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ABSTRACT This study applies statistical process control and machine learning techniques to diagnose
wind turbine faults and predict maintenance needs by analyzing 2.8 million sensor data collected from
31 wind turbines from 2015 to 2017 in Taiwan. Unlike previous studies that only relied on historical wind
turbine data, this study analyzed the sensor data with practitioners’ insight by incorporating maintenance
check list items into the data mining processes. We used Pareto analyses, scatter plots, and the cause and
effect diagram to cluster and classify the failure types of wind turbines. In addition, control charts were
used to establish a monitoring mechanism to track whether operation data are deviated from the controls
(i.e., standard deviations) as a mean to detect wind turbine abnormalities. While statistical process control
was applied to fault diagnosis, machine learning algorithms were used to predict maintenance needs of wind
turbines. First, the density-based spatial clustering of applications with noise algorithm was used to classify
abnormal-state wind turbine data from normal-state data. Then, random forest and decision tree algorithms
were employed to construct the predictive models for wind turbine anomalies and tested with K-fold cross-
validation. The results indicate a high level of accuracy: 92.68% for the decision tree model, and 91.98% for
the random forest model. The study demonstrates that, by data mining and modeling, the failures of wind
turbines can be detected, and the maintenance needs of parts can be predicted. Model results may provide
technicians early warnings, improve equipment efficient, and decrease system downtime of wind turbine
operation.

INDEX TERMS Decision trees, fault diagnosis, machine learning, predictive maintenance, random forest,
statistical process control, wind energy.

I. INTRODUCTION
Wind energy is a prevailing, potentially low-cost renewable
energy technology that holds a key role in clean energy
transition. Thanks to its location, Taiwan is well-endowed
with abundant wind energy resources and provides a viable
home for utility-scale wind farms. According to the 23 Year
Average Wind Speed Observation by 4C Offshore, 16 of the
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world’s top 20 places with the most abundant wind resources
are located at the Taiwan Strait (4C Offshore 2018). Partic-
ularly, southwesterly airstream in summer and northeasterly
monsoon inwinter along the coast fromTaoyuan to Changhua
often create strong wind of scale 4 or higher. As a result,
Taiwan offers one of the best places in the world to develop
wind energy [3].

Most wind turbines in Taiwan are imported and were
built to accommodate local environmental and geographical
conditions. Hence, wind turbine malfunctions are usually
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time-consuming and costly to fix as technicians need to con-
tact the foreign seller and request maintenance service [3].
If a set of accurate prediction methods is identified and put in
place, equipment anomalies may be detected early and then
corresponding actions may be taken timely to decrease the
downtown of a wind turbine.

For decades, industrial manufacturers have been striving
to improve operational efficiency, maximize production, and
reduce downtime of equipment. Thanks to the rapid develop-
ment of the Industrial Internet of Things (IoTs) over the past
decade, numerous manufacturers have installed sensors on
production equipment to track real-time system performance,
monitor equipment degradation, and predict malfunctions.
Such fault diagnosis and predictive maintenance mechanisms
improve the availability/uptime of a production line and
reduce maintenance costs for producers [4], [8].

Wind turbine developers and operators are no exception
to the rapid IoT development and have adopted sensors to
monitor the state of wind turbines and generation. Currently,
most wind turbines rely on an expert control system which is
designed based on human experience and stored knowledge.
The system does not predict wind turbine faults, and the
system solutions for abnormalities are limited and predeter-
mined. By contrast, predictive maintenance models with a
large amount of sensor data have the ability to predict and
prevent possible faults and reduce maintenance costs [4].

Taipower, the state-owned utility in Taiwan, has installed
numerous sensors on wind turbines to monitor real-time
rotational speed, temperature, and voltage of wind turbine
parts. This study uses wind turbine sensor data obtained from
Taipower and employs statistical process control andmachine
learning techniques to identify attributes that are useful in
detecting wind turbine faults and predicting maintenance
needs. The sensor data were collected from 31 wind turbines
from January 1, 2015 to December 31, 2017.

II. LITERATURE REVIEW
Numerous studies have been published on the topics of wind
turbine fault diagnosis and predictive maintenance. The wind
turbine prognostics and health management research has
mainly focused on vibration analysis, torque analysis, acous-
tic emission signal analysis, and temperature analysis. While
most studies used either control charts or machine learning
techniques to predict wind turbine maintenance needs, this
study employs both methodologies. In addition, previous
studies usually deployed only one of the seven statistical
process control methods for fault diagnosis, and this study
uses five statistical process control techniques to analyze
wind turbine faults. Another contribution of this study is
providing clear definitions of wind turbine anomalies from
the practitioners’ perspectives. Unlike earlier research only
analyzed wind turbine anomalies with historical sensor data,
this study not only analyzes sensor data but also integrates
practitioner’s insight into possible causes for wind turbine
faults by examining the check list provided by Taipower.

In a previous study, Yang et al. [5] proposed a control chart
that was based on the residual-based exponentially weighted
moving average (EWMA) to remove autocorrelation issues
in datasets. By establishing control charts based on EWMA
and multivariate EWMA (MEWMA), the authors compared
the model robustness across fault diagnosis models and the
failure types identified by data analyses. As wind turbine
faults might result from multiple causes and variables, the
authors found that aMEWMAcontrol chart was able to detect
failure faster than, or at least as fast as, an EWMA control
chart.

Wang et al. [7] modeled the damage of wind turbine blades
and found analytical evidence that irregular cracks occurred
on blades prior to breaking. Then, the authors employed Deep
Autoencoder (DA) models to predict impending ruptures of
a blade by using monitoring data. The DA model is a neural
network of multiple hidden layers of a symmetric organiza-
tion. To train the DAmodel, BoltzmannMachine was utilized
and restricted to initialize weights and deviations. Backprop-
agation was then used to further optimize the training struc-
ture. By validating the monitoring data, the authors found
that the trends of reconstruction error (RE) were associated
with blade breakage. Next, Wang et al. [7] established an
EWMA control chart to further detect changes in RE. The
data of broken blades that were collected from China’s wind
farms were used to validate the models and showed support
to the proposed method. The results demonstrated that the
monitoring method proposed by Wang et al. [7] effectively
identify impending wind turbine blade damage.

Liu et al. [13] used K-means and artificial neural network
classification to predict failure of wind turbine gear box
systems. First, after data pre-processing, K-means clustering
was used to cluster data with similar characteristics into
multiple clusters. The results of data clustering were then
predicted by the artificial neural network classification. Com-
pared with the traditional neural network classification, this
method improved the accuracy of prediction by 3.5%. With
the proposedmodel, mechanical failure could be detected and
determined more accurately and timely [13].

Yampikulsakul et al. [9] found that wind turbine opera-
tion was significantly affected by weather conditions. Their
study demonstrates that, bymonitoring wind turbines’ perfor-
mance, the operation and maintenance costs can be reduced.
Yampikulsakul et al. [9] employed least squares support vec-
tor regression to model climatic factors and turbine operation
parameters to predict wind turbine faults. The authors exam-
ined the operational variations that were affected by weather
conditions to determine the decision boundary of the model.
The decision boundary was also set as the central baseline
for the subsequent analyses of control charts. The baseline
was used to identify the conditions that lead to wind turbine
abnormalities.

Zhang et al. [15] proposed seven machine learning algo-
rithms: 1. Neural Network, 2. Neural Network Ensemble, 3.
Support VectorMachine, 4. Boosting Tree, 5. RandomForest,
6. K-Nearest Neighbour, and 7. Classification and Regression
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Tree for fault diagnosis. The model inputs include the total
amount of wind energy generated, motor rotational speed,
torque, and temperature of wind turbine parts. Then, mean
absolute percent error was used to measure prediction errors.
As a result, neural network and neural network ensemble
models reported the lowest error (0.01), while the random
forest model was the second fitting algorithm with a reported
error of 0.06.

Wang et al. [11] proposed the Multivariate Time Series
Processing Method based on Riemannian Manifold. Through
statistical process control charts, the wind turbines’ multi-
variate time-series data of abnormal features were tested.
Next, the authors visualized the data of equipment anomalies
through covariance matrix distribution for fault diagnosis.
This research focuses on the gearbox failure of wind turbines,
and its troubleshooting method was validated and found
effective.

Kusiak and Verma [2] proposed a three-stage process to
predict wind turbine faults: predict any type of faults, pre-
dict system-specific faults, and then identify potential faults
that have not yet occurred. After data pre-processing, five
machine learning algorithms (1. Neural Network, 2. Support
Vector Machine, 3. Random Forest, 4. Boosting Tree, and 5.
General Chi-square Automatic Interaction Detector) were
used to predict the values of four events (1. Turbine OK, 2.
Fault, 3. Weather Downtime, 4. Maintenance Downtime). For
the final outcomes, random forest reported the best result with
a 98% of successful categorization rate.

Marquez et al. [4] proposed 11 methods to predict wind
turbine faults (1. Vibration, 2. Acoustic Emission, 3. Ultra-
sonic Techniques, 4. Oil Analysis, 5. Strain, 6. Electrical
Effects, 7. Shock Pulse Methods, 8. Process Parameters, 9.
Performance Monitoring, 10. Radiographic Inspections, and
11. Thermography). By monitoring wind turbine parts and
systems, operators can identify possible wind turbine faults
and take actions before abnormal conditions occur. In addi-
tion, Marquez et al. [4] noted that thermography were often
used for monitoring operation condition of wind turbines.
As the First Law of Thermodynamics suggests, an increase in
temperature is associated with a decrease in energy, implying
that malfunctioning parts that create friction and heat are
likely to reduce wind energy outputs.

Hameed et al. [14] reviewed different methodologies and
algorithms developed tomonitor the performance of wind tur-
bines and found that the use of condition monitoring systems
and fault detection systems are crucial to maintaining wind
turbine health.

In summary, there are two bodies of literature related to
predictive maintenance of wind turbines: first, monitoring
real-time wind turbine operation with post-event analyses
based on the control charts of statistical process control;
and second, using statistical analyses and machine learn-
ing algorithms to predict equipment abnormalities based on
historical records. In the second body of the literature, the
common algorithms that were used include neural network,

TABLE 1. Sensor data that were collected by Taipower.

support vector machine, random forests, and decision trees.
The equipment parts that were commonly analyzed include
fan blades, gearbox, turbine, and generator.

III. METHODOLOGY
A. DATA ANALYSIS
Provided by Taipower, the data were collected from 31 wind
turbines in the Changhua Binhai Industrial Zone Phase 1
(23 units) and Phase 2 (8 units) from January 1, 2015 to
December 31, 2017. Data were recorded with 21 attributes
every 10 minutes. Each wind turbine unit had 52,561 obser-
vations, and 31 units totaled 2,815,104 observations for the
analyses.

The sensor data that were monitored and collected by
Taipower are listed in Table 1.

1) DATA PRE-PROCESSING
Wind turbines often operate intermittently, given the nature
of wind not blowing continuously. To tackle this analytical
challenge, we first identified the suitable data interval for this
study. We found that the temperature change of generation
equipment and the generator rotational speed only partially
correlates with the amount of wind energy generated. While
the amount of wind generation changes immediately when
wind speed and generator rotational speed change, the change
in the amount of wind generation takes a longer time to
respond to temperature change. The slow reaction of wind
generation to temperature change leads to the outcome that
a single temperature value corresponds to multiple speed
values and the amounts of wind generation in the raw dataset.
To resolve this analytical issue, the study first attempted
to average all attribute variables by various hour intervals
(including 1 hours, 2 hours, . . . , to 12 hours), but the out-
comes were not satisfying. Then, the authors found the daily
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average of variables was the most robust way to eliminate the
imbalanced data issue. As a result, this study set ‘‘day’’ as
the data internal and pre-processed the recorded wind turbine
data accordingly.

2) DATA CLEANSING
Some of the wind turbine data were lost in the events of
sensor malfunction, and no backup data were available at
Taipower. As a result, we performed data cleansing to remove
blank fields in the original data. To do so, we first selected
the attributes that are highly correlated with the amount of
wind energy generated. Taking the CK20 wind turbine unit
for example, a total of 21 attributes were selected (including
the temperature of high-speed bearings, the temperature of
wind turbine gearbox lubricant, and generator speed), and
blank fields were removed. Specifically, data cleansing was
proceeded with 5 steps to maximize the number of observa-
tions retained in the dataset. After each step, the correlation
coefficients of each field were re-examined, and the correla-
tion scatter plots were compared to ensure the validity of the
data cleansing.
(1) We cleared the character strings of all fields to avoid

computer recognition error and set them as null.
(2) After removing the data with incomplete time points,

we used the remaining data with complete points of
time to establish a correlation coefficient table.

(3) We selected variables that have high correlation coeffi-
cients (greater than 0.5 or less than -0.5) and classified
them into four groups. In addition, only wind turbine
attributes that correlate the amount of wind generation
were retained for further analyses.

(4) We used scatter plots to visualize the correlation
between each attribute and the amount of wind
energy generated. We also validated the correlations
of attributes with wind generation based on the advice
given by Taipower technicians in charge of wind tur-
bine maintenance.

(5) After extracting highly-correlated wind turbine
attributes with the amount of wind generation,
we deleted all incomplete data points and created a new,
complete dataset.

B. PRELIMINARY ANALYSIS OF ABNORMALITIES
By comparing the correlation coefficient table and scatter
plots of different wind turbines, we found that the correlation
coefficients of some wind turbines were significantly lower
than those of other wind turbines. To explore the abnormal
correlation coefficients, we first calculated the total amount
of wind energy generated by each wind turbine and created a
baseline by averaging the correlation coefficients of 30 wind
turbines to identify the correlation coefficients that were
below the average. Lastly, this study examined the scatter
plots of each marked wind turbine attribute and compared it
with the scatter plot of each unmarked attribute. The results
of abnormalities analyses will be discussed in IV. Empirical
Analysis.

C. ANALYSIS OF WIND TURBINE DATA THROUGH
STATISTICAL PROCESS CONTROL
This study conducted fault diagnosis based on the wind tur-
bine data provided by Taipower through five analytical tools
in statistical process control: 1. check list, 2. Pareto charts,
3. cause and effect diagram, 4. scatter plots, and 5. control
charts. First, this study examined Taipower’s check list for
wind turbine maintenance. The check list includes informa-
tion such as the type of wind turbine faults, the duration of
faults, causes, and repair events. We ranked wind turbine
repair events by frequency of anomalies in the dataset. Sec-
ond, a Pareto chart was created based on the ranked check list
items and displayed the repair events in terms of cumulative
percentage. Events with higher occurrence percentage are
considered the most frequent causes for wind turbine faults
and should be checked first by technicians in the occurrence
of abnormal states, while events with lower occurrence per-
centage are secondary contributors to equipment faults and
may be maintained in a mid- or long-term time horizon.

The third analytical tool is the cause and effect diagram.
Wind turbine anomalies are placed on the right side of the
diagram, and the four primary classification of the check list
items (rotating blade anomalies, gearbox anomalies, genera-
tor anomalies, and hydraulic oil system anomalies) are placed
on the left side of the diagram. Under each primary classifica-
tion of anomalies, secondary classification of anomalies are
present, including high temperature, insufficient gear oil, and
abnormal speed. A cause and effect diagram helps identify the
underlying causes for major mechanical problems and make
recommendations to technicians for maintenance.

Forth, scatter plots were used to explore the relationship
between attributes and identify data that are abnormal. Lastly,
control charts were used and offer the strength to show
changes and variation in observed data over time.

This study analyzed the continuous, time-series data of
a single wind turbine to examine the changes of standard
deviation and whether the wind turbine performance data
met regulatory standards. This study also identified abnormal
variation in the control chart and analyzed the causes of the
unusual variations.

D. CLASSIFYING ABNORMAL AND NORMAL DATA
The study used the density-based spatial clustering of appli-
cations with noise (DBSCAN) algorithm to illustrate the rela-
tionship between the total amount of wind generation and five
attributes as well as classify normal and abnormal data which
were first clustered through pattern geometric correlation.
Two parameters were used in the DBSCAN algorithm: ε (eps)
and minPts, namely the radius of neighborhood around a
point and the minimum number of data points to be included
to form a dense region. The DBSCAN clustering starts with
an arbitrary starting point. The starting point is identified as
a core point if its radius of ε contains at least minPts number
of points, and then a cluster is formed. Points beyond the
distance of ε are labeled as noise. The steps repeat until all
points have been assigned to a cluster or labeled as visited.
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The authors determined the values of ε and minPts based on
the results of scatter plots.

E. PREDICTIVE MAINTENANCE MODELS
Two prediction models were built through random forest
and decision tree algorithms and both validated by k-fold
cross-validation five times. The random forest algorithm
was favored by Breiman [6] over the decision tree algo-
rithm as random forest is an ensemble of multiple decision
trees. By consisting of multiple weak learning tools, the ran-
dom forest constructs a strong learning tool which limits
overfitting.

On the other hand, while the decision tree algorithm
may overfit and be less accurate for prediction, it per-
forms binary splits in the classification process until the
final outcomes were yielded. The decision tree offers the
advantage of explaining and identifying the features that
predict wind turbine maintenance need. The authors created
a visualized decision tree to select features that contribute
to the prediction outputs and avoid overfitting. By incor-
porating the decision tree algorithm with feature selec-
tion, we eliminated two inferior attributes (rotor speed and
wind generation) and retain four influential attributes as
well as mitigate the overfitting problem for the predictive
models.

In this study, the random forest algorithmwas implemented
under Python environment. The parameters setting is dis-
cussed in the follows. Entropy was used to measure the qual-
ity of a split for the information gain. The minimum number
of samples required to be at a leaf node was 1, the minimum
number of samples required to split an internal node was
2, and the number of the trees in the forest was 10. The
number of jobs to run in parallel for both fit and predict
was 2.

IV. EMPIRICAL ANALYSIS
A. DATA PRE-PROCESSING
1) DATA CLEANSING
The raw data of wind turbines contain the device number
(i.e., Chang Kong, CK) and a string of status number.We first
converted the strings into null values. In addition, we selected
attributes that are highly correlated with the amount of wind
energy generated and removed insignificant attributes from
the empirical analyses. The method was described step by
step in the following.

First, we calculated the average correlation coefficients of
the attributes of the 31 wind turbine units. Then, we only
retained 9 attributes that have a correlation coefficient
greater than 0.5 with the amount of wind energy generated.
The 9 attributes are: 1. generator speed, 2. high-speed bearing
temperature, 3. gearbox lubricant temperature, 4. wind speed,
5. wind turbine rotor speed, 6. impeller shaft temperature,
7. ambient temperature, 8. nose tip temperature, and 9. trans-
mission busbar temperature. The splitting ratio for training
and testing dataset was 70:30.

Next, scatter plots were created to illustrate the relationship
between the amount of wind generation and each selected
attribute as well as the correlation coefficients between every
two attributes. Among the 9 attributes that are highly cor-
related with the amount of wind energy generated (>0.5),
the scatter plots of some attributes fail to show a clear pattern
and are unable to provide evidence that these attributes are
highly correlated with the amount of wind energy generated.
Therefore, we removed these attributes from the analyses,
which were 1. impeller shaft temperature, 2. ambient tem-
perature, 3. nose tip temperature, and 4. transmission busbar
temperature.

As a result, the study finally retained five attributes that are
highly correlated with the amount of wind energy generated
for further analyses: 1. wind turbine generator speed (0.79),
2. high-speed bearing temperature (0.79), 3. gearbox lubri-
cant temperature (0.72), 4. wind speed (0.92), and 5. wind
turbine rotor speed (0.80).

Finally, this study extracted the raw data of the five selected
attributes and the amount of wind energy generated for further
analyses. The authors removed the observations with a null
value in the time field and generated the daily average of these
data for the reason specified in the ‘‘Data Pre-Processing’’
section.

2) RESULTS OF DATA CLEANSING
After data cleansing, the study compiled the remaining
attribute data of 31 wind turbine units. As Table 2 shows,
No. CK31 only had 1,905 observations left after the data
cleansing, accounting for 1.21% of the total observations
(157,438), far less than the average number of observa-
tions of other 30 wind turbines. Therefore, the data of
No. CK31 were removed from the analyses due to validity
concerns.

In addition, CK24-30 (7 units) were built in the Phase 2
of Changhua Binhai Industrial Zone. The data of ‘‘Wind
Turbine Generator Speed’’ from the 0:00 a.m. on January 1,
2015 to 4: 40 p.m. on March 16, 2015 were lost, a total of 3
months and 16 days. Despite the incomplete data, the data of
CK24-30 were retained to improve the statistical robustness
of the correlation estimates between each attribute and the
amount of wind generation.

B. PRELIMINARY ANALYSIS OF ABNORMALITIES
First, the study calculated the average of the correlation coef-
ficients of 30 wind turbines and set them as the baselines
for the abnormality analysis. Then, the authors compared
the correlation coefficients and the scatter plots to iden-
tify abnormalities of wind turbine attributes. In particular,
the results show that the correlation coefficients of wind
turbines CK04, CK05, CK10, CK19, CK20, CK23, CK24,
and CK27-30 were abnormal and significantly lower than
the average correlation coefficients. The attributes that were
found abnormal include: 1. generator speed, 2. high-speed
bearing temperature, 3. gearbox lubricant temperature, and
4. rotor speed.
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TABLE 2. Results of data cleansing (complied by the authors).

C. STATISTICAL PROCESS CONTORL
Based on the monitoring data of wind turbines and the repair
records from 2015 to 2017 provided by Taipower, the study
investigates the causes of wind turbine equipment abnormali-
ties through five analytical tools in statistical process control:
check list, Pareto chart, the cause and effect diagram, scatter
plots, and control charts. The results of scatter plots were
already discussed in Preliminary Analysis of Abnormalities.
The analysis results of the check list, Pareto chart, and the
cause and effect diagram are presented in tables and figures in
this section. The control charts presented in this section only
list the analysis results of No. CK20, as its data had the most
exceptional distributions among 31 wind turbine units. The
analyses of other 30 units were not presented in the study,
as the methodology is identical and the results would be
repetitive.

1) CHECK LIST CONSOLIDATION
Taipower has a standardized check list for wind turbine
repairs. The check list includes 1. repair form number, 2.
unit number, 3. rated capacity (KW), 4. the start time of a
downtime, 5. the end time of a downtime, 6. the length of a
downtime, 7. alert number, 8. alert message, 9. maintenance
process, and 10. the status of maintenance.

From 2015 to 2017, the 30 wind turbines had a total of 88
abnormal conditions and 976 repairs.We classified the abnor-
mal alerts and counted the frequency of each classification

TABLE 3. Check list items by frequency (estimated by the authors).

FIGURE 1. The Pareto chart of abnormal frequency statistics (estimated
by the authors).

of abnormal alerts. Table 3 lists the 29 most common types
of abnormal conditions and consolidated less frequent condi-
tions (less than 7 occurrences) in the 30th item ‘‘Others’’.

2) PARETO ANALYSIS
Based on the frequency of abnormal conditions in Table 3,
the Pareto chart was created with the x-axis indicating
the abnormal condition number (type 1 to 30 in Table 3).
As Fig. 1 displays, the top five abnormal conditions account
for 42% of the total occurrence of abnormal conditions, much
higher than the rest of 83 conditions. The top eight abnormal
conditions account for 51% of all abnormal conditions, and
the top 16 abnormal conditions account for 70%. The first-
ranked abnormal condition by frequency is ‘‘154 Max rotor
RPM’’, accounting for 11%.
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FIGURE 2. Analysis of the causes of wind turbine faults.

Based on the results of the Pareto analysis, improvement
plans with short-, mid-, and long-term goals could be cre-
ated by Taipower. First, the improvement priority of fault
prevention should be given to the first eight abnormal con-
ditions – more than 50% of wind turbine anomalies may be
avoided. For the mid-range goal, by improving the number
9 to 16 items, wind turbine faults may be reduced by 70%.
Finally, the long-range improvement goal is to eliminate
the subsequent abnormal conditions and further advance the
operation efficiency of wind turbine equipment.

3) CAUSE AND EFFECT DIAGRAM ANALYSIS
Based on the results of Taipower check list consolidation
in Table 3, the author analyzed the locations of faults,
the types of equipment faults, and the values of abnormal
monitoring conditions and then classified the causes for wind
turbine anomalies into four types: rotating blade anomalies,
gearbox anomalies, generator anomalies, and hydraulic oil
system anomalies. We also referred to the wind turbine prog-
nostics and health management literature and consulted with
Taipower experts for appropriate classifications. Under these
four major types of anomalies, a total of 30 secondary causes
were also classified in Fig. 2.

By analyzing the four major classifications of anomalies,
we found that, first, high gearbox temperature was a common
cause for maintenance needs. Another frequent cause for
equipment faults was a worn-out gear set or gear oil running
out. In both scenarios, the wind turbine had to stop operating
and wait for cooling down or adding gear oil. The second
type of common equipment anomaly that caused wind turbine
faults was rotating blades, the part that receives the strongest
wind in operation. High wind speed wears and tears elec-
tromagnetic valves and may lead to an angle deviation of
a rotating blade. The speed of rotor blades can be limited
by installing a deceleration valve. Third, the malfunction
of a hydraulic oil pressure system, including gearbox and
motor steering components, was also found to be one of the
major causes for wind turbine faults. A healthy hydraulic
oil pressure system can reduce the maintenance needs for
wind turbines by keeping hydraulic pressure and oil pressure
in the normal range. Generator anomaly is the fourth major
cause for wind turbine faults. We found that high temper-
ature of a generator is a frequent cause for wind turbine
faults, as high temperature can easily damage the critical
mechanic components in a generator, such as gearbox, and

FIGURE 3. The control chart of amount of wind energy generated by
No. CK20.

low-speed and high-speed bearings. According to the check
list records, engineers would stop a faulted generator from
operating, wait for equipment temperature to drop, and then
restart the generator. However, the standard troubleshooting
process significantly reduces the amount of wind generation
and would benefit from an improved maintenance process.

Based on the result of the cause and effect diagram anal-
ysis, Taipower may install more sensors on the mechanic
components of wind turbines to monitor wind speed, mod-
ule temperature, motor revolution speed, and hydraulic oil
pressure system. New sensor data may provide insight and
help Taipower design improved maintenance practices that
effectively reduce the occurrence of wind turbine anomalies.

4) CONTROL CHART ANALYSIS
In this study, control chart analyses were used to establish
baselines that can be used to monitor wind turbine perfor-
mance and identify potential faults. After analyzing all the
historical data of 30 wind turbines, we found that CK20 was
a single abnormal case worthy of further analyses in this
section. No similar abnormal conditions were found in other
29 wind turbines.

Here, we only present the analysis results of the wind tur-
bine No.CK20 and display the control charts of its high-speed
bearing temperature and the amount of wind energy gener-
ated. Although six attributes were analyzed through control
charts as they all correlate with the amount of wind genera-
tion, the results of control chart analyses for other attributes
and other wind turbines are not presented for brevity.

Fig. 3 shows that, from January to September in 2015, the
high range of wind generation was approximately 500 KW.
During the period, the amount of electricity generated
fluctuated within one standard deviation from the mean.
However, since October, the high range of the generation
outputs increased to about 2,000 KW, and the generation
outputs fluctuated greatly within three standard deviations
from the mean. During the same period (September 2015 and
after), the high-speed bearing temperature of CK20 showed
an inverse relationship with the wind turbine’s generation
outputs in Fig. 4. The amount of wind generation was rela-
tively stable in the first three quarters of the year, while the
high-speeding bearing temperature also remained relatively
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FIGURE 4. The control chart of high-speed end bearing temperature in
No. CK20 in 2015.

FIGURE 5. The control chart of amount of wind energy generated by
No. CK20 (July to September in 2015).

stable, between 65 and 70◦C from January to July, within a
width of two standard deviations from the mean. However,
the high-speed bearing temperature dropped sharply from
July to September, and since October, the temperature further
dropped below 65◦C and fluctuated greatly in the width of
three standard deviations from the mean.

In addition, we found that wind turbine data were missing
in the period of September 4 to September 17 for CK20.
As the repair record indicates, it was because that main-
tenance was taking place due to the abnormally high tem-
perature of the nacelle. After the maintenance completed
on September 17, the amount of wind generation instantly
increased and the high-speed bearing temperature reduced
significantly, compared to the status prior to maintenance.
We presumed that the engineers had adjusted the generation
equipment which led to great improvement in generation
efficiency.

Fig. 5 shows that two data points of the amount of elec-
tricity generated exceeded three standard deviations from the
mean and four data points fell between two and three standard
deviations from the mean in September 2015. These extreme-
value data points might suggest maintenance needs and that a
professional technician could visit and check the wind turbine
unit to prevent faults. Another abnormality shown in the
figure was the significant difference between the trend before
September 4 and the trend after September 17. During the
same periods, the control chart of high-speed bearing temper-
ature and the amount of electricity generated also coincides
an inverse (i.e. downward) trend in Fig. 4.

FIGURE 6. DBSCAN high-speed bearing temperature and generator
rotational speed of No. CK20.

D. DATA CLUSTERING OF ABNORMAL AND NORMAL
STATES
1) DBSCAN CLUSTERING
To allow result comparison, the same wind turbine unit,
No. CK 20, was used in DBSCAN clustering as it was in
‘‘Control Chart Analysis’’. The scatter plot of high-speed
bearing temperature and wind turbine generator speed is
shown in Fig. 6, illustrating two clusters of the historical data.
We then compared the scatter plot outcomes with Taipower’s
check list to distinguish the abnormal and normal states of
wind turbines. In addition, according to the Taipower staff
in charge of wind turbines, ‘‘the normal temperature of an
operating high-speed bearing must be lower than 60 to 65◦C;
therefore, the data points that had high-speed bearing temper-
ature higher than 60 to 65◦C and/or the total amount of wind
energy generated between 0 and 750 kWh were considered
abnormal.’’

These criteria were applied to the historical data of
No. CK20, and the results are presented in Fig. 6 – the
upper cluster of data was supposed to indicate abnormal
conditions, and the lower cluster of data was supposed to
indicate normal conditions. To verify the result, we sorted the
abnormal-state data by time and found that all the abnormal
conditions occurred in the same time period. Additionally,
the occurrence of abnormal states of wind turbines were also
found to correlate with the presence of high-speed bearing
temperature. This provides evidence that high temperature
of a high-speed bearing was the main factor for reduced
generation. Therefore, in order to separate the abnormal-state
data from the normal-state data, we optimized the DBSCAN
clustering results with two parameters automatically tested:
the number of core points and the value of epsilon (eps).
We then had experts from Taipower verified the classification
results for accuracy.

It was shown in Fig. 6 that the data points of high gener-
ator rotational speed (1,950 to 2,000 rpm) were highly con-
centrated and were not successfully clustered by DBSCAN.
To solve this problem, we further clustered the data points in
two stages.

First, the observations with a high generator rotational
speed between 1,950 and 2,000 rpm were removed from
the clustering outcome. With the number of core points set
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FIGURE 7. DBSCAN clustering result of high-speed bearing temperature
and generator rotational speed of No. CK20 – Stage 1.

FIGURE 8. DBSCAN clustering result of total amount of electricity
generated high-speed bearing temperature of No. CK20 – Stage 1.

as 5 and the eps set as 0.5, the abnormal- and normal-state
data were successfully clustered as displayed in Fig. 7.

Fig. 8 shows the clustering result of Stage 1 and the
relationship of total wind energy generated and high-speed
bearing temperature. The data were successfully clustered by
DBSCAN and labeled as ‘‘normal’’ and ‘‘abnormal’’. In most
normal states (the left-handed cluster in Fig. 8), the high-
speed bearing temperature fell between 20 to 65◦, and total
amount of wind energy generated ranged from 0 to 2,000KW.
After testing sets of parameters, we found that with the core
points set as 7 and the eps set as 0.3, and then the data were
clustered with statistical significance in the second stage.
In Fig. 8, some of the classified normal data points in the
left cluster are currently marked as abnormal data. Therefore,
the classification result of the second stage were used to
correct the unfitting classification of the data points.

In the second stage, the unclassified observations in the
first stage were analyzed by using the scatter plot of the
amount of wind generation and high-speed bearing temper-
ature as references. We then used the AND logic gate to
correct Stage 1 classification results with Stage 2 classifi-
cation results and finally integrate the results of two stages.
The corrected classification results are presented in Fig. 9,
total amount of electricity generated and high-speed bearing
temperature, and Fig. 10, high-speed bearing temperature and
wind turbine generator speed. With the two-stage classifica-
tion method, we were able to successfully classify the data of
abnormal and normal states.

FIGURE 9. DBSCAN classification result of total amount of electricity
generated high-speed bearing temperature of No. CK20 – Stage 2.

FIGURE 10. DBSCAN classification result of high-speed bearing
temperature and wind turbine generator speed of No. CK20 – Stage 2.

FIGURE 11. DBSCAN classification result of total amount of electricity
generated and wind turbine generator speed of No. CK20.

2) DBSCAN CLASSIFICATION RESULTS
After the two-stage classification, we examined the scatter
plots of total amount of wind energy generated with four
attributes: (1) generator speed, (2) rotor speed, (3) gearbox
lubricant temperature, and (4) wind speed in Fig. 11-14. Due
to the great amount of overlap between the abnormal data and
the normal data, the abnormal and normal conditions could
not be differentiated effectively prior to the classification.
After successful classification, we were then able to identify
clear distinct trends of the abnormal- and normal-state data
of wind turbines – the normal-state data trend showed an
exponential distribution, while the abnormal-state data had
a linear relationship with the amount of wind generation
and a significantly lower amount of electricity generation
compared to normal states.
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FIGURE 12. DBSCAN classification result of total amount of electricity
generated and wind turbine rotor speed of No. CK20.

FIGURE 13. DBSCAN classification result of total amount of electricity
generated and wind turbine gearbox lubricant temperature of No. CK20.

FIGURE 14. DBSCAN classification result of total amount of electricity
generated and wind speed of No. CK20.

Based on the classification results, we found the factors
that lead to wind turbine abnormalities are closely associated
with components’ temperature and rotational speed. Holding
the amount of electricity generated and generator speed con-
stant, the maximum temperature of the high-speed bearing in
abnormal states was found approximately 7◦C higher than it
was in normal states. Additionally, the maximum temperature
of gearbox lubricant was found 6◦C higher in abnormal states
than it was in normal states.

Based on the above classification results, we found that
the high-speed bearing temperature of a wind turbine is a
particularly useful attribute to classify abnormal- and normal-
state data. In the DBSCAN classification scatter plots of
the amount of electricity generated and generator rotational
speed (Fig. 9 and 10), the cluster of abnormal-state data
are clearly distinguished from the cluster of normal-state

TABLE 4. The training result of decision trees.

data. On the other hand, gearbox lubricant temperature was
found to be a less useful attribute in identifying abnormal-
state data from normal-state data in DBSCAN classification.
Although the abnormal data cluster and the normal data
cluster are somewhat distinguished in Fig. 13, nearly half
of the abnormal and normal data clusters overlap. Therefore,
gearbox lubricant temperature is a less ideal attribute for data
classification.

The other attributes, including rotational speed (generator
speed and rotor speed), environmental factors (wind speed),
and output (total amount of wind generation) were not found
useful for the classification of wind turbine abnormalities.

E. CONSTRUCTING ANOMALY PREDICTIVE MODELS
In this section, the Scikit-Learn package’s CART decision
tree and a random forest algorithm were used to build the
anomaly prediction models1. As described earlier, we con-
structed two prediction models through random forest and
decision tree algorithms. We used the classification results
in the section of ‘‘Abnormal and Normal State Data Classi-
fication’’ to train the models. There were 27,596 wind tur-
bine observations collected from 30 wind turbines, consisting
of 22,077 normal-state observations and 5,519 abnormal-
state observations. Seventy percent of the samplewas used for
model training (19,318 observations), while 30% was used
formodel testing (8,278 observations). The accuracy of single
model training results fell between 90% and 95%, indicating
that sampling errors might exist. Hence, we further validated
the predictive results with K-fold cross-validation.

In the decision tree prediction model, the training model
had an accuracy rate of 92.86%, and the testing model had an
accuracy rate of 92.62%. There was little difference between
the accuracy rates of the two models. Then, after validating
the models with K cross-validation five times, the results
in Table 4 show that the lowest accuracy rate was 92.06%, the
highest accuracy rate was 93.06%, and the average accuracy
rate was 92.68%.

Fig. 15 illustrates the decision tree classifications, starting
from the root as high-speed bearing temperature to the third-
level nodes. In the decision tree analyses, high-speed bearing
temperature was used as a classifier three times: 62.986◦C,
56.894◦C, and 54.755◦C. Gearbox lubricant temperature was

1The parameters used in the decision tree were criterion = ‘entropy’,
max_depth = 3, random_state = 0. The parameter used by the random
forest is criterion = ‘entropy’, Min_samples_leaf = 1, min_samples_split
= 2, n_estimators = 10, n_job = 2, oob_score = False, random_state = 1,
warm_start = False.
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FIGURE 15. Decision tree classification.

used twice as a classifier: 67.245◦C and 70.724◦C. The clas-
sifiers that were only used once were wind turbine generator
speed and the total amount of electricity generated, which
were 1,563.741 RPM and 1,003.019 KW. The other two
attributes – rotor speed and wind speed – were not selected
as classifiers. As a result, we removed rotor speed and wind
speed as classifiers from predicting anomalies of wind tur-
bines and retained the other four attributes in the predictive
models.

Random forest algorithm is an improved model of deci-
sion trees and offers less risk of overfitting. Hence, after the
decision tree analyses, we further constructed the predictive
model with the random forest algorithm. The results show
that the first training accuracy rate was 99.71% and the test-
ing accuracy rate was 95.34%. Next, K-fold cross-validation
methods were used five times. The results in Table 5 dis-
play that the lowest accuracy rate was 88.75%, the highest

TABLE 5. The training result of random forests.

accuracy was 94.78%, and the average accuracy rate was
92.16%. The cross-validation results show that the accuracy
rate of the first test was slightly higher by 3.2% to the average
cross-validation accuracy rate of 92.16%.

Both the decision tree and the random forest analyses have
accuracy rates higher than 90%. In particular, the decision
tree model has high explanatory power as high-speed bearing
temperature was identified as the most influential predictor,
followed by the gear lubricant temperature. The results are
also consistent with the findings in the sections of ‘‘Statistical
Process Control’’ and ‘‘DBSCAN classification results’’.

V. CONCLUSION
This study analyzes and predicts maintenance needs of wind
turbines by using the wind turbine historical data collected
in the ChangHua Coastal Industrial Park, Taiwan. The total
observations were 2,815,104 from 31 wind turbines since
2015 to 2017. While previous studies usually adopt statistical
process control charts or machine learning techniques for
prediction, this study employs both methodologies for robust
results.

Statistical program control was used to identify four cate-
gories of wind turbine faults (rotary blades, gearboxes, gener-
ators, and hydraulic oil systems). The authors then used two
machine learning algorithms, decision tree and random forest
classifications, to predict wind turbine abnormalities with
accuracy rates higher than 92%. Particularly, we analyzed the
wind turbine sensor data with the practitioners’ insight gained
from the maintenance check list. Combined data analytics
and firsthand knowledge, we investigated the causes of wind
turbine faults, classified abnormal- and normal-state wind
turbine data, and constructed predictive models. The results
provide Taipower and other wind turbine operators useful
indicators to diagnose wind turbine faults and predict future
maintenance needs.

After data cleansing, we examined the correlation coeffi-
cients of various wind turbine attributes by reviewing scatter
plots to identify possible causes for wind turbine faults and
abnormal wind turbine units. Then, we analyzed the causes
for wind turbine anomalies through statistical process con-
trols and classified abnormal- and normal-state data through
the DBSCAN algorithm.

The results of the statistical process controls suggested
that No. CK20 wind turbine had irregular performance and
was the most suitable sample for faults analyses. We then
established frequency tables based on the utility’s check list,

VOLUME 8, 2020 23437



J.-Y. Hsu et al.: Wind Turbine Fault Diagnosis and Predictive Maintenance Through Statistical Process Control and Machine Learning

abnormal-state alerts, the occurrence frequency of faults, and
the total duration of anomalies. Based on the frequency of
abnormal conditions, the Pareto chart was created and found
that the top 15 abnormal conditions for wind turbine faults
accounted for 70% of the total occurrence of abnormal condi-
tions. According to the Pareto analysis results, the causes for
wind turbine faults were characterized into four primary types
and a total of 30 secondary types. In addition, the results of the
cause and effect diagram inform wind turbine operators the
maintenance priorities of wind turbines and the extents that
an abnormal condition may lead to wind turbine faults. Then,
control charts were used to analyze wind turbine abnormal
conditions by identifying deviated data points that exceeded
two or three standard deviations from the mean. The results
of control charts can be used as a monitoring mechanism to
identify wind turbine’s abnormal operation status.

By testing the number of core points and eps, we used
the DBSCAN classification to successfully distinguish
abnormal- from normal state- wind turbine data. We then
validated the classification results and found the results are
consistent with the findings of the statistical process control
analyses. Finally, we segmented the classified data into a
training dataset (70% of the classified data) and a testing
dataset (30% of the classified data) to construct the predictive
maintenance models through decision tree and random forest
algorithms. The K-fold cross-validation model was used five
times to verify whether the prediction models were robust
and accurate. The empirical results showed that the accuracy
rates of the two predictive models were 92.86% and 95.34%,
and the average accuracy rate of the K-fold cross-validation
tests were 92.68% and 92.16%. Both prediction models were
quite accurate. In addition, the number of predictive attributes
were reduced from six to four (the amount of wind energy
generated, high-speed bearing temperature, gearbox lubricant
temperature, and generator speed) and created a focused list
of predictive factors for wind turbine faults.

This study not only informs wind turbine operators about
wind turbine fault diagnosis and maintenance needs, but also
reduces the sample size that is required for accurate pre-
dictive modeling. The study demonstrates that, by model-
ing, the failures of wind turbines can be detected, and the
maintenance needs of parts can also be predicted. Model
results may provide technicians early warnings, improve
equipment efficient, decrease system downtime, and increase
availability percentage or uptime of wind turbines. Improved
wind turbine systems not only benefit wind turbine opera-
tors but also the society in transition toward clean energy
development.

The results also inform Taipower and wind turbine oper-
ators possible ways to improve or streamline their mainte-
nance work. The predictive models also predict wind turbine
performance and detect if a performance data point is likely
to fall into an abnormal range that signals maintenance need.
In the future work, we will apply the prediction model to test
other wind turbines and/or other times of the selected wind
turbines, depending on data availability.

In addition, the prediction model is not designed for the
real-time data streaming. The main reason is the wind occurs
or wind direction changes always happen so fast, and it is not
possible and no need to use real-time data streaming to imple-
ment an on-line learning system in this phase. However, on-
line learning approaches can consider to build the prediction
model in the future.

REFERENCES
[1] 4C Offshore. (2018). Global Offshore Win Speeds Rankings. [Online].

Available: https://www.4coffshore.c om/windfarms/windspeeds.aspx?
m=no

[2] A. Kusiak and A. Verma, ‘‘A data-mining approach to monitoring wind tur-
bines,’’ IEEE Trans. Sustain. Energy, vol. 3, no. 1, pp. 150–157, Jan. 2012.

[3] C. H. Huang. (2018). Offshore Wind Power Generation in Taiwan (Chi-
nese). Accessed: Jun. 14, 2019. [Online]. Available: http://www.ntuce-
newsletter.tw/vol.66/T4_1M.html

[4] F. P. G. Marquez, A. M. Tobias, J. M. Pérez, and M. Papaelias, ‘‘Condition
monitoring of wind turbines: Techniques and methods,’’ Renew. Energy,
vol. 46, pp. 169–178, Oct. 2012.

[5] H.-H. Yang, M.-L. Huang, C.-M. Lai, and J.-R. Jin, ‘‘An approach combin-
ing data mining and control charts-based model for fault detection in wind
turbines,’’ Renew. Energy, vol. 115, pp. 808–816, Jan. 2018.

[6] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[7] L. Wang, Z. Zhang, J. Xu, and R. Liu, ‘‘Wind turbine blade breakage
monitoringwith deep autoencoders,’’ IEEE Trans. Smart Grid, vol. 9, no. 4,
pp. 2824–2833, Oct. 2018.

[8] N. Amruthnath and T. Gupta. (2018). Fault Class Prediction in Unsuper-
vised Learning using Model-Based Clustering Approach. [Online]. Avail-
able: https://www.researchgate.net/publication/322900854

[9] N. Yampikulsakul, E. Byon, S. Huang, S. Sheng, and M. You, ‘‘Condition
monitoring of wind power system with nonparametric regression analy-
sis,’’ IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 288–299, Jan. 2018.

[10] P. L. Wen, S. M. Lin, C. S. Lin, C. C. Feng, and F. K. Ko, ‘‘Cost-
benefit analysis of Taiwan’s land-basedwind power generation (Chinese),’’
Taiwan’s Economic Forecast Policy, vol. 45, no. 1, pp. 41–76, 2014.

[11] S. Wang, X. Sun, and C. Li, ‘‘Wind turbine gearbox fault diagnosis
method based on Riemannian manifold,’’Math. Problems Eng., vol. 2014,
pp. 1–10, 2014.

[12] Paris Agreement. (2015). United Nations Treaty Collection.
[Online]. Available: https://treaties.un.org/pages/ViewDetails.aspx?src=
TREATY&mtdsg_no=XXVII-7-d&chapter=27&clang=_en

[13] X. Liu, M. Li, S. Qin, X. Ma, and W. Wang, ‘‘A predictive fault diag-
nose method of wind turbine based on K-means clustering and neural
networks,’’ J. Internet Technol., vol. 17, no. 7, pp. 1521–1528, 2016.

[14] Z. Hameed, Y. S. Hong, Y. M. Cho, S. H. Ahn, and C. K. Song, ‘‘Condition
monitoring and fault detection of wind turbines and related algorithms:
A review,’’ Renew. Sustain. Energy Rev., vol. 13, no. 1, pp. 1–39, 2009.

[15] Z. Zhang, Q. Zhou, and A. Kusiak, ‘‘Optimization of wind power and
its variability with a computational intelligence approach,’’ IEEE Trans.
Sustain. Energy, vol. 5, no. 1, pp. 228–236, Jan. 2014.

JYH-YIH HSU received the B.S. degree in applied economics from National
Chung Hsing University, Taichung City, Taiwan, and the master’s and Ph.D.
degrees from the Natural Resource and Environmental Management Depart-
ment, University of Hawaii.

He has been a Professor with the Department ofManagement Information
Systems and the Department of Applied Economics, National Chung Hsing
University, since 2004. He has also been an Independent Member of the
Board Directors, Taiwan Power Company, since 2017. He used to be a
Commissioner of the Fair Trade Commission. And before that, he was the
Director at the Center of Energy and Environmental Studies, Chung-Hwa
Institution of Economic Research, a Government think tank. He once was a
consultant to Electric Power Research Institute (EPRl).

23438 VOLUME 8, 2020



J.-Y. Hsu et al.: Wind Turbine Fault Diagnosis and Predictive Maintenance Through Statistical Process Control and Machine Learning

YI-FU WANG graduated from the Department of Mechanical and Electro-
Mechanical Engineering, National l-Lan University, in 2012, and the mas-
ter’s degree focusing on matching learning and data analytics from the
Department of Management Information Systems, National Chung-Hsing
University, in 2019. He has worked as a system engineer for many MIS
projects, supporting and maintaining corporate mainframe equipment, from
2013 to 2017.

KUAN-CHENG LIN was born in Taiwan, in September 1964. He received
the B.S. degree in chemistry from National Taiwan University, in 1988,
and the Ph.D. degree in applied mathematics from National Chung Hsing
University, Taichung City, Taiwan, in 2000. From 2000 to 2006, he was
an Assistant Professor with the Department of Information Management,
Northern Taiwan Institute of Science and Technology, Taipei, Taiwan. From
2006 to 2008, he was an Assistant Professor with the Department ofManage-
ment Information Systems, National Chung Hsing University. From 2008 to
2015, he was an Associate Professor with the Department of Management
Information Systems, National Chung Hsing University, where he has been
a Professor, since 2015. His current research interests include affective
computing, intelligent tutoring system, and data mining.

MU-YEN CHEN received the Ph.D. degree in information management from
National Chiao Tung University, Taiwan. He is currently a Professor of
information management with the National Taichung University of Science
and Technology, Taiwan. His current research interests include artificial
intelligent, soft computing, bio-inspired computing, data mining, deep learn-
ing, context-awareness, machine learning, and financial engineering, with
more than 100 publications in these areas. He has co-edited 15 special issues
in International Journals, such as Computers in Human Behavior, Applied
Soft Computing, Soft Computing, IEEE ACCESS, Information Fusion, Neuro-
computing, the Journal of Medical and Biological Engineering, Electronic
Library, and Library High Tech. He has served as the Editor-in-Chief and an
Associate Editor of international journals, such as the International Journal
of Big Data and Analytics in Healthcare, IEEE ACCESS, Applied Soft Com-
puting,Human-Centric Computing and Information Sciences, the Journal of
Information Processing Systems, and the International Journal of Social and
Humanistic Computingwhile he is an editorial board member on several SCI
journals.

JENNEILLE HWAI-YUAN HSU received the bachelor’s degree in eco-
nomics fromNational TaiwanUniversity, themaster’s degree in public policy
from the University of California at Los Angeles, CA, USA, and the Ph.D.
degree in public policy and management from the Sol Price School of Public
Policy, University of Southern California.

She had worked as a Data Science Fellow of the Southern California
Association of Governments, Los Angeles, CA, USA, and a Summer Fellow
of the Woodrow Wilson Center, Washington, D.C., USA. She is currently
an Independent Researcher with the University of Southern California.
Her work focus on energy policy, sustainable cities, and solar technology
adoption.

VOLUME 8, 2020 23439


	INTRODUCTION
	LITERATURE REVIEW
	METHODOLOGY
	DATA ANALYSIS
	DATA PRE-PROCESSING
	DATA CLEANSING

	PRELIMINARY ANALYSIS OF ABNORMALITIES
	ANALYSIS OF WIND TURBINE DATA THROUGH STATISTICAL PROCESS CONTROL
	CLASSIFYING ABNORMAL AND NORMAL DATA
	PREDICTIVE MAINTENANCE MODELS

	EMPIRICAL ANALYSIS
	DATA PRE-PROCESSING
	DATA CLEANSING
	RESULTS OF DATA CLEANSING

	PRELIMINARY ANALYSIS OF ABNORMALITIES
	STATISTICAL PROCESS CONTORL
	CHECK LIST CONSOLIDATION
	PARETO ANALYSIS
	CAUSE AND EFFECT DIAGRAM ANALYSIS
	CONTROL CHART ANALYSIS

	DATA CLUSTERING OF ABNORMAL AND NORMAL STATES
	DBSCAN CLUSTERING
	DBSCAN CLASSIFICATION RESULTS

	CONSTRUCTING ANOMALY PREDICTIVE MODELS

	CONCLUSION
	REFERENCES
	Biographies
	JYH-YIH HSU
	YI-FU WANG
	KUAN-CHENG LIN
	MU-YEN CHEN
	JENNEILLE HWAI-YUAN HSU


