, the negative permittivities are achieved
at both frequency ranges. The first one is approximately from
1.70 to 1.95 GHz, while the second one is from 5.06 to
6.04 GHz as shown in Fig. 7(c). The permeability values of
both frequencies are near zero as shown in Fig. 7(d). In addi-
tion, the gap between the unit cells also affects the coupling
between the unit cells, causing the resonant frequencies to be
slightly shifted as shown in Fig. 8.

Using interdigital technique results in the intensity of
E-field between gaps of the interdigital. At the resonant
frequency of 1.8 GHz, the intensity of E-field is the most
occurring in the gap between the unit cell and the second
most occurring in gaps of the interdigital part as shown
in Fig. 9(a). At the second resonant frequency of 5.5 GHz,
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(b)

FIGURE 9. The E-field of Jerusalem cross structure with interdigital part
at (a) 1.8 GHz, and (b) 5.5 GHz.

(a) (b)

FIGURE 10. The E-field of conventional Jerusalem cross structure at
(a) 1.8 GHz, and (b) 5.5 GHz.

FIGURE 11. Photos of (a) the proposed metamaterial, and (b) the
measurement set-up.

the intensity of E-field appears at the gaps of the interdigital
part, obviously as shown in Fig. 9(b). It can be compared with
the E-field of the conventional Jerusalem cross structure as
shown in Fig. 10, in which the permittivity of material can be
adjusted by using interdigital technique with Jerusalem cross
structure.

B. METAMATERIAL WITH ANTENNA
Figs. 11(a) and (b) present the proposed metamaterial and the
measurement setup. The proposed metamaterial with a size
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FIGURE 12. The measured and simulated results (S;;) of the dipole
antennas at (a) 1.8 GHz, and (b) 5.5 GHz.

(b)

FIGURE 13. The radiation patterns of V-polarization at (a) 1.8 GHz, and
(b) 5.5 GHz.

of the 15 x 15 cm? was fabricated. In this setup, a dipole
antenna was employed with the proposed metamaterial as a
reflector. The proposed metamaterial was placed on a holder
at a proper distance of 2.0 cm or about one-eighth wavelength
behind the dipole antenna. Another identical dipole was used
as a receiving antenna. Both dipole antennas were connected
to a network analyzer in an anechoic chamber.

Fig. 12 demonstrates the simulated results of the dipole
antenna with the proposed metamaterial exhibiting the
resonance ranges at 1.74 GHz (1.64 ~ 1.97 GHz) and
5.43 GHz (5.01 ~ 5.83 GHz) as well as the measured reso-
nance ranges are 1.71 GHz (1.58 ~ 1.88 GHz), 5.47 GHz
(5.05 ~ 5.68 GHz), respectively. It can be compared with
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(a) (b)

FIGURE 14. The radiation patterns of H-polarization at (a) 1.8 GHz, and
(b) 5.5 GHz.
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—— Measured Cross-polar

FIGURE 15. The E-plane radiation patterns at (a) 1.8 GHz, and (b) 5.5 GHz.

the dipole antenna ranges at 1.80 GHz (1.63 ~ 2.00 GHz)
and 5.50 GHz (4.96 ~ 5.95 GHz) in simulation as well as
1.75 GHz (1.59 ~ 1.96 GHz), 5.52 GHz (4.95 ~ 5.71 GHz)
in measurement. The resonant frequencies are shifted toward
the lower frequency, which the measured return losses (Sy;)
of the proposed metamaterial are —46.45, and —37.16 dB,
respectively compared with —29.83 and —26.20 dB of the
dipole antenna. Therefore, the proposed dual-band metama-
terial is applicable for LTE and WLAN applications. The
measured and simulated peak gains of the antenna by using
the Friis transmission formula at 1.8 GHz and 5.5 GHz
are good agreement. The measured gains of the antenna
increase up to 8.23 dBi and 8.30 dBi, respectively, whereas
the simulated gains are sequentially 8.06 dBi and 9.16 dBi
as shown in Figs. 13 and 14. Figs. 15 and 16 show the
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FIGURE 16. The H-plane radiation patterns at (a) 1.8 GHz, and (b) 5.5 GHz.

comparison between measured and simulated far-field radia-
tion patterns in E-plane and H-plane of vertical polarization at
the resonant frequencies. In the case of vertical polarization,
the yz-coordinates are taken into consideration as E-plane and
xz-coordinates as H-plane. For horizontal polarization, the yz
and xz-coordinates are just switched for E-plane and H-plane,
which can be examined that the proposed metamaterial to lead
to dual linear polarization, resulting in ease of use with the
antennas. In addition, the co-polarization is greater than the
cross-polarization at both resonant frequencies due to the use
of interdigital technique in conjunction with Jerusalem cross
structure. When comparing with [7]-[9], using the proposed
technique, the size of unit cell is smaller because it can be
reduced from A/2 to A/4 caused by the slow wave effect
on transmission line. When connecting with the antenna,
the proposed reflector can be used to reflect the waves in both
E and H planes or dual polarization and the antenna also has
higher gains at both frequencies. In addition, the proposed
design technique was done in a single layer, which is less
complicated compared with the reported works. When com-
paring with the Jerusalem structure proposed in [12]-[14],
even though it can control the second harmonics resulting
in a dual band operation by using difference of impedance
in a cross transmission line but the size of unit cell is quite
large and the antenna with this proposed reflector has low
gain about 6 dB.
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IV. CONCLUSION

In conclusion, a dual-band metamaterial based on Jerusalem
cross structure with interdigital technique has been designed,
fabricated and measured in this paper. The unit cell and array
structure exhibited negative permittivity (ENG) at 1.8 GHz
(1.70 ~ 1.95 GHz) and 5.5 GHz (5.06 ~ 6.04 GHz). The
dipole antenna has been used with the proposed metamaterial
and also operated with dual linear polarization for simu-
lation purposes to obtain good agreement in the measured
results. The advantage of the proposed metamaterial reflec-
tor includes small size of unit cell about one-fourth wave-
length at 1.8 GHz, that can be used for dual-band frequency
operation. Also, the dipole can be placed in two directions
(x or y direction), resulting in the same radiation patterns.
The distance between radiator and metamaterial reflector is
reduced to about one-eighth wavelength. The dipole antenna
with the proposed metamaterial reflector has simulated gains
up to 8.16 dBi and 9.06 dBi and measured stable gains up
to 8.23 dBi and 8.30 dBi at both frequencies. In addition,
the purposed metamaterial is applicable for 4G LTE, and
WLAN systems.
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