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ABSTRACT In low light condition, color (RGB) images captured by imaging systems suffer from severe
noise causing loss of colors and textures. Near infrared (NIR) images, which tend to ignore interference
from external lights, have advantage of capturing invisible information that can not be obtained by regular
RGB cameras. In this paper, we propose multispectral fusion of RGB and NIR images using two stage
convolutional neural networks (CNNs), called FusionNet. Lack of training data is a huge obstacle to the
learning-based fusion. We synthesize noisy RGB images for training by adding multiscale Gaussian noise.
We adopt two stage CNNs for RGB-NIR fusion that consists of denoising and fusion. First, we use a
compact denoising subnetwork to remove severe noise from the input RGB image. Then, we utilize a fusion
subnetwork to recover textures of the denoised RGB image with the help of its corresponding NIR image.
We provide a perceptually motivated loss function to ensure color/texture consistency between the input
RGB image and the output fusion result. Experimental results show that the proposed method produces
natural looking fusion results by successfully recovering colors and textures. Moreover, the proposedmethod
outperforms state-of-the-art fusion methods in terms of visual quality and quantitative measurements.

INDEX TERMS Image fusion, color, convolutional neural network, FusionNet, near infrared.

I. INTRODUCTION
In low light condition, it is a challenging task to take sat-
isfactory photographs. Increasing ISO in a short exposure
introduce noise, while long exposure causes motion blur.
Although artificial light such as flash can be added to the
such scene for sharp and noise free images, the color tones of
acquired images differ from those of the no-flash images due
to the color temperature difference between the ambient light
and the flash [30]. With advances in the sensor technology,
accompanying with image acquisition devices has become
affordable in recent years. The near-infrared (NIR) imaging
is considered as a solution for high quality photographs [7].
Along with the development of monitoring and mobile equip-
ment, researches on NIR images are of practical significance.
The NIR images, which provide high-quality photographs
even in low light condition, are being treated as an alternative
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for natural-looking image fusion. Different from visible light
spectrum, NIR light is with the electromagnetic spectrum
ranging from 750 nm to 1000 nm. In low light condition,
NIR cameras capture information presented at another spec-
tral frequency. Compared with regular color (RGB) images,
NIR images are not affected by ambient light only related
to the reflection property of the object materials. Therefore,
the fusion of RGB andNIR images is able to improve imaging
quality in low light condition, which has various applications
including visual surveillance, behavior understanding [1],
and remote sensing [28].

A. RELATED WORK
The fusion of RGB and NIR images aims at enhancing a
noisy RGB image by its corresponding NIR image. Most
existing fusion methods [11], [30], [31] are based on reg-
ularization that uses the NIR image as a guidance image.
The clear edges are inevitably fused by the weight average
of two input images during the fusion process. The RGB
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and NIR images have their own advantages with respect to
color and texture. Although RGB remains the original color
and comforms to human perception, in low light condition,
RGB is not able to capture the details of the dark scene
and suffers from severe noise. Different from RGB, NIR
illuminates the scene only based on the reflection property
of the material. However, NIR lacks color discrimination
because the NIR light is out of the range of human visual
perception. Conventional fusion approaches use them for
fusion such as gradient difference regularization (GDR) [5],
[14], [30], multiresolution (MR) [17], [19], [23], [27], and
weighted least squares (WLS) [31]. The WLS model utilized
the infrared image to determine the weights of the regular-
ization term. The gradient-based method failed in removing
the noise and describing the details since they were not suit-
able for overcoming the serious discrepancies in the edges
and brightness between the NIR and RGB. More recently,
the state-of-the-art methods based on scale map (SM) [24]
and layer decomposition (LD) [22] were introduced to handle
the serious discrepancy problem. Different from the tradi-
tional methods, the SM handled gradient direction and mag-
nitude discrepancy using the scale map even though it needs
to estimate the unknown scale map and the original image
at the same time. The SM approach tends to smooth textures
with color over-enhancement. LD and transfer based method
were effective for the detail description over the conventional
fusion and GF [9] methods, and were required to improve
visual perception in the fusion results.

B. MOTIVATION
In this paper, we investigate multispectral fusion of RGB
and NIR images to produce natural and realistic results.
We propose a perceptually motivated loss function for fusion
to recover hidden textures in the input RGB image with
help of its corresponding NIR image, thus producing visually
pleasing fusion results. As shown in Fig. 1, the NIR image
contains clearer textures without color information than its
noisy RGB image.With assistance of the NIR image, SM [24]
produces a denoised RGB image, but it fails to recover colors
completely such as flowers and plants. However, the proposed
method successfully removes noise while producing natu-
ral colors based on the perception motivated loss function.
Datasets of NIR and RGB images play an important role
in the deep learning based multispectral fusion that needs a
large-scale dataset to learn the NIR and RGB image property.
Although many studies have been conducted for NIR-RGB
image fusion, deep learning based multispectral fusion is not
found due to the lack of available datasets. Since NIR and
RGB images are captured from real world scenes, we provide
a solution to the deep learning based multispectral fusion
in this work. Our dataset synthesis strategy is proved to be
used in the training process for multispectral fusion with
complete generality. We aim at producing natural-looking
fusion results based on multispectral information, and adopt
CNNs for the multispectral fusion. In low light condition,

FIGURE 1. RGB-NIR image fusion results.

the captured color image is severely interfered by mess of
factors, i.e. distribution of noise gets very complicated. Some
naive denoising is disable to remove these noise. Several
fusion methods consider the guidance of NIR and conduct
weighted averaging on multispectral images, and inevitably
fuse them with noise. To cope with such noise, we propose
a two stage fusion network that consists of denoising and
fusion subnetworks, called FusionNet. The denoising subnet-
work, trained on blind noise, generates noise-free RGB image
with smooth texture regions. Then, the fusion subnetwork
is conducted on the denoised RGB image with the help of
its corresponding NIR image. Due to the benefit from pow-
erful generalization ability of CNNs, the proposed method
successfully preserves color and high frequency details from
multispectral images in the fusion results. FusionNet provides
a viable solution to high quality photographs in low light
condition that can be used various vision applications such as
object recognition and behavior recognition. Fig. 2 illustrates
the network architecture of the proposed FusionNet. To the
best of our knowledge, this is the first work for multispectral
fusion based on deep learning.

Compared to existing methods, main contributions of this
paper are as follows:

• We provide a synthesis approach to generate training
data in low light condition, which has proved to be
suitable for image denoising and multispectral fusion.

• We build a multilevel aggregation neural network to
merge features at different levels from the input NIR
image and produce natural color and fine details.

• We propose a perceptually motivated feature loss that
transfers fine details from the input NIR image to the
output fusion result, thus resulting in good textures.
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FIGURE 2. Network architecture of the proposed FusionNet. FusionNet consists of two subnetworks: denoising in (a) and fusion in (c). We build the
basic block in (b) for FusionNet. The output of the denoising subnetwork is the input of the fusion subnetwork. We utilize the pretrained VGG-16 to
extract features. We use the clean RGB image as the ground truth for the color loss and the concatenation of 3-channel RGB and 1-channel NIR images
as the ground-truth for the multispectral feature loss.

II. PROPOSED METHOD
A. DATA PREPARATION
Different from other inverse problems [4], [6], [26], multi-
spectral fusion takes advantage of multiple inputs to produce
high quality photographs. However, a huge amount of train-
ing datasets are necessary, and public available RGB-NIR
datasets are rather limited, thus greatly hindering deep
learning-based multispectral fusion. Moreover, there is no
ground truth available for deep learning-based multispectral
fusion. Although there are many real RGB images online,
there exist a few datasets containing both RGB and NIR
images, and the RGB images in the datasets are of high
quality. Thus, the datasets themselves are not able to be used
as training data. To overcome the training data insufficiency,
we synthesize noisy RGB images for training data by adding
noise in clean RGB images, and use the clean RGB images
as ground truth. In this work, we provide a reasonable way
to generate noisy RGB images by taking noise production of
dim light shooting scene into consideration. We synthesize
them similar to the images taken in real-world scenes. We use
a publicly available RGB-NIR dataset from [3] to synthesize
the training dataset for fusion. In this dataset, RGB-NIR
image pairs are captured under several scenes in daylight
conditions.

1) DATASET FOR DENOISING
RGB-NIR image pairs are limited, but there are a lot of
publicly available datasets for image denoising. To train the
denoising subnetwork, we use the BSDS500 database [16]
as our training dataset. Among total 400 images, we use
200 images for training and 200 images for testing. We train
the denoising subnetwork for Gaussian denoising by setting

the noise level to σ ∈ [30, 60]. We split the training images
into 40× 40 patches with stride 21.

2) DATASET FOR FUSION
We generate noisy RGB images by adding Gaussian noise at
the same level as denoising.We use the denoised RGB images
obtained by the denoising subnetwork as input for the fusion
subnetwork. Then, we use the original clean RGB images
as the ground truth. We use the same noise distribution for
training data to synthesize their noisy ones for training.

B. NETWORK ARCHITECTURE
To remove server noise in low light condition, we build a
novel basic block as depicted in Fig. 2(b). In such structure,
a gating mechanism [25] is adopted as the convolutional unit.
We learn each residual building block to generate multi-level
representation considering different receptive fields. Then,
we concatenate the multi-level representation as the input
of the gate unit based on a convolutional layer. The gate
unit accomplish a gating mechanism which learns adaptive
weights from the multi-level representation by a 1×1 convo-
lution layer. Next, we add the input to the output of the gate
unit and make the shallow representation flow forward. For
the denoising subnetwork, we stack basic blocks and adopt
residual learning to accelerate the training process as shown
in Fig. 2(a). To cope with severe noise, we train the denoising
subnetwork in blind noisy condition and adopt a compact
structure considering computational complexity. We train the
denoising subnetwork in the BSD500 dataset, and then train
the fusion subnetwork from the RGB-NIR dataset under the
fixed parameters of the denoising subnetwork. To refine the
denoised RGB image, we perform the fusion subnetworkwith
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the help of the input NIR image. In the training phase of the
fusion subnetwork, we feed the denoised RGB image into the
fusion subnetwork with the input NIR image. The denoising
subnetwork produces a denoised RGB image Y1 From the
synthesized noisy RGB image X as follows:

Y1 = D(X ) (1)

where D denotes the denoising subnetwork, X represents the
noisy RGB image, and Y1 is taken as the input for the fusion
subnetwork. The NIR image N is used as the other input for
the fusion subnetwork. As illustrated in Fig. 2(c), the denois-
ing subnetwork is cascading to the fusion subnetwork that
takes the denoised RGB and NIR images as the input. The
final output Y2 is represented as follows:

Y2 = F(Y1,N ) (2)

where F denotes the fusion subnetwork.

C. LOSS FUNCTION
The training process of the denoising subnetwork is indepen-
dent of the fusion subnetwork. The output of the denoising
subnetwork is the input of the fusion subnetwork. We use
different training datasets and loss functions for two subnet-
works. For the denoising subnetwork, we use a normal pixel-
wise loss to reconstruct the denoised RGB image as follows:

Lpixel(X ′,X ) =
1

C × H ×W
||X ,X ′||2 (3)

where C×H ×W is the image size, and X and X ′ denote the
noisy RGB image and its ground truth, respectively.

For the fusion subnetwork, the pixel-wise loss function
is not able to deal with the discrepancy between RGB and
NIR images. The pixel-wise loss function is good for recon-
struction, but it is inconsistent with human visual perception.
Thus, it is difficult to produce satisfactory fusion results
by the pixel-wise loss function. We aim to preserve color
information of the RGB image while enhancing details with
the help of the NIR image. Considering them, we build a
perceptual loss function for fusion to recover both colors and
details from RGB and NIR images [10], [15]. We use the
pretrained VGG16 [20] to extract features from the RGB and
NIR images as shown in Fig. 3. The two feature maps are
obtained by the second convolution (after activation) prior
to the first max pooling layer. The second and third rows
present the 1st and 16th channels, respectively. In the right
column, the feature maps of the noisy RGB image present
rough surface because of the noise. However, those of the
NIR image has clear edges with smooth flat regions in the
left column. The NIR image shows clear details of the teapot,
but the RGB image shows complicated textures without edge
information of the teapot. Also, the shadow of the teapot is
unique in the NIR image with clear features. To feed the
NIR image into VGG16, we duplicate the NIR image to
three channels. We transfer details from the NIR image (the
details are invisible in the RGB image due to the low light)
to the fusion result while keeping color information from the

FIGURE 3. Feature maps for Teapot. Left: NIR image. Right: Noisy RGB
image. They are extracted by VGG16 at the second layer before the first
max-pooling layer.

original RGB image. Thus, we make the fusion result similar
to clean RGB and NIR images by a function φ through the
training process. To keep the original colors from the RGB
image ground truth, we compute a perceptual loss as follows:

Lperceptual(Y2,Y ) =
1

C × H ×W
||φ(Y2)− φ(Y )||22 (4)

We choose the layer output prior to the third downsam-
pling in VGG16 for feature extraction. The perceptual loss
optimization in Eq. (4) ensures the color/texture consistency
between the input RGB image and the output fusion result.
To extract features from the NIR image, we duplicate one
single channel NIR image as three channels for the input of
VGG16. To produce natural looking fusion results with clear
details and textures, we build a multispectral loss as follows:

Lnir (Y2,N ) =
1

C × H ×W
||φ(Y2)− φ(N )||22 (5)

Combining the above terms, our complete loss function
becomes:

L = Lperceptual(Y2,Y )+ λLnir (Y2,N ) (6)

The weighting coefficient λ severely affects the fusion result.
As λ is higher, the fusion result is more similar to the NIR
image.

III. EXPERIMENTAL RESULTS
For experiments, we train the proposed FusionNet using
stochastic Adam optimizer. During the training process,
we set learning rate to 0.0001 and batch size to 32 for hyper-
parameters. The denoising subnetwork shares the same hyper
parameters as the fusion subnetwork. We compare the per-
formance of FusionNet with those of multispectral fusion
methods such as the weigthed least squares (WLS) [31], scale
map (SM) [24] and DenseFuse, i.e. CNN-based fusion of
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FIGURE 4. Fusion results by FusionNet.

FIGURE 5. Visual comparison between different fusion methods. We provide close up examples for Teapot on the fusion
results.

visible and infrared images [12] in terms of visual quality
and quantitative measurements. We use the NIR and RGB
image datasets from [22] and [24] with a synthetic dataset
for performance comparison.

A. COMPARISON WITH STATE-OF-THE-ARTS
1) VISUAL COMPARISON
Fig. 4 shows the stepwise results of FusionNet on a syn-
thetic image. The denoising subnetwork removes noise
(Fig. 4(b)), and the fusion subnetwork refines the denoised
result (Fig. 4(c)). Compared with the ground truth, the fusion
result gets a little dark because the feature of the NIR
image decreases brightness in fusion. Fig. 5 shows close up
examples of the fusion results by WLS [31], SM [24] and
DenseFuse [12]. The input RGB image is corrupted by severe
noise, and three fusion methods remove noise differently in
the results. WLS produces water washed colors along the
letter area with blurry edge. SM produces an over-smoothed
appearance that textures on the tea box are wiped. How-
ever, FusionNet produces a natural-looking fusion result that
contains more high frequency details than them. FusionNet
successfully restores clear edges from the noisy RGB image
while reproducing a natural color tone in fusion. Fig. 6 shows
more fusion results by different fusion methods. Note that
we use a real image pair for fusion captured in low light
condition (see the last row of the figure). In the first row, noise
is successfully removed, guided filtering (GF) [9] obviously
introduces blur in the fusion result causing an unnatural
appearance. Such blur results in image quality degradation.

WLS [31] produces a natural looking appearance in fusion.
However, a color spill appears along the white letters because
WLS is not able to successfully consider the discrepancy
between RGB and NIR images. SM [24] produces a good
fusion appearance with oversmoothing effects. Some details
such as the wall and pot-lid are lost. AlthoughDenseFuse [12]
restores the image details well, it causes severe color dis-
tortion in the fusion results. FusionNet recovers colors well
while successfully preserving textures. The fine textures on
the paper box, pot-lid and wall are also presented well,
thus leading to the natural looking results. The second row
presents an image captured in low light condition, and thus
contains very dark area with a narrow dynamic range. Com-
pared with the others, FusionNet successfully enhances the
dark area and shows the hidden textures in the area. The same
results appear in the last row. FusionNet produces fine details
in dark regions better than the others. The binding label on
the book (see the lower right corner of the image) is clearly
presented, and it is very dark and blurry in the original image.
In the third row, SM produces over-enhanced colors for the
patterns of the bowls that are somewhat different from its
original ones. The proposed FusionNet retains fine details and
natural colors in the fusion results. The results demonstrate
that FusionNet can be successfully applied to multispectral
fusion of RGB and NIR images.

2) QUANTITATIVE MEASUREMENTS
For the publicly available dataset captured in real world
scenes [22], [24], the ground truth is not available. Thus,
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FIGURE 6. Fusion results by different methods. We compare FusionNet with GF, WLS and SM. FusionNet produces clear textures with natural colors in
the fusion results. Especially, FusionNet has capability of recovering hidden textures in dark regions (2rd and 4th rows).

TABLE 1. Performance comparison between different methods on the four test images of Fig. 6 in terms of spatial frequency (SF) [13] and entropy
(EN) [8]. Bold numbers represent the best performance.

we cannot evaluate the reference-based quantitative measure-
ments [8], [18] for quality assessment such as PSNR and
SSIM [29]. Thus, we evaluate the blind image quality mea-
sure (BIQE) on the fusion results [2], [21]. The BIQE does not

need subjective tests. We use four test images of Fig. 6 for the
BIQE evaluation. Table 2 shows the BIQE evaluation results
(the lower the better). FusionNet outperforms the others in
average BIQE score, which indicates that FusionNet achieves
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FIGURE 7. Fusion results according to different λ.

TABLE 2. BIQE comparison between different methods on the four test
images of Fig. 6. The lower the BIQE is, the better the performance is.
Bold numbers represent the best performance.

TABLE 3. Runtime comparison among different fusion methods (unit:
sec/pair). For tests, we use a PC with Intel Core i7-7700 CPU and
GTX1080 GPU running Ubuntu 16.04 and Keras.

the best visual quality in fusion. Moreover, FusionNet suc-
cessfully recovers natural colors and fine details, which is
more consistent with human visual perception than the others.
To further evaluate the performance of FusionNet, we evalu-
ate two measures for comparison: spatial frequency (SF) [13]
and entropy (EN) [8]. The SF measure is used to evaluate
edge preservation, while the EN measure is used to measure
the amount of information. As shown in Table 1, FusionNet
yields the highest average scores in most cases in terms of
both SF and EN. This is because FusionNet produces fine
details and natural colors in the fusion results.

3) COMPUTATIONAL COMPLEXITY
Table 3 shows average runtime of WLS [31], SM [24],
DenseFuse [12] and FusionNet on the five test images of
Figs. 6 and 7. The unit of the runtime is sec/pair, while the
image size is from 512×512 to 1492×1101.We use a PCwith
Intel Core i7-7700 CPU and GTX1080 GPU running Ubuntu
16.04 and Keras for tests. As shown in the table, FusionNet
achieves the second best runtime among them.

TABLE 4. PSNR and SSIM evaluations for Indoor, Urban and Old-building
in the dataset [3] according to different λ.

B. ABLATION STUDY
We perform ablation study on the proposed loss function
according to different λ in Eq. (6). Fig. 7 shows the fusion
results by different weights of the NIR image. It can be
observed that as λ decreases the color gets deeper. As the
weight of Lnir increases, the NIR image contributes to the
fusion result more. Thus, the fusion result contains more
details with lower color saturation. If λ is equal to 0.2,
the fusion result is optimal and contains most features of the
NIR image without color reduction. Table 4 shows PSNR and
SSIM evaluations for Indoor, Urban and Old-building in the
dataset [3] according to different λ. As λ decreases, the per-
formance increases until λ is 0.2. However, if λ is smaller than
0.2, the performance declines. Therefore, we choose 0.2 for
λ in our experiments.

IV. CONCLUSION
We have proposed FusionNet for multispectral fusion of
RGB and NIR images based on two stage CNNs. Unlike
the traditional fusion methods based on filtering or regular-
ization, FusionNet is a data-driven approach and achieves
multispectral fusion based on a concurrent network that con-
sists of denoising and fusion subnetworks. FusionNet suc-
cessfully recovers colors and textures by using a perception
motivated loss function, and produces natural looking fusion
results. Experimental results demonstrate that FusionNet out-
performs state-of-the-art methods in terms of visual quality
and quantitative measurements.
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