IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 25, 2019, accepted January 16, 2020, date of publication January 22, 2020, date of current version January 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968603

Near-Threshold L1 Data Cache for Yield
Management Under Process Variations

JOONHO KONG"™1, (Member, IEEE), AND JAE YOUNG HUR"2, (Member, IEEE)

!'School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea
2Faculty of Engineering, Vietnamese-German University, Binh Duong 75114, Vietnam

Corresponding author: Joonho Kong (joonho.kong @knu.ac.kr)

This work was supported by the Samsung Electronics.

ABSTRACT Near-threshold computing (NTC) has recently emerged and been considered as a strong
candidate for future energy-efficient computing. However, adverse impacts from process variation such as
delay and power fluctuations within die as well as across dies are much more severe than the super-threshold
regime. In particular, static random access memory (SRAM)-based components (e.g., cache memories) are
easily affected by process variation in NTC, resulting in large delay fluctuations. It incurs a huge loss in the
maximum clock frequencies of processors, which eventually leads to huge yield losses. In this paper, we first
analyze L1 data cache yield in NTC and reveal an inefficiency of frequency binning for yield improvement in
NTC. We then introduce a variable latency L1 data cache for NTC to obtain a sufficient yield. By allowing the
higher cache access cycles, we can improve cache yield with only a little performance overhead. Moreover,
we propose an adaptive line migration technique which improves performance and energy efficiency of
variable latency caches. The cache line which is expected to be frequently accessed in the near future is
dynamically migrated to the fastest way in a cache set. According to our evaluation, our cache architecture
greatly improves cache yield with only a little performance, energy, and area overhead.

INDEX TERMS Process variation, near-threshold computing, cache memory, system performance, energy

efficiency.

I. INTRODUCTION

Process variations, manufacturing defects and variability in
device parameters, have been a major threat in improving
performance, energy and yield (the ratio of the number of
usable (or sellable) chips to the number of total manufactured
chips) of processors in nano-scale design era. It is known that
process variation makes a non-uniform distribution of device
parameters (e.g., threshold voltage and effective gate length),
resulting in delay and power fluctuations within die as well
as across dies. On the other hand, near-threshold comput-
ing (NTC) has emerged and considered as a strong candidate
for future energy-efficient computing. The circuit operation
is performed in near-threshold voltage levels enabling a
great reduction in dynamic and leakage power consumption.
Increased latency is compensated by exploiting parallelism
in workloads. However, in near-threshold computing regime,
process variations would become the most severe hurdle for
enabling a mass production of near-threshold processors.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yi Zhang.

18558

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Asrevealed in [1], only a small fluctuation in device parame-
ters causes huge delay variations in NTC regime, which may
potentially lead to severe yield losses.

Within a processor, SRAM-based structures (e.g., caches)
are prone to process variations [2]. The device parameter
mismatches within an SRAM cell can incur several failures:
read/write failures, access time failures, and hold failures [3].
In particular, access time failure is most threatening as one
uses more advanced process nodes [3]. This hypothesis is
also valid for NTC regime. Kong et al. revealed that the
SRAM-based components are most vulnerable to process
variation in many-core processors for NTC [2]. With a certain
clock frequency requirement, processor’s yield would be sig-
nificantly reduced as SRAM-based components (e.g., cache
memories) are hard to meet the latency requirements.

Among several cache hierarchies inside of processors,
L1 data cache is highly latency critical due to frequent
appearance of load/store instructions. If a program is
cache-intensive (i.e., a high ratio of load/store instructions
rather than arithmetic or branch instructions), performance
will be significantly affected depending on L1 data cache

VOLUME 8, 2020

https://orcid.org/0000-0002-9013-9561
https://orcid.org/0000-0003-4151-908X

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

IEEE Access

access latency. Therefore, typical L1 data cache design
focuses on enabling a short access cycle. However, in order to
achieve a comparable yield under process variations, trying
to keep the access cycle of L1 data caches (i.e., increase
global clock cycle time) may incur severe clock frequency
losses since there is much larger delay increase in NTC
due to process variation than in super-threshold regime [2].
In this case, an efficient trade-off between the L1 data
cache access cycles and processor clock frequency is the
most critical factor for improving yield and performance of
processors.

In this paper, we revisit a variable latency cache
architecture for NTC while further improving energy and per-
formance by employing an adaptive line migration technique.
For super-threshold computing (STC), several proposals
for variable latency cache architecture have been intro-
duced [4]-[6]. However, there has been few work regarding
variable latency cache for NTC. To the best of our knowl-
edge, our work is the first work that improves yield, perfor-
mance, and energy efficiency of L1 data caches operating in
near-threshold voltages. In the following section, we demon-
strate the yield impact of process variation in NTC, which
necessitates a yield-aware variable latency cache for NTC.
Furthermore, we newly propose an adaptive line migration
scheme which improves energy efficiency and performance
of variable latency L1 data cache for NTC. Our scheme
dynamically migrates cache lines which are likely to be fre-
quently accessed in the near future. To prevent a migration
thrashing, we newly introduce a promotion threshold that
enables an accurate prediction of subsequent accesses in
the near future. Moreover, compared to a frequency (speed)
binning technique [7] that is widely used for yield improve-
ment, our proposed cache architecture improves not only
yield but also performance and energy efficiency. In addition,
as compared to disabling the faulty cache blocks (WBD) [8]
(similar to Intel Pellston Technology) [9], [10] (introduced
as a naive way reduction scheme), our technique leads to
much better performance with comparable yield even under
severe process variations. Considering that the yield sig-
nificantly affects the profitability of the chip manufactur-
ing companies, our work can be a promising alternative to
future near-threshold processor design for manufacturability.
We believe that our proposal can be a one step forward for
enabling a mass production of processors that operate in near-
threshold voltage levels.

In summary, our contributions include:

o We provide a detailed analysis on yield in NTC particu-
larly for L1 data cache in a processor. We demonstrate a
huge reduction of yield in NTC regime and show that
it is hard to be recovered by adopting the frequency
binning [7] which is a commonly used technique in
industries;

o We also demonstrate that the necessity of employing
the variable latency cache architecture for NTC and
propose an adaptive line migration technique that can
be employed along with the variable latency caches for

VOLUME 8, 2020

yield, performance, and energy efficiency improvements
of near-threshold L1 data cache;

o« We show that our cache architecture achieves much
higher cache yield (5.1% ~ 100%) with comparable
performance and energy efficiency to the ideal case
(i.e., no process variation). Compared to the frequency
binning, our cache architecture shows much higher yield
(improving yield by 2.4% ~ 71.0%) with up to 91% per-
formance improvement and up to 32% energy reduction;

o Our cache architecture also shows much better perfor-
mance by 2.1X compared to the WBD technique under
severe process variations.

o Our proposed cache architecture can be implemented
with a small hardware overhead, which corresponds to
less than 2% of L1 data cache area.

The rest of the paper organization is as follows. Section 2
demonstrates our motivational study and detailed yield anal-
ysis which call for yield-aware techniques for L1 data cache
in NTC. Section 3 describes our proposed variable latency
cache with a line migration technique for performance and
energy efficiency improvement as well as yield management.
Section 4 shows our evaluation results in terms of yield,
performance and energy consumption. Section 5 discusses
related work and describes our novelty over those works.
Lastly, Section 6 concludes this paper.

Il. MOTIVATIONAL STUDY: L1 DATA
CACHE YIELD ANALYSIS
A. A FRAMEWORK FOR YIELD ANALYSIS
In this subsection, we present our framework for L1 data
cache yield analysis. Our yield analysis is based on Monte
Carlo simulation with VARIUS-NTV [1] originated from
R statistical programming language [11]. Table 1 shows
parameters for process variations and circuits. Most of the
parameters are set identical to [12]. For architectural param-
eters of L1 data caches, we use 32KB 4-way set associative
L1 data cache with 64Byte line size, which means there are
512 cache lines in the L1 data cache. The replacement policy
of L1 data cache is a least recently used (LRU) policy. For
Monte Carlo simulation, we examine Vy, (threshold volt-
age) and L.g (effective gate length) variations with a cache
line granularity by using VARIUS-NTV process variation
model [1]. Based on Vg, Lefr, and other circuit parameters for
cells in each cache line, we extract a latency for each line from
VARIUS-NTYV [1] (for the details of the delay model, please
refer to [1] which describes read and write delay models).
Table 2 summarizes the parameters used for different pro-
cess variation severities in our Monte Carlo simulations.
We analyze L1 data cache yield with three different process
variation levels. We classify them into three degrees of param-
eter fluctuations: o/u (standard deviation / mean) of Vi, =
0.1, 0.15, and 0.2 which are denoted as ‘varlQ’, ‘varl5’,
and ‘var20’, respectively. We give a variation to threshold
voltage (Vy,) and effective gate length (Legr). The o/u of
Lefr is set to a half of o/u of Vi, for each level of process
variation severity (i.e., o/u of Legg = 0.05, 0.075, and 0.1).

18559

IEEE Access

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

TABLE 1. The basic circuit and architectural parameters.

Categories Parameters used for
simulations
Technology node 11nm
Nominal Vad 0.55V [12]
Nominal Vin 0.33V [12]
Subthreshold slope factor 1.5
Mobility exponent -1.5
Change in Vin per -1.5%107
temperature (K) increase
Nominal processor clock 1 GHz [12]
frequency
L1 D-cache 32KB 4-way 64-byte line
size
L1 I-cache 32KB 2-way 64-byte line
size
L2 cache 2MB 16-way 64-byte line
size
Processor core Close to ARM Cortex-
Al15[13]
Operating temperature 353K
Correlation range () 0.1

TABLE 2. o/u of Vy, and o/ of Logs across three process variation
severities.

varl0 varl5s var20
o/p of Vi 0.1 0.15 0.2
o/p of Letr 0.05 0.075 0.1

Both Vi, and L distributions follow a normal distribution.
Please note that the parameters for ‘var20’ is used in [1] while
those for ‘var10’ and ‘varl5’ are used in [2]. For comprehen-
sive evaluations, we use three different process variation lev-
els of which parameters are collected from different previous
works.

In order to map the process parameters to each cache line,
we divided L1 cache area into 512 rectangles. The L1 cache
area is scaled from [1] considering the capacity of the L1 data
cache. The cache dimensions used for Monte Carlo simula-
tions are shown in Figure 1. We give the floorplan shown in
Figure 1 as an input to VARIUS-NTYV for Monte Carlo sim-
ulations. We generate 1000 process variation maps for each
process variation level, generating total 3000 process varia-
tions maps. Though we present our analysis with a single-core
L1 data cache, it can be extended to many-core architecture
where there is per-core L1 data cache. We use 8T SRAM
cells, as in [1] and [2], which is known to be more robust to
process variations compared to the conventional 6T SRAM
cells [14]. We also assume that the baseline L1 data cache
access takes three clock cycles: address decoding, SRAM
array access, and data out.

18560

way0 way1 way2 way3

0.0013 mm

0.2083 mm

128 cache sets

FIGURE 1. A dimension of L1 data cache used for our Monte Carlo
simulations.

B. LATENCY AND YIELD ANALYSIS FOR
NEAR-THRESHOLD L1 DATA CACHE

First, we present a maximum possible frequency considering
the maximum latency of the L1 data cache (i.e., maximum
latency among 512 lines). Figure 2 shows maximum fre-
quency distributions from our Monte Carlo simulation across
three different process variation levels. The latency extracted
from our Monte Carlo simulation is SRAM array access
latency (the second cycle of the L1 data cache access). Thus,
we only consider the increased latency of SRAM array access
cycle, which affects the maximum available clock frequency
of processors. Please note that the SRAM access cycle is the
most vulnerable cycle (i.e., easy to be fluctuated) among three
cache access cycles due to the SRAM cell’s vulnerability to
process variations [2].

[N

evarl0 w®mvarl5 ovar20

© o 9o
N o

0.6

Clock frequency (GHz)

© © o o o
[R]

0 200 400 600 800 1000

Chip instance number

FIGURE 2. Maximum clock frequency plots from the Monte Carlo
simulations.

Considering the nominal clock frequency is 1 GHz,
the possible maximum clock frequency is severely limited
by the L1 cache access latency. In the case of ‘varl0’ (the
lowest parameter fluctuation in our analysis), the maximum
clock frequency among 1000 processors is 0.644 GHz, which
is far below the nominal clock frequency of 1GHz. In the case
of ’var20’ (the highest parameter fluctuation in our analy-
sis), the situation gets further worse, resulting in the maxi-
mum clock frequency of 0.429 GHz. If the clock frequency
requirement is firmly set to 1GHz, the microprocessor yield
will be 0%. Since we have very low yield, one can employ
a frequency binning [7] for better yield while sacrificing
performance of processors. Table 3 shows the (fixed) fre-
quency binning results based on our Monte Carlo simulations.
In the case of ‘varl0’ where there is least significant process
variation severity, one can get only 5 chips operating over

VOLUME 8, 2020

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

IEEE Access

TABLE 3. Freq y binning based on the L1 data cache latency across
three variation levels. ’x’ means the clock frequency. For example, if the
maximum clock frequency of the processor is 250MHz, it is binned to 0.2
< X < 0.4GHz.

varl(Q varl5 var20
0<x<0.2GHz 24 517 871
0.2 <x<04GHz 763 465 128
0.4 <x<0.6GHz 208 18
0.6 <x<0.8GHz 5 0 0
0.8 <x<1.0GHz 0 0 0

0.6GHz (0.5%). A majority of the chips are operating below
0.4GHz. It means one should bear a huge performance loss
compared to the chips in the nominal frequency (1GHz) in
order to achieve a comparable yield. In the perspective of
semiconductor company, they have no choice but to sell their
manufactured processors with a very low price (due to low
performance), which leads to a loss of considerable profits.

It is known that the PV-induced stability issues are much
more dominant than the delay variation under extremely
low V44 [14]. However, based on our assumptions presented
in Table 1, Vpin (the minimum Vg to guarantee a stable oper-
ation) is still lower than 0.55V even under process variation
in most cases, meaning that the stability issue gives only a
marginal impact on yield. It is already observed in [2] that
delay variation in cache memories is the most dominant factor
in NTC under process variations.

Ill. VARIABLE LATENCY L1 DATA CACHE FOR
NEAR-THRESHOLD COMPUTING

A. VARIABLE LATENCY L1 DATA CACHE FOR NTC

In order to efficiently handle the problem stated in Section 2,
we propose to use variable latency-based L1 data cache
instead of fixed cycle L1 data cache. Variable latency cache
architecture is not a new concept and it has been explored
for process variation-aware design [4], [6], performance
improvement [5] and energy reduction [15]. We extend the
conventional variable latency cache architecture mainly for
yield improvement in NTC.

Latency table + 3

LsQ
wake-up

common
LSQM — | ‘ | - ‘ | ‘-data bus
Address | ! !
decoding SRAM array Data out
access Reservation
(variable) station
entries
wake-up

FIGURE 3. A conceptual diagram of variable latency L1 data cache.

Figure 3 depicts a conceptual description of our variable
latency cache architecture. As we explained in Section 2.A,
a cache access is divided into 3 cycles in the nominal case.
However, as delay variations from SRAM cells are signifi-
cant [2], we apply variable clock cycles to SRAM array access

VOLUME 8, 2020

cycle (the second cycle of the L1 data cache access in the
nominal case). Our variable latency L1 data cache can have
different access cycles for each cache line. Hence, the latency
information from the latency table is used for a wake-up of
the corresponding LSQ entry and reservation station entries.
Though we could allow any cycles equal to or higher than 3
(3~ o0) for variable latency L1 data caches, the reservation
station (RS) and load/store queue (LSQ) should be notified in
an asynchronous manner (i.e., they cannot know the timing of
the wakeup notification), resulting in much higher design and
verification complexity. Thus, we should maintain latency
information in the latency table for each cache line.

Figure 4 illustrates the overall (micro-)architecture of our
variable latency L1 data caches. As in the case of typical
cache architecture, there are cache tag and data arrays where
we store tags and data for caches, respectively. In a typical
cache access, a data cache access request (address in the
case of load and address and data in the case of store) is
issued from load/store queue (LSQ) and fed into the L1 data
cache. If the L1 data cache load hit occurs, the time when
the data will be delivered back to the LSQ and reservation
stations is various across the cache lines since each cache
line will have different access cycles due to process varia-
tions. To make the LSQ and reservation stations accurately
estimate the data arrival time in the future, the latency table
is accessed along with the L1 data cache access. The latency
table is to store the information of the SRAM array access
cycles additionally required for each cache line due to process
variations (e.g., if the latency table value is zero, it means
there is no additional latency due to process variations; thus,
cache access cycle is 3). To access the latency table, we first
access L1 data cache tag array to locate the set and way,
which will be an input to the latency table. After we obtain
the latency information, we add 3 to incorporate the latency
of the cache access cycles for the nominal case (i.e., 3 cycle
access latency). After that, we set the LAT (latency from
latency table) 4+ 3 as the initial value of the binary down
counter and set the enable signal as ‘1’. This will decrement
the value in the binary down counter by 1 for each clock cycle
while it is compared with the zero in the comparator (XNOR
gates) every clock cycle. After LAT+3 cycles, the comparator
signal will be changed from ‘0’ to ‘1°. The comparator output
is connected to LSQ and reservation stations, which wakes
up the corresponding LSQ and reservation station entries.
At the same time, the data from the L1 data cache will also be
available in common data bus and forwarded to the relevant
reservation station entries in order to issue dependent pending
instructions in the following cycle. Since the L1 data caches
are typically employed in a per-core or per-CPU manner, if we
have multi-core or multi-CPU chip, we need to have separate
latency tables for each private L1 data cache.

In the case of L1 data cache store hit, the increased latency
is not sensitive as much as in the case of load instructions
because the processor pipeline is not stalled for the data
delivery. However, the corresponding L.SQ entry for the store
instruction should also consult the latency table and keep

18561

IEEE Access

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

Memory address

Data (in the case of store)

1
Latency table ' ! Data

Load/Store

ot set, way Queue

2 s 2 o Wakeup
Slg nal The corresponding
L1 D$ entry is waken-up and
updated
Tag L1D$ Data array
LAT+3 array
enable—
Down counter
clk -

0 1 l Data Reservation

comparator é;”seth;f Wakeup station

(XNOR) load) Slgnal The consumer instructions
are waken-up
Hit or miss
Register to store
temporal data
I

FIGURE 4. The overall (micro-) architecture of our variable latency L1 data caches.

the LSQ entry until the write operation is completed in the
L1 data cache. This is because the data written to the cache
can also be forwarded to awaiting load instructions that access
the same memory address.

In the case of cache misses, as soon as the tag comparison
is done and the processor realizes a cache miss, the SRAM
array access in the L1 data cache is immediately stopped and
a request is sent to the L2 cache. In variable latency L1 data
cache for NTC, the cache access completion often takes a
number of clock cycles. To avoid performance overhead due
to long latencies of cache accesses, a data request to the
L2 cache is sent (in the case of L1 data cache miss) as soon
as the tag comparison is done.

For a real employment of our proposed technique,
the latency table initialization is crucial. The latency table is
initialized by SRAM latency testing such as March testing
described in [16]. This is a common practice of SRAM array
manufacturing that performs a post-manufacturing latency
testing to identify delay-failed SRAM cells. It can often
be accomplished by using Built-In Self-Test (BIST) logic
which is generally included with the memory arrays. After
the latency testing, we can figure out the cache block-level
latency that corresponds to the worst-case latency of the
SRAM cells in a cache block. After the latency testing, we can
figure out whether the SRAM array corresponds to a yield
loss or not. If there is any cache block of which latency is
more than the 3 + 2B-at (B_lat = bitwidth of the latency table
entry), the cache will be regarded as unusable. If latencies of
the entire cache blocks are less than 3+2B-13t, the additional
latency for SRAM array access (i.e., cache access latency - 3)

18562

is recorded in the latency table. For permanently storing the
latency table information, it can be additionally stored in
the non-volatile cells (secondary storage memory or small
read-only memory cells) and can be loaded when the operat-
ing system (OS) initializes the system (at the system booting
time) though the detailed mechanism of OS is out-of-the-
scope of this work. Please note that we can utilize a similar
mechanism that is used in [17], [18] where the fault bit is
loaded in advance before we use the cache memory.

The latency overhead of our latency table is only
0.0573403ns (modeled by CACTI [19]) which is much
less than the baseline clock cycle time (Ins). In addition,
we need a 4-bit adder delay to calculate the LAT+-3. Consid-
ering that modern microprocessors can sufficiently perform
the 32-bit or 64-bit arithmetic or logical operations within
one clock cycle, 4-bit adder delay will be negligible with
carry-lookahead adders. Considering this aspect, tag access
(latency = 0.105794ns), latency table access (0.0573403ns),
and 4-bit addition with 0011, can sufficiently be performed
within one clock cycle. Consequently, it can sufficiently
trigger the down counter before the first (either positive or
negative depending on which type of the flip-flops are used
in the processor) clock edge.

B. OUR ADAPTIVE LINE MIGRATION SCHEME

Asillustrated in Section 2, the latency variability across cache
lines is huge. It means allocating frequently accessed data
to low latency lines within a cache set would be beneficial
in terms of performance. Since L1 data caches are very fre-
quently accessed (nearly every cycle in the case of cache- and

VOLUME 8, 2020

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

IEEE Access

memory-intensive workloads), an access cycle reduction of
L1 data cache would translate into a noticeable performance
improvement.

To accurately predict the cache lines which will be fre-
quently accessed in the near future, we exploit a locality
characteristic within a cache set. In general caches, recently
accessed cache lines have a high possibility to be accessed
again in the near future (a.k.a., locality). As shown in
Figure 5, most of the L1 data cache accesses occur in the
MRUO (most recently used) line within a cache set. Thus,
according to the location of the MRU line within a cache
set, performance of variable latency L1 data cache would be
hugely affected.

Ratio of MRU lines

>
2

& & NG Q S
FRESS S EL LS

N
Benchmarks

%

FIGURE 5. The ratio of cache hit access from MRU (most recently used) to
LRU (least recently used) lines in a cache set. MRUO is the most recently
used line and MRU3 is the least recently used line in the cache set.

In this paper, we propose an adaptive line migration
scheme which is geared toward our variable latency L1 data
cache for NTC. Our migration scheme maintains special
storages: a hit counter (2-bit: representing 0 ~ 3 (00, ~11,))
for each cache line and fastest way indicator (2-bit) for each
cache set. For the quantitative measure of the importance for
each cache line, we use the hit counters. According to the
hit counter value, we determine whether the corresponding
cache line should be migrated or not (the details will be
explained in the following paragraph). When the processor
is initialized, all of the hit counters are set to ‘0’. The fastest
way is determined according to the latency testing of each
cache line after chip fabrication (it can be initialized by the
same process of latency table initialization). It stores the way
number in a cache set which has the lowest latency among
four cache lines (in the case of 4-way set associative).

Alg. 1 describes our algorithm for the adaptive line migra-
tion scheme. When there is a cache hit in the fastest way
(denoted as cache line ‘B’ in Alg. 1), there is no additional
action in our algorithm and it is totally same as a normal
cache access. If there is a cache hit in a cache line which
is currently not stored in the fastest way (denoted as cache
line ‘A’ for description in Alg. 1), the hit counter is compared
with the promotion threshold (Pyeshold)- If the hit counter is
greater than or equal to the predefined Pyyreshold, this cache
line is regarded as a very frequently accessed line. Hence,
if the migration buffer (it will be explained below) is not full,
we swap the data (64-byte) and corresponding metadata (tag

VOLUME 8, 2020

v v ¥ ¥
way0 way1 way?2 way3
)]] L [Frevdata]
[Data output driver

FIGURE 6. A line migration (swap) buffer for our adaptive line migration
scheme.

and cache line status) between the two cache lines. It means
the data of which hit counter exceeds Pgreshold (Stored in
cache line ‘A’) is migrated to the fastest way (cache line ‘B’).
The previously stored data in the fastest way is also migrated
to the line ‘A’. The hit counters of both swapped cache lines
are reset to O after the line swap operation (lines 6 and 7 in
Alg. 1). If the hit counter of the cache line is less than Pireshold
the hit counter of that cache line is increased (lines 9 and
10 in Alg. 1). In the case of cache misses (lines 12~15 in
Alg. 1), the hit counter of the replaced cache line is set to 0.
The other procedure for the cache miss handling is identical to
the conventional L1 data cache with LRU replacement policy.

The lower promotion threshold we have, the better perfor-
mance we would obtain. However, lower promotion threshold
may incur too frequent cache line swap (i.e., migration
thrashing) which will translate into higher energy over-
head. According to our architectural simulation, the cases of
Pihreshold = 1 and Pyreshora = 3 show little performance
difference (0.45% better in the case of Pireshold = 1 than that
of Pihreshold = 3) while there is a non-negligible difference on
the number of line swap occurrence (33.8% less in the case
of Pihreshold = 3 than that of Pypreshold = 1). Since more line
swap operations leads to higher energy consumption, we set
Pihreshold by 3 in this work. For a certain situation, even with a
high Pyreshold Value, there would be frequent line migrations.
However, according to our simulation results, most cache
accesses happen in the MRU block. It implies once we move
the frequently accessed block to the fastest line in a cache set,
there will be many subsequent cache hits in the fastest cache
line without migration.

For a smooth line migration, we have two-entry buffer
which temporarily stores two sets of 64B data and metadata
(shown in Figure 6). By using this buffer, the line migration
process is performed in background and does not make the
processor pipeline be stalled. One entry has newly promoted
data (new data in Figure 6) and the other entry has the data
previously stored in the fastest way (prev data in Figure 6).
The data is kept in the migration buffer until the swap oper-
ation in the L1 data cache is completed. To minimize perfor-
mance overhead, if the migration buffer is full (i.e., migration
is currently being performed), the migration for that cache
line is skipped (line 4 in Alg. 1).

Since migration is done very sporadically (only ~1% of
the number of cache access), only 2-entry migration buffer
is sufficient. It also means a negative performance impact
of migration buffer overflow (that causes a migration skip-
ping) would be negligible. To minimize negative performance

18563

IEEE Access

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

impact of migration, we could perform an actual migration
when there is a long stall in the pipeline (e.g., L2 cache miss,
TLB miss, etc.) though it is out-of-the-scope of this paper.

C. MICRO-ARCHITECTURAL SUPPORT

AND COST ANALYSIS

Figure 7 depicts additional storages for our variable latency
cache with the line migration scheme. As we already
explained in Section 3.A, for our variable latency L1 data
cache, we should maintain latency information for each cache
line. The latency is stored with a clock cycle granularity. The
value stored in the latency table corresponds to the additional
clock cycle required to access that cache line. Thus, if the
value is ‘0’, the cache access cycle for the corresponding
cache line is 3 cycles (i.e., nominal case). Depending on
the bit-width in the latency table, cache yield is affected.
For instance, if we have 2-bit latency storage for each cache
line, the maximum allowable cache access latency is 6 cycles
since two bits can only represent 0 ~ 3. Thus, in this case,
if there is a cache line whose access cycle exhibits more
than 6 cycles, the chip is regarded as a non-usable chip (a
yield loss). Consequently, the larger latency storage we have,
the higher cache yield we can expect.

Fastest way Latency table Hit counter

way0 way1 way?2 way3
[2-bit | [2~4 bits |

way0 wayl way2 way3
| [2-bit [2-bit | 2-bit | 2-bit |

128 cache sets

FIGURE 7. Additional storage maintained for the variable latency cache
and line migration scheme.

To support our line migration scheme, for each cache
set, 2-bit storage (fastest way) is maintained for rapid line
migration. When the migration occurs, one may perform
comparison between the latency values from the latency table
instead of having the separate 2-bit fastest way storage. How-
ever, to reduce energy and performance overhead from the
comparison operations in our design, we have the storage
dedicated for maintaining the fastest cache line within a cache
set.

Along with the fastest way storage and latency table, there
is a 2-bit hit counter for each cache line. Depending on the
promotion threshold in Alg. 1, one can increase or decrease
the size of hit counters. Since we use promotion threshold of 3
in this work, we only need 2-bit for each hit counter.

For additional storages depicted in Figure 7, we need
26 bits per cache set, which implies 416 (= 26« 128/8) Bytes
are required for 32KB L1 data cache. For migration buffer,
we need two-entry 64-byte buffer for data migration and
two-entry 64-bit (conservatively estimated) storage for cache
status metadata including cache tag bits. Thus, for migration
buffer, one needs 144 Bytes of additional storages. Conse-
quently, to implement our variable latency L1 data cache
with the adaptive migration scheme, 560-Byte additional
storage is required, which corresponds to <2% of the cache

18564

Algorithm 1 Our Adaptive Line Migration Scheme
Assumption: the cache line ‘B’ is the fastest way in a cache
set.

Assumption: the cache lines ‘A’ and ‘B’ are in the same
cache set.
1 if (cache hit in the cache line ‘B’)

2 no further action,;

3 else if (cache hit in the cache line ‘A’) {

4 if (hit counter of ‘A’ >= Preshold &&
!migration buffer full) {

5 Cache line swap between ‘A’ and ‘B’;

6 hit counter of ‘A’ = 0;

7 hit counter of ‘B’ = 0;

8 }

9 else if (hit counter of ‘A’ < Pinreshold)

10 hit counter of line ‘A’ +-+;

11 }

12 else if (cache miss) {

13 line eviction and replacement;

14 hit counter of the replaced cache line = 0;

15 }

16 end

data array size (32KB). Though we present our technique
based on 32KB cache size, it can also be applied to larger
caches. Assuming that we have the same cache block (line)
size, our technique can also be implemented in larger caches
(e.g., 64KB) with larger latency table, fastest way storage
and hit counter storage. Though we need larger table and
storages, the delay, area, and power overhead compared to
the cache will be similar because the table and storage size is
proportional to the cache size.

Latency
tatisti
VARIUS-NTV |—— M-SIM CACTI
Cache access Cache energy and
statistics power parameters
Yield Performance Energy

FIGURE 8. An overall usage flow of the tools used in our evaluation
framework.

IV. EVALUATION

A. EVALUATION FRAMEWORK

For evaluation, we present our results in terms of yield,
performance, and energy in this section. Figure 8 summa-
rizes the usage flow of the tools used in our evaluations.
For yield evaluation, we use the framework (VARIUS-NTV)
explained in Section 2.A. For performance evaluation, we use
M-SIM architectural simulation tool [20]. Please note that
M-SIM is a derivative of SimpleScalar tool [21]. Internal
micro-architectural parameters of the M-SIM simulator

VOLUME 8, 2020

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

IEEE Access

closely model ARM Cortex-A15 [13]. To model vari-
able latency cache in M-SIM simulator, we assign a ran-
dom latency between 3 ~ 18 cycles (i.e., in the case of
variable latency cache with 4-bit latency information per
cache line) to each cache line in the L1 data cache (it cor-
responds to the part in Figure 8 where the latency statistics
delivered from VARIUS-NTV to M-SIM). Please note that
the distribution of the cache access latency between 3 ~ 18
cycles corresponds to the process variation levels between
varl5 and var20. For benchmark, we run 16 selected bench-
mark programs from SPEC2006. Since running the entire
benchmark program takes huge time for simulations, we fast-
forward 2 billion instructions and actually run 500 million
instructions. Please note that the fast-forwarding instructions
warm up the (micro-)architectural states in the processor
(e.g., caches, many buffer structures, etc.), leading to more
accurate simulation results.

For energy evaluation, L1 data cache energy and power
results are derived from CACTI cache modeling tool [19]
with 32nm process technology parameters. Though we use
32nm technology node instead of 11nm (used in our yield
analysis), we modified circuit parameters (e.g., supply volt-
age, threshold voltage, etc.) in our CACTI tool to imple-
ment near-threshold operations. In addition, we consider
line migration energy overhead. We assume that migration
energy is same as an addition of two times of L1 cache read
access dynamic energy with two times of L1 cache write
access dynamic energy (L1 cache read dynamic energy x2+
L1 cache write dynamic energy x 2). This is because we need
two read operations and two write operations to the caches for
line migration. Though there are one additional read and write
operations to the line migration buffer, due to its small size, its
energy consumption is negligible as compared to the read or
write operations to the caches. For the additional logic energy
overheads, the non-negligible energy overheads are attributed
to the latency table while the others are negligible. Thus,
we estimate the latency table overhead by using CACTI (with
256B small SRAM buffer). For conservative estimation of
the latency table, we assume that 4-bit latency information is
maintained for each cache line in our evaluation. Table 4 sum-
marizes energy and power parameters used in our energy

TABLE 4. Energy parameters used for our energy evaluations. Dynamic
write energy is scaled from the dynamic read energy according to the 8T
SRAM array read and write energy results from [22].

- L1 data Addltl‘onal
Categories cache logic
(Latency table)
Leakage power
(nW) 7,978,620 4,700
Dynamic read/write | 0.018374/

energy (nJ) 0.021457 0.000826
Line migration 0.079662

energy (nJ)

VOLUME 8, 2020

evaluations. For energy consumption of the L1 data cache,
with the cache access statistics (such as access counts of the
L1 data caches, the number of line migrations, etc.) from
the M-SIM and power and energy parameters from CACTI,
we also derive the entire energy consumption of the L1 data
caches.

B. YIELD

As we explained in Section 3.C, yield results are dependent on
how many bits are used for storing latency information in the
case of variable latency L1 data cache. We show yield results
by varying the number of latency information bits. VL_2b,
VL_3b, and VL_4b correspond to the cases where our vari-
able latency cache is employed with 2-bit, 3-bit, and 4-bit
latency information per cache line, respectively. In the case of
using variable latency cache, the processor clock frequency is
set to the nominal clock frequency (1GHz). We also compare
yield when employing the frequency binning (i.e., loosely
setting the timing constraint while maintaining the cache
access latency as 3 cycles). ‘FB > x’ means that we count
the chip as a usable chip if the clock frequency of the chip is
over ‘x’ GHz.

As shown in Table 5, our VL schemes show considerably
higher cache yield compared to the frequency binning (FB).
Cache data array access latency is hugely increased by pro-
cess variation, resulting in huge yield losses even with fre-
quency binning. When targeting the clock frequency over
0.6GHz with frequency binning, yield is nearly 0%. With
much looser timing constraints (FB > 0.2), one can obtain
yield over 95% in the case of ‘var10’. In contrast, only with
3-bit latency information per cache line (i.e., with VL_3b),
100% yield is achieved. Even though we gain consider-
able yield with frequency binning, we should significantly
sacrifice performance to gain higher yield. In the case of
applying frequency binning, the entire clock cycle time is
increased, negatively affecting performance of the whole set
of the instructions. In contrast, only memory-side perfor-
mance (load/store instructions) is negatively affected in the
case of VL_2b, VL_3b, and VL_4b.

In the super-threshold computing (STC) regime, one may
be able to gain considerable yield and performance only with
the frequency binning. In the NTC regime, however, only
frequency binning is not sufficient for both yield and perfor-
mance due to larger fluctuations on cache access latencies by
process variations than in the STC regime.

C. PERFORMANCE

We compare performance among different schemes: base-
line, FB_varl10_max, FB_varl5_max, FB_var20_max, WBD
(weak block disabling), VL_base, and VL_mig. Baseline
means the ideal case (it hardly exists considering yield)
where L1 data cache access is performed with 3 cycles
and processor clock frequency is 1GHz. FB_varl0_max,
FB_varl5_max, and FB_var20_max mean the cases where
we pick a processor which has the highest available clock
frequency among 1000 processors for each of three process

18565

IEEE Access

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

TABLE 5. Yield results of various schemes across three process variation levels.

FB>0.2 FB>0.4 FB>0.6 FB>0.8 VL _2b VL_3b VL _4b
Varl0 97.6% 21.3% 0.5% 0.0% 86.3% 100.0% 100.0%
Varl5 48.3% 1.8% 0.0% 0.0% 25.9% 86.2% 98.9%
Var20 12.9% 0.1% 0.0% 0.0% 5.1% 44.7% 83.9%
1 OFB_varl0_max OFB_varl5_max @ FB_var20_max WBD B VL_base WVL_mig
0.9 -
3 o8 = M =
é 0.7 - - I - - _ n :
.g 0.6
& os
E 0.4 f
Té 0.3
S
0.1
0
& < N e”>\\ & & & & & M R S 2 & <2
& < &f@ ¥ & & © \@&’?’Q & & o Qé\@ B\ &

Benchmark Programs

FIGURE 9. Performance results across frequency binning (FB_var10_max, FB_var15_max, FB_var20_max), weak block disabling (WBD), and our variable
latency caches (VL_base, and VL_mig). The results are normalized to the baseline.

variation levels. Note that the highest available clock fre-
quencies for varl0, varl5, and var20 from our Monte Carlo
simulations are 644MHz, 503MHz, and 429MHz, respec-
tively. Thus, in the cases of FB_var10_max, FB_varl5_max,
and FB_var20_max, we assume that the processor runs with
644MHz, 503MHz, and 429MHz, respectively, with 3-cycle
L1 data cache access latency. WBD disables the faulty cache
lines (blocks). Please note that this technique is widely used,
simple, practical, and also introduced in [8] (similar to Intel
Pellston Technology), [9], and [10] (introduced as a naive
way reduction scheme). Though this scheme could always
lead to 100% cache yield by employing the adaptive cache
bypassing (i.e., bypasses cache if there is no non-faulty blocks
in a cache set), the effective cache capacity would be sig-
nificantly reduced, eventually causing performance losses.
We assume that there are 90% of the cache lines in the cache
are faulty (a cache line is determined as faulty if there is at
least one delay failing SRAM cell). This assumption is based
on our Monte Carlo simulation. Though the average cache
line-level fault rate is 97.3% in our Monte Carlo simulation,
we conservatively set the cache fault rate as 90% in our
simulation. VL_base and VL_mig correspond to the cases
where variable latency cache is employed without and with
the adaptive migration technique, respectively. Please note
that we measure performance by using the inverse of the
execution time.

Figure 9 depicts performance results across various
schemes. Due to the increased cache access cycles, VL_base
shows 8.4% worse performance compared to the baseline.

18566

In the case of VL_mig, performance degradation from the
ideal case is only 4.0% which means our migration tech-
nique recovers a significant portion of the performance loss
caused by VL_base. On the other hand, in the case of
FB_var10_max, FB_varl5_max, and FB_var20_max, per-
formance degradation is roughly proportional to the clock
frequency degradations which correspond to 29.4%, 42.4%,
and 49.6% of performance losses. It means our VL_base
and VL_mig are much more performance-efficient than the
frequency binning. Since memory latency is not dependent on
the processor clock frequency, memory-intensive workloads
(e.g., mcf) shows relatively less performance losses compared
to the other computation-intensive workloads in the cases
of frequency binning (FB_varl0_max, FB_var15_max, and
FB_var20_max). In addition, our VL_mig shows better per-
formance by 2.1X, on average, as compared to the WBD
technique. The main reason is because of the reduced L1 data
cache capacity in WBD, increasing the cache miss rate and
lower-level cache and memory accesses.

Among the benchmark programs, CactusADM shows
more huge performance degradation in the case of VL_base
compared to the other benchmark programs. This is because
CactusADM has a significantly higher portion of load
instructions among the entire set of instructions. Load instruc-
tions make dependent instructions not issued until the data
is delivered from the cache or main memory. In the case
of variable latency cache, L1 cache access cycles can be
increased, resulting in more stall cycles in the processor
pipeline.

VOLUME 8, 2020

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

IEEE Access

OFB_varl0_max

OFB_varl5_max B FB_var20_max

25

1.5

0.5

Normalized Energy Consumption

WBD w/o GVdd WBD w/ GVdd B VL_base B VL_mig

Benchmark Programs

FIGURE 10. Energy consumption results across FB_var10_max, FB_var15_max, FB_var20_max, weak block disabling (WBD) without Gated-Vdd (WBD w/o
Gvdd), WBD with Gated-Vdd (WBD w/ GVdd), and our variable latency caches (VL_base, and VL_mig). The results are normalized to the baseline.

D. ENERGY

Figure 10 summarizes normalized energy comparison of
L1 data cache across FB_varl0_max, FB_varl5_max,
FB_var20_max, WBD without Gated-Vdd, WBD with
Gated-Vdd, VL_base, and VL_mig. For energy comparison,
we further classify the WBD technique into the cases where
the Gated-Vdd [23] is applied (WBD w/ Gated-Vdd) and
not applied (WBD w/o Gated-Vdd). In the case of WBD w/
GVdd, the disabled cache block is powered off to reduce
leakage power consumption (as in [9] and [10]) while the
WBD w/o Gated-Vdd (WBD w/o GVdd) does not apply
the Gated-Vdd. Compared to the ideal case (i.e., baseline),
VL_base and VL_mig show energy overheads of only 7.5%
and 7.3%, respectively. Even with the migration energy over-
head, VL_mig shows lower energy consumption compared
to VL_base. This is because VL_mig shows a shorter exe-
cution time (i.e., better performance) than VL_base. It leads
to less leakage energy consumption, which results in better
energy efficiency of VL_mig (supported by Figure 11). In the
case of FB_var10_max, energy consumption is higher than
VL_base and VL_mig by 15.9% and 16.1%, respectively.
It means the frequency binning is far less energy-efficient
compared to the variable latency cache due to high leakage
energy consumption (please refer to Figure 11). As process
variation gets more severe (e.g., var20), the situation will get
further worse, resulting in 47.8% more energy consumption
compared to VL_mig. Our VL_mig still shows lower energy
consumption by 39.9% as compared to the WBD w/o GVdd.
On the other hand, the WBD w/ GVdd shows lower energy
consumption by 48.9% compared to our VL_mig. Since the
WBD w/ GVdd turns off the faulty cache lines (90% cache
blocks are power-gated), it leads to huge leakage energy
reduction. However, applying the Gated-Vdd increases the
hardware complexity and our VL_mig shows much better
performance (by 2.1X) as compared to the WBD techniques.
Considering the trade-off between performance and energy,

VOLUME 8, 2020

Oleakage

0.6
03 .
0
&
\

o
2

B dynamic ®additional logic B Line migration

é“&
e

Normalized energy consumption
o
o

[Al

o \J N
& & S & o ~
&7 &7 &7 & &

Configurations

FIGURE 11. Energy breakdown results across FB_var10_max,
FB_var15_max, FB_var20_max, weak block disabling (WBD) without
Gated-Vdd (WBD w/o GVdd), WBD with Gated-vVdd (WBD w/ GVdd), and
our variable latency caches (VL_base, and VL_mig). The results are
normalized to the baseline.

our VL_mig leads to lower EDP (energy-delay product) by
8.8% as compared to the WBD w/ GVdd, meaning that our
VL_mig is more energy-efficient than the WBD w/ GVdd.

V. RELATED WORK

Process variation is a huge hurdle for both super-threshold
and near-threshold computing. For STC (super-threshold
computing), many techniques have been proposed for
variation-aware cache design. Ozdemir et al. proposed yield-
aware cache architecture [4]. Their new cache architec-
ture improves yield by employing variable latency caches
and power-down techniques. In [17], to efficiently handle
access time failures in L1 caches, Pan et al. proposed a
selective wordline boosting technique for yield improve-
ment. Kong et al. proposed an SRAM cell Arrays Voltage
Lowering (SAVL) technique which reduces both delay- and
leakage-induced yield losses [18]. Except for the studies
introduced above, many other techniques [3], [24]-[26] have
been proposed for variation-aware cache design since 6T

18567

IEEE Access

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

SRAM cells are known to be very vulnerable to process
variations.

Variable latency cache architecture has been explored for
performance improvement [5] and process variation toler-
ance [4], [6] in super-threshold computing regime. In [27],
they group the cache lines so that the cache lines in a
group have same access cycles, which eventually mini-
mizes performance losses from the increased cache access
latency due to process variations. In [15], a timing aware
(TA)-LRU policy with variable latency caches were pro-
posed. The TA-LRU shares an important insight with our
proposed technique (in most cache accesses, the MRU line
is likely to be accessed). However, the technique proposed
in [15] is a kind of pseudo-LRU that selects a victim from
several candidate lines for replacement. It may lead to sub-
optimal cache replacement while our proposed technique
always selects LRU line as a victim. In addition, the variable
latency cache in [15] can only consider 1-cycle and 2-cycle
cache latency while our proposed scheme considers a wider
range of cache access cycles under process variations.

For process variation-awareness in NTC, a new L1 cache
architecture that employs variation-robust SRAM cells
was proposed [28]. Dreslinski et al. also proposed a
dual-voltage supplied multi-core architecture in [29] for
variation-awareness in NTC. Miller et al. proposed a
dual supply voltage rail with Booster framework [30] and
half speed units [31] for process variation robustness.
EnergySmart was proposed by Karpuzcu et al. [12], which
assigns the task into cores (clusters) by considering the
variation-induced characteristics of cores (clusters). In [2],
Kong et al. proposed CBoost and SWBoost which selectively
boost supply voltages of cores in many-core processors for
NTC. It significantly improves yield of the many-core proces-
sors with a negligible energy overhead. Though CBoost and
SWBoost enable yield improvement with compromised clock
frequencies, those techniques should still sacrifice clock fre-
quency for comparable yield, which may lead to performance
losses and energy-inefficiency.

There have also been many researches on cache architec-
ture to support low V.. (supply voltage) operations. In order
to guarantee reliable operations in ultra-low voltages with
the fixed yield loss target, several works try to leverage ECC
(error correction code) with fine-grained management within
a block [32] and data compression [33]. In [34], though
ECC is not used, compression-based cache management is
proposed to maximize an effective cache capacity under high
fault rate in low V. operations. In [35], disabling and remap-
ping techniques for faulty rows or blocks (or subblocks)
to tolerate high bit error rates in low V.. operations were
proposed. Block or subblock-level disabling and remapping
techniques were also proposed in [36] and [37]. A recent
implementation of RISC-V processor employs a line recy-
cling technique [38] that combines three faulty cache lines
which are recycled to compose one non-faulty cache line. The
above mentioned disabling-based techniques could be used
when the process variation severity is low. However, under

18568

the severe process variation (as we show in our evaluation),
the effective cache capacity could be significantly low, lead-
ing to severe performance losses.

For another approach for low V. operations in caches or
SRAM arrays, the spare blocks [39] (i.e., redundancy-based
scheme) are used to replace the faulty cache blocks to
enable reliable cache operations under ultra-low V.. ZCAL
cache [40] was also proposed to prevent access time failure-
induced malfunction caused by ultra-low voltage operations.
However, in [40], the fault detection is performed in run-
time, causing performance overhead while ours is performed
offline (after manufacturing or at booting time) without caus-
ing a performance overhead from the latency testing. Several
works also utilized mixed-cell cache architecture to tolerate
failures in low voltage operations. In [41], two types of the
cells (robust and non-robust cells) are used and cache allo-
cation and migration scheme exploits the characteristics of
the robust and non-robust cells. Though the line migration
scheme is also used in [41], our line migration scheme aims
to reduce the cache access latency under the severe tim-
ing failures due to process variations. In contrast, the cache
allocation and migration scheme in [41] only considers the
type of cache misses (read or write misses), meaning that
the latency-related characteristics are not considered. In [42]
and [43], the cross-sensing-based SRAM arrays and cache
management techniques are proposed, respectively. However,
using a new type of SRAM cells and arrays restricts the
applicability of the techniques while ours can be applied to
any type of the SRAM cells and arrays.

Compared to the studies introduced so far, the novelty
of our work is: 1) revisiting and revising the conventional
variable latency cache for yield improvement in NTC; 2) per-
forming the detailed analysis on yield by comparing with
the frequency binning; 3) proposing a novel line migration
technique for performance and energy efficiency which is
inspired from L1 data cache locality characteristics; 4) max-
imizing yield with an efficient performance and energy
trade-off.

VI. CONCLUSION

In this paper, we proposed a yield-aware variable latency
cache architecture with the adaptive migration technique.
Compared to the cases where there is no preventive technique
and frequency binning, our proposed technique significantly
improves yield of near-threshold L1 data cache. Moreover,
compared to the frequency binning, our proposed technique
significantly improves performance and energy efficiency
with very low hardware overhead.

Though near-threshold computing has emerged for energy
efficiency, without yield-aware techniques, it would not be
possible to carry out a mass production of near-threshold
processors. As shown in this paper, our proposed technique
can be a good design candidate for near-threshold processors
to enable a mass production of near-threshold computing by
improving yield, performance, and energy efficiency. As our
future work, we will 1) investigate a cache size sensitivity

VOLUME 8, 2020

J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

IEEE Access

of our technique, 2) apply and modify our technique to be
geared towards L1 instruction caches, and 3) investigate the
relationship among the cache physical layout, yield, energy,
and performance impacts.

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “VARIUS-
NTV: A microarchitectural model to capture the increased sensitivity
of manycores to process variations at near-threshold voltages,” in Proc.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2012, pp. 1-11.
J. Kong, A. Munir, and F. Koushanfar, ““Fine-grained voltage boosting for
improving yield in near-threshold many-core processors,” in Proc. 25th
Ed. Great Lakes Symp. VLSI (GLSVLSI), 2015, pp. 225-228.

A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-
tolerant cache architecture for improved yield in nanoscale technologies,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 1, pp. 27-38,
Jan. 2005.

S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, ‘Yield-aware
cache architectures,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), Dec. 2006, pp. 15-25.

S. Ozdemir, A. Mallik, J. C. Ku, G. Memik, and Y. Ismail, ‘“Variable
latency caches for nanoscale processor,” in Proc. ACM/IEEE Conf. Super-
comput. (SC), Nov. 2007, p. 20.

M. Mutyam, F. Wang, R. Krishnan, V. Narayanan, M. Kandemir, Y. Xie,
and M. J. Irwin, ‘““Process-variation-aware adaptive cache architecture and
management,” IEEE Trans. Comput., vol. 58,no. 7, pp. 865-877, Jul. 2009.
A. Datta, S. Bhunia, J. H. Choi, S. Mukhopadhyay, and K. Roy, ‘“Profit
aware circuit design under process variations considering speed bin-
ning,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 7,
pp. 806-815, Jul. 2008.

C. McNairy and J. Mayfield, ‘“Montecito error protection and mitiga-
tion,” in Proc. 1st Workshop High Perform. Comput. Rel. Issues Conjunct.
(HPCA), 2005.

J. Kong and S. W. Chung, “Exploiting narrow-width values for pro-
cess variation-tolerant 3-D microprocessors,” in Proc. 49th Annu. Design
Autom. Conf. (DAC), 2012, pp. 1193-1202.

J. Kong, F. Koushanfar, and S. W. Chung, “An energy-efficient last-level
cache architecture for process variation-tolerant 3D microprocessors,”
IEEE Trans. Comput., vol. 64, no. 9, pp. 2460-2475, Sep. 2015.

The R Project for Statistical Computing. [Online]. Available: http://www.r-
project.org/

U. R. Karpuzcu, A. Sinkar, N. Sung Kim, and J. Torrellas, “EnergyS-
mart: Toward energy-efficient manycores for near-threshold computing,”
in Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2013, pp. 542-553.

ARM Cortex-Al5. Accessed: Jun. 2013. [Online]. Available:
http://www.arm.com/products/processors/cortex-a/cortex-al5.php

G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-driven near-
threshold SRAM design,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 11, pp. 1590-1598, Nov. 2010.

P.-H. Wang, W.-C. Cheng, Y.-H. Yu, T.-C. Kao, C.-L. Tsai, P.-Y. Chang,
T.-J. Lin, J.-S. Wang, and T.-F. Chen, “Variation-aware and adaptive-
latency accesses for reliable low voltage caches,” in Proc. IFIP/IEEE 21st
Int. Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2013, pp. 358-363.
R. Rajsuman, ‘“Design and test of large embedded memories:
An overview,” IEEE Design Test Comput., vol. 18, no. 3, pp. 16-27,
May/Jun. 2001.

Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung, ““Selective word-
line voltage boosting for caches to manage yield under process variations,”
in Proc. 46th Annu. Design Autom. Conf. (DAC), 2009, pp. 57-62.

J. Kong, Y. Pan, S. Ozdemir, A. Mohan, G. Memik, and S. W. Chung,
“Fine-grain voltage tuned cache architecture for yield management under
process variations,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 20, no. 8, pp. 1532-1536, Aug. 2012.

N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A tool to model
large caches,” HP Lab., Palo Alto, CA, USA, Tech. Rep., 2009.

J. J. Sharkey, D. Ponomarev, and K. Ghose, “M-Sim: A flexible, multi-
threaded architectural simulation environment,” Dept. Comput. Sci., State
Univ., Binghamton, NY, USA, Tech. Rep. CS-TR-05-DP01, 2005.
SimpleScalar Toolset. [Online]. Available: http://www.simplescalar.com

VOLUME 8, 2020

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

[36

—

(37]

(38]

(391

[40]

(41]

P. Singh and S. K. Vishvakarma, “Ultra-low power high stability 8T
SRAM for application in object tracking system,” IEEE Access, vol. 6,
pp. 2279-2290, 2018.

M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijayku, “Gated-
Vaa: A circuit technique to reduce leakage in deep-submicron cache
memories,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED),
2000, pp. 90-95.

A.Das, S. Ozdemir, G. Memik, J. Zambreno, and A. Choudhary, ‘“Microar-
chitectures for managing chip revenues under process variations,” [EEE
Comput. Archit. Lett., vol. 6, no. 2, pp. 29-32, Feb. 2007.

K. Meng and R. Joseph, “‘Process variation aware cache leakage manage-
ment,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED), 2006,
pp. 262-267.

B. F. Romanescu, M. E. Bauer, S. Ozev, and D. J. Sorin, “Reducing
the impact of intra-core process variability with criticality-based resource
allocation and prefetching,” in Proc. Conf. Comput. Frontiers, 2008,
pp. 129-138.

M. Mutyam and N. Vijaykrishnan, “Working with process variation
aware caches,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
vol. 2007, pp. 1152-1157.

R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw, D. Sylvester, and
K. Flautner, ‘“Reconfigurable energy efficient near threshold cache
architectures,” in Proc. 41st IEEE/ACM Int. Symp. Microarchitecture,
Nov. 2008, pp. 459-470.

R. G. Dreslinski, B. Zhai, T. Mudge, D. Blaauw, and D. Sylvester,
“An energy efficient parallel architecture using near threshold operation,”
in Proc. 16th Int. Conf. Parallel Archit. Compilation Techn. (PACT), 2007,
pp. 175-188.

T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu,
“Booster: Reactive core acceleration for mitigating the effects of pro-
cess variation and application imbalance in low-voltage chips,” in Proc.
IEEE 18th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2012,
pp. 27-38.

T. N. Miller, R. Thomas, and R. Teodorescu, “Mitigating the effects of
process variation in ultra-low voltage chip multiprocessors using dual
supply voltages and half-speed units,” IEEE Comput. Arch. Lett., vol. 11,
no. 2, pp. 4548, Jul. 2012.

Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S. Lu, “Improv-
ing cache lifetime reliability at ultra-low voltages,” in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2009, pp. 89-99.
C. Yan and R. Joseph, “Cocoa: Synergistic cache compression and error
correction in capacity sensitive last level caches,” in Proc. Int. Symp.
Memory Syst. (MEMSYS), 2018, pp. 117-128.

A. Ferreron, D. Suarez-Gracia, J. Alastruey-Benede, T. Monreal-Arnal,
and P. Ibanez, “Concertina: Squeezing in cache content to operate at near-
threshold voltage,” IEEE Trans. Comput., vol. 65, no. 3, pp. 755-769,
Mar. 2016.

J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. Gonzélez, “Low
Veemin fault-tolerant cache with highly predictable performance,” in
Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
2009, pp. 111-121.

A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Archipelago: A polymor-
phic cache design for enabling robust near-threshold operation,” in Proc.
IEEE 17th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2011,
pp. 539-550.

T. Mahmood, S. Kim, and S. Hong, “Macho: A failure model-oriented
adaptive cache architecture to enable near-threshold voltage scaling,”
in Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit. (HPCA),
vol. 2013, pp. 532-541.

P. Chiu, C. Celio, K. Asanovié¢, D. Patterson, and B. Nikolié¢, “An out-
of-order RISC-V processor with resilient low-voltage operation in 28 nm
CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2018, pp. 61-62.

N. A. Siddique and A.-H. A. Badawy, “SprBlk cache: Enabling fault
resilience at low voltages,” in Proc. Int. Symp. Memory Syst. (MEMSYS),
2017, pp. 130-140.

P-H. Wang, W.-C. Cheng, Y.-H. Yu, T.-C. Kao, C.-L. Tsai, P.-Y. Chang,
T.-J. Lin, J.-S. Wang, and T.-F. Chen, ‘“Zero-counting and adaptive-
latency cache using a voltage-guardband breakthrough for energy-efficient
operations,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 10,
pp. 969-973, Oct. 2016.

S. M. Khan, A. R. Alameldeen, C. Wilkerson, J. Kulkarni, and
D. A. Jimenez, “Improving multi-core performance using mixed-cell
cache architecture,” in Proc. IEEE 19th Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2013, pp. 119-130.

18569

lEEEACCGSS J. Kong, J. Y. Hur: Near-Threshold L1 Data Cache for Yield Management Under Process Variations

[42] S. Shen, T. Shao, X. Shang, Y. Guo, M. Ling, J. Yang, and L. Shi, “TS
cache: A fast cache with timing-speculation mechanism under low supply
voltages,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 1,
pp. 252-262, Jan. 2020.

[43] M. Ling, X. Shang, S. Shen, T. Shao, and J. Yang, ““‘Lowering the hit laten-
cies of low voltage caches based on the cross-sensing timing speculation
SRAM,” IEEE Access, vol. 7, pp. 111649-111661, 2019.

JAE YOUNG HUR (Member, IEEE) received
the B.S. degree in electronics engineering from
Cheju National University, Cheju, South Korea,
in 1995, the M.S. degrees in electronics engineer-
ing from Sogang University, Seoul, South Korea,
in 1998, and the Munich University of Technology,
Munich, Germany, in 2002, and the Ph.D. degree
in computer engineering from the Delft University

JOONHO KONG (Member, IEEE) received the of Technology, Delft, The Netherlands, in 2011.

B.S. degree in computer science and the M.S. and From 1999 to 2000, he was an Engineer with the
Ph.D. degrees in computer science and engineer- Semlconductor Division, Samsung Electronics Ltd., South Korea, where he

ing from Korea University, in 2007, 2009, and was alsp a Senior Engineer, fr(?m 2908 tq 2016. He is c1.1rrently a Researcher
with Vietnamese-German University, Binh Duong, Vietnam. His research
interests include embedded system architectures, VLSI design, and recon-
figurable computing.

2011, respectively. He is currently an Assistant
Professor with the School of Electronics Engineer-
ing, Kyungpook National University. His research
interests include computer architecture design,
processor cache design, hardware security, and
heterogeneous computing.

18570 VOLUME 8, 2020

	INTRODUCTION
	MOTIVATIONAL STUDY: L1 DATA CACHE YIELD ANALYSIS
	A FRAMEWORK FOR YIELD ANALYSIS
	LATENCY AND YIELD ANALYSIS FOR NEAR-THRESHOLD L1 DATA CACHE

	VARIABLE LATENCY L1 DATA CACHE FOR NEAR-THRESHOLD COMPUTING
	VARIABLE LATENCY L1 DATA CACHE FOR NTC
	OUR ADAPTIVE LINE MIGRATION SCHEME
	MICRO-ARCHITECTURAL SUPPORT AND COST ANALYSIS

	EVALUATION
	EVALUATION FRAMEWORK
	YIELD
	PERFORMANCE
	ENERGY

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	JOONHO KONG
	JAE YOUNG HUR

