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ABSTRACT In wireless sensor networks (WSN), measurements are always corrupted by outliers or impul-
sive noise. Cubature information filtering (CIF) is founded based on minimum mean square error (MMSE)
criterion, which is not applicable to non-Gaussian noise. Hence, a novel robust CIF (RCIF) is derived based
onmaximum correntropy criterion (MCC) to enhance the robustness of state estimation in the local node. For
the information fusion, weighted average consensus (WAC) based distributed RCIF (DRCIF) is founded to
improve the stability of sensor networks and the accuracy of state estimation. The estimation error of DRCIF
is proved to be bounded in mean square. Numerical simulations are provided to evaluate the effectiveness of
proposed algorithms.

INDEX TERMS Robust cubature information filtering, maximum correntropy criterion, Non-Gaussian
measurement noise, distributed state estimation, weighted average consensus.

I. INTRODUCTION
With the development of communication, cloud computing
and embedded technology, wireless sensor technology has
been getting increased attention in recent years [1], andWSN
is gradually applied to navigation, environment monitoring,
and target tracking etc. Based on the difference of information
fusion, WSN can be divided into three groups [2], i.e., cen-
tralized, decentralized and distributed WSN. Normally, data
of all sensor nodes must be transmitted into the centralized
computing node to obtain optimal results of information
fusion in centralized WSN [3]. Nevertheless, limited by the
bandwidth ofWSN and the computing capacity of the central-
ized evaluate node, centralizedWSN is usually not feasible in
practice, especially for the large scale networks. The mode
of single compute node is abandoned by the decentralized
WSN and all sensor nodes in networks are regarded as the
evaluate node [4]. Although the robustness of networks is
enhanced, all senor nodes in decentralized WSN are forced
to keep in touch with each other and the limited network
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bandwidth is still an unsolved problem. Cooperative mech-
anism of neighbor nodes is employed in distributed WSN to
reduce the need of substantial network bandwidth and strong
evaluate capacity in the single node, and then the robust-
ness and stability of networks are enhanced consequently.
Hence, the distributed architecture WSN gradually becomes
the mainstream in using [5].

Distributed state estimation in WSN was investigated
in [6]–[15]. Distributed Kalman filtering (DKF) was derived
in [6], [7] to obtain the optimal estimation. However, DKF is
only applicable to the linear system, and the system model
is nonlinear in real applications. On the basis of DKF,
distributed extended Kalman filtering (DEKF) was designed
for the nonlinear system [8], [9]. Nevertheless, large esti-
mation errors may exist in DEKF due to the first-order
linearization of nonlinear system models [16]. Unscented
transformation was adopted in distributed unscented Kalman
filtering (DUKF) [10], [11] to acquire more accurate estima-
tions than DEKF. But the covariance matrix of DUKFmay be
non-positive in high-dimensional system [17]. To overcome
the drawback of DUKF, distributed cubature Kalman filter-
ing (DCKF) [12], [13] and distributed cubature information
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filtering (DCIF) [14], [15] were founded based on spherical
cubature integration rule. DCIF is the algebraic equivalent
form of DCKF, and both are designed for state estimation
in nonlinear systems. DCIF can provide more stable and
accurate estimations than most Gaussian filters [18], such
as DEKF and DUKF. Moreover, compared with Kalman
filtering, information filtering is more suitable for distributed
information fusion in WSN [19]. In general, the above
methods for distributed state estimation falls into three
types [13]: consensus on estimates (CE), consensus on mea-
surements (CM) and consensus on information (CI). [9]
belongs to the scope of CE, which only focuses on the
information fusion of state estimation in local nodes, but
regardless of the fusion of error covariance [20]. Hence,
the filtering performance of CE basedmethods usually cannot
be enhanced. The information fusion of local measurements
and innovation covariance is included in the CM based meth-
ods [6], [7], [10], [12], but the stability can only be guaranteed
by abundant consensus steps [20]. CI is derived based on
information filtering andWAC basedmethods [11], [14], [15]
belong to the scope of CI. The procedure of information
fusion in CI includes the fusion of information state vec-
tor and information matrix, and the stability of CI is not
affected by the times of consensus steps [14]. The information
fusion in [8], [13] is constructed by combining CM and CI
to obtain more accurate estimations, but the calculation is
increased with the incremental communication bandwidth.
Hence, in terms of stability and precision, CI is more suitable
for information fusion in distributed WSN.

In WSN, outliers or impulse noise that caused by elec-
tromagnetic interference or communication failure usually
cannot be eliminated among measurements. This situation
always results in large errors in estimations or even diver-
gence of state estimator, especially for extremely large mea-
surement outliers. The above methods for distributed state
estimation are founded based on MMSE criterion, which
cannot cope with state evaluation under non-Gaussian noise.
In recent years, MCC based Kalman filtering [21], [22] is
derived to deal with non-Gaussian noise for linear systems.
Correntropy which is sensitive to pulse can be used to survey
the local similarity of measurements. Hence, MCC can be
selected as the cost equation to design corresponding filtering
methods for abnormal measurements. For nonlinear systems,
MCC based unscented Kalman filtering and cubature Kalman
filtering were investigated in [23], [24] and [25], respectively.
However, the designed MCC based nonlinear methods is
only suitable for state estimation in a single sensor node,
but not applicable for state evaluation in distributed WSN.
A distributed cubature information filtering based on MCC is
designed in [26] to cope with measurement outliers in WSN.
Nevertheless, the DCIF cannot deal with state estimation
under extremely large measurement outliers, and estimation
errors of the distributed CIF are not proved to be bounded in
mean square.

In this work, we present a novel method for state estima-
tion under measurement outliers or impulse noise in WSN.

RCIF is designed based on MCC to cope with measurement
outliers or impulse noise in the local sensor node. Then,WAC
based DRCIF is derived for distributed information fusion
in WSN to enhance the accuracy of state estimation and the
stability of WSN. The main contributions of this paper are
given as follows:

1) A novel distributed robust filtering is derived for non-
linear systems to cope with measurement outliers in WSN,
particularly extremely large outliers.

2) The stochastic boundedness of estimation errors of
DRCIF is investigated.

The structure of this paper is given as follows. System
model is presented in section 2. Section 3 provides the deriva-
tion of RCIF. DRCIF is designed in section 4. Estimation
errors of DRCIF are proved to be bounded in section 5.
Results of different simulations are discussed in section 6 to
evaluate the performance of the proposed method. Conclu-
sions are drawn in section 7.

II. SYSTEM MODEL
In this section, nonlinear discrete time system is chosen to
model distributed WSN. The process equation and measure-
ment equation are displayed by the first and second term
in (1), respectively.{

Xk = f (Xk−1)+ ωk−1

Znk = hn(Xk )+ υnk , n = 1, · · · ,N
(1)

where Xk ∈ Rm is the state vector at discrete-time instant k .
N > 2 is the number of sensor nodes, Znk ∈ Rl is the
measurement vector of node n at discrete-time instant k . f (·)
denotes the nonlinear state transition function. hn(·) denotes
the nonlinear measurement function of node n. ωk ∈ Rm

denotes the process noise and υnk ∈ Rl denotes the measure-
ment noise, and they are assumed as uncorrelated Gaussian
noise, namely ωk ∼ N (0,Qk) and υnk ∼ N (0,Rk), where
C ∼ N (0,D) denotes that C is zero-mean Gaussian white
noise with covariance matrix D. The distributed WSN adopts
cooperative mechanism of adjacent nodes. Hence, the undi-
rected graph of distributed WSN is presented as 9 (N, ε),
where N = {1, · · · ,N } denotes the node set. If node j can
accept the data transmitted from node n, then (n, j) ∈ ε. For
node n, Nn = {n| (n, j) ∈ ε} denotes the adjacent nodes set.
If there are no adjacent nodes of node n, then Nn = ∅.

III. ROBUST CIF
This sectionmainly focuses on the derivation of RCIF, includ-
ing the inference of cost function and the algorithm flow.

A. COST FUNCTION OF RCIF
For random variables A and B, correntropy is defined by

V (A,B)=EA,B [κ (A,B)]=
∫ ∫

κ (A,B) dFA,B (A,B) (2)

whereE [�] denotes expectation. κ (�) denotes kernel function.
FA,B (A,B) denotes the joint probability distribution of vari-
ables A and B. The expression of correntropy in discrete time
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is approximated by

V̂ (A,B) = EA,B [κ (A,B)] ≈
1
m

m∑
i=1

κ (Ai,Bi) (3)

where m denotes the dimension of variables A and B. Gaus-
sian kernel is usually selected as kernel function

κσ
(
ei
)
= exp(−

e2i
2σ 2 ) (4)

where ei = Ai−Bi, and σ denotes the bandwidth of Gaussian
kernel. κσ

(
ei
)
reaches the maxima when ei = 0. Then the

cost function of MCC is defined by

CMCC = min

(
m∑
i=1

(
κσ (0)− κσ

(
ei
)))

(5)

To simplify the derivation of cost function for RCIF,
pseudo-measurement matrix is constructed by [27]

Hn
k =

(
Pnxz,k|k−1

)T(
Pk|k−1

)−1
, n = 1, · · · ,N (6)

where Pk|k−1 is the error covariance matrix of predicted
state. Pnxz,k|k−1 is the cross-covariance matrix of predicted
state and predicted measurement. Meanwhile, to compensate
the linearization error of measurement equation, diagonal
matrix µnk = diag

[
µnk,1 µ

n
k,2 · · · µ

n
k,l

]
is introduced. The

linearization of measurement equation in (1) is defined by

Znk = µ
n
kH

n
kXk + υ

n
k , n = 1, · · · ,N (7)

where hn(Xk ) = µnkH
n
kXk . The state estimation of Kalman

based filtering methods is usually equivalent to search the
following minimization problem [28]

X̂k = argmin
(∥∥∥Xk − X̂k|k−1

∥∥∥2
P−1k|k−1

+

∥∥∥Znk − Ẑnk
∥∥∥2
(Rnk)

−1

)
(8)

where X̂k|k−1 and Ẑk denote the predicted state and mea-
surement estimation at discrete-time instant k , respectively.
Rn
k is the error covariance matrix of measurement noise.

For the nonlinear measurement model, linearization error
of measurement equation must be compensated to improve
precision of state estimation and Ẑnk = µ

n
kH

n
kXk ; for the linear

measurement model, Ẑnk = Hn
kXk and µnk = Il×l . Denote the

residual error item

ζ nk =
(
Rn
k
)−1/2 (

µnkH
n
kXk − Znk

)
(9)

where ζ nk =
[
ζ nk,1, . . . , ζ

n
k,l

]T
, l is the dimension of mea-

surement vectors. Cost function in (5) is used to redefine the
minimization problem

X̂k = argmin
(∥∥∥Xk − X̂k|k−1

∥∥∥2
P−1k|k−1

+

l∑
i=1

(
κσ (0)− κσ

(
ζ nk,i
)))

(10)

Take the partial derivative of (10) with respect to Xk ,
one has that

P−1k|k−1
(
Xk−X̂k|k−1

)
−

l∑
i=1

∂κσ
(
ζ nk,i

)
∂ζ nk,i

∂ζ nk,i

∂Xk

=0 (11)

Substitute (4) into (11)(
Pk|k−1

)−1 (Xk − X̂k|k−1

)
+

1
σ 2

D∑
i=1

exp

−
(
ζ nk,i

)2
2σ 2

ζ nk,i ∂ζ nk,i∂Xk
= 0 (12)

Denote

ψi =
1
σ 2 exp

−
(
ζ nk,i

)2
2σ 2

 , i = 1, · · · , l (13)

ψ = diag[ψ1 · · · ψl] (14)

The partial derivative of ζ nk is defined by

∂ζ nk

∂Xk
=
(
Rn
k
)−1/2 (

µnkH
n
k
)

(15)

Substitute (15) and ζ nk into (12), one has that(
Pk|k−1

)−1 (Xk − X̂k|k−1

)
+
(
µnkH

n
k
)T (Rn

k
)−T/2

ψ
(
Rn
k
)−1/2 (

µnkH
n
kXk − Znk

)
= 0

(16)

Eq. (16) satisfies the minimization solution for the cost func-
tion of Kalman based nonlinear filtering, like RCIF, and the
minimization solution is redefined by

X̂k = argmin
(∥∥∥Xk − X̂k|k−1

∥∥∥2
P−1k|k−1

+
∥∥Znk − µnkHn

kXk
∥∥2(

R̄nk
)−1
)

(17)

where R̄n
k is the adjusted covariance matrix of measurement

noise and defined by

R̄n
k =

(
Rn
k
)1/2

ψ−1
(
Rn
k
)T/2 (18)

Since hn(Xk ) = µnkH
n
kXk , the equivalent form of (17) is

written as

X̂k=argmin
(∥∥∥Xk − X̂k|k−1

∥∥∥2
P−1k|k−1

+
∥∥Znk − hn(Xk )

∥∥2
R̄−1k

)
(19)

B. THE GENERAL FORM OF RCIF
For the local node n, the general form of RCIF is summarized
as follows.
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1) TIME UPDATE
For node n, the state estimation X̂n

k−1 and information matrix
Yn
k−1 are supposed known at time instant k − 1. According

to the spherical cubature integration rule, sigma points are
generated by

χ
n,i
k−1 = X̂n

k−1 +

√(
Yn
k−1

)−1
ξ i, i = 1, · · · , 2m (20)

where m is the dimension of state vector X̂n
k .
√(

Yn
k−1

)−1
is a square root matrix defined by

(
Yn
k−1

)−1
=(

Yn
k−1

)−1/2(Yn
k−1

)−T/2.
ξ i =

{ √
mei, i = 1, · · · ,m

−
√
mei, i = n+ 1, · · · , 2m

, where ei denotes

m-dimensional unit vector with ith element being 1.
Then, χn,ik−1 is mapped by the nonlinear state transition

function

χ
n,i
k|k−1 = f

(
χ
n,i
k−1

)
, i = 1, · · · , 2m (21)

Estimate the predicted state X̂n
k|k−1 and its error covariance

matrix Pnk|k−1, respectively, as

X̂n
k|k−1 =

1
2m

2m∑
i=1

χ
n,i
k|k−1 (22)

Pnk|k−1 =
1
2m

2m∑
i=1

(χn,ik|k−1 − X̂n
k|k−1)(χ

n,i
k|k−1 − X̂n

k|k−1)
T

+Qk−1 (23)

Next, the predicted information matrix and predicted infor-
mation state vector are written by

Yn
k|k−1 =

(
Pnk|k−1

)−1
(24)

ŷnk|k−1 = Yn
k|k−1X̂

n
k|k−1 (25)

2) MEASUREMENT UPDATE
Based on (22) and (23), a new set of sigma points is gener-
ated by

χ̄
n,i
k|k−1 = X̂n

k|k−1 +
√
Pnk|k−1ξ

i, i = 1, · · · , 2m (26)

Propagate χ̄n,ik|k−1 through nonlinear measurement function to
generate sigma points of predicted measurement as

ζ
n,i
k|k−1 = h(χ̄n,ik|k−1), i = 1, · · · , 2m (27)

The predicted measurement Ẑnk|k−1 and its error covariance
matrix Pnz,k|k−1 are defined by

Ẑnk|k−1 =
1
2m

2m∑
i=1

ζ
n,i
k|k−1 (28)

Pnz,k|k−1 =
1
2m

2m∑
i=1

(
ζ
n,i
k|k−1 − Ẑnk|k−1

) (
ζ
n,i
k|k−1 − Ẑnk|k−1

)T
+Rn

k (29)

where Rn
k is error covariance matrix of measurement noise

at time instant k . The cross-covariance of predicted state and
measurement is defined by

Pnxz,k|k−1=
1
2m

2m∑
i=1

(
χ
n,i
k|k−1 − X̂n

k|k−1

) (
ζ
n,i
k|k−1 − Ẑnk|k−1

)T
(30)

Error compensation matrix Enk is constructed to offset the
impact of neglecting one-step prediction errors of measure-
ment on precision of state estimation [29], and the expression
of Enk is given by

Enk = Pnz,k|k−1 −Hn
k

(
Yn
k|k−1

)−1(
Hn
k
)T (31)

whereHn
k =

(
Pnxz,k|k−1

)T
Yn
k|k−1 is the pseudo-measurement

matrix. The residual error item in (9) is further written by

ζ̄ nk =
(
Enk
)−1/2 (Ẑnk|k−1 − Znk

)
(32)

where ζ̄ nk =
[
ζ̄ nk,1, · · · , ζ̄

n
k,l

]T
. Eq. (13) and (14) are

updated, respectively, by

ψ∗i =
1
σ 2 exp

−
(
ζ̄ nk,i

)2
2σ 2

 , i = 1, · · · , l (33)

ψ∗ = diag[ψ∗1 · · · ψ
∗
l ] (34)

The error covariance matrix of measurement noise is defined
by

R̄n
k =

(
Enk
)1/2(

ψ∗
)−1(Enk)T/2 (35)

The information contribution equations are defined by{
ink =

(
Hn
k

)T (R̄n
k )
−1
[
Znk − Ẑnk|k−1 +Hn

k X̂
n
k|k−1

]
Ink =

(
Hn
k

)T (R̄n
k )
−1Hn

k

(36)

Then, the information state vector ŷnk and information matrix
Yn
k are given by {

ŷnk = ŷnk|k−1 + ink
Yn
k = Yn

k|k−1 + Ink
(37)

Finally, the state estimation at time instant k is defined by

X̂n
k =

(
Yn
k
)−1ŷnk (38)

Remark 1: In practice, there are extremely large outliers
caused by the failure of measuring instrument. In this situa-
tion, there is no exact solution for R̄n

k when the measurement

Znk → ∞. Nevertheless, the value of
(
R̄n
k

)−1
is the key to

calculate information contribution equations. Hence, denote
R̃n
k =

(
R̄n
k

)−1
, then R̃n

k =
(
Enk
)−T/2

ψ∗
(
Enk
)−1/2. While

Znk → ∞, R̃n
k → 0. Consequently, information contribution

equations ink → 0, Ink → 0 and ŷnk = ŷnk|k−1, Y
n
k = Yn

k|k−1.
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To cope with extremely large outliers of measurement,
(35) and (36) are redefined, respectively, by

R̃n
k =

(
Enk
)−T/2

ψ∗
(
Enk
)−1/2 (39){

ink =
(
Hn
k

)T R̃n
k

[
Znk − Ẑnk|k−1 +Hn

k X̂
n
k|k−1

]
Ink =

(
Hn
k

)T R̃n
kH

n
k

(40)

IV. WAC BASED DISTRIBUTED ROBUST CIF
This section focuses on the distributed information fusion
of distributed WSN. RCIF is employed in the local node
and WAC based RCIF is derived for distributed information
fusion to improve the stability of distributed WSN and the
accuracy of state estimation. Let t be the consensus time.
For node n, information pairs

(
ŷnk ,Y

n
k

)
are supposed already

known at time k . The consensus weighted factor is defined
by πn,j, where j ∈ Nn, πn,j > 0,

∑
j∈Nn

πn,j = 1. The

information pair in different nodes has the same behavior as(
ŷ∗k ,Y

∗
k
)
= lim

t→∞

(
ŷnk,t ,Y

n
k,t
)

(41)

The WAC update of information pairs is defined by
ŷnk,t+1 =

∑
j∈Nn

πn,jŷjk,t

Yn
k,t+1 =

∑
j∈Nn

πn,jYj
k,t

(42)

If R̃n
k = 0, there are extremely large outliers at node n. Then,

node n does not communicate with its adjacent nodes, and
consensus weighted value πn,j is modified for information
fusion in distributed WSN. In other words, node n does not
take part in the consensus step at time k . If R̃n

k 6= 0, let T̄
be the number of WAC iterations, where t ∈ [0, T̄ − 1]. For

node n, the initial information pair is given by
{

ŷnk,0 = ŷnk
Yn
k,0 = Yn

k
.

Then, the updated information pair is
(
ŷn
k,T̄
,Yn

k,T̄

)
after T̄

consensus iteration. Finally, the updated state estimation X̂n
k

at time instant k after the information fusion is given by

X̂n
k =

(
Yn
k,T̄

)−1
ŷn
k,T̄

(43)

The general form of DRCIF is summarized in Table 1.

V. STOCHASTIC BOUNDEDNESS OF ESTIMATION ERRORS
Whether the estimation error is bounded or not under
mean-square error is a criterion for the performance
of DRCIF. Pseudo-process matrix 8n

k|k−1 and pseudo-
measurement matrix Hn

k are constructed to simplify the
derivation process of error boundedness [11], [14], [27].
Diagonal matrix λnk and µ

n
k are introduced to compensate the

linear error of process function and measurement function,
respectively. µnk and Hn

k have been given in (6) and (7).
λnk and 8

n
k|k−1 are defined by
8n
k|k−1 =

(
Pnxk−1,xk|k−1

)T
Yn
k−1

λnk = diag
[
λnk,1 λnk,2 · · · λnk,m

] (44)

TABLE 1. Distributed robust cubature information filtering.

where Pnxk−1,xk|k−1=
1
2m

2m∑
i=1

(χn,ik−1−X̂
n
k−1)(χ

n,i
k|k−1−X̂

n
k|k−1)

T
.

m is the dimension of state vector. The systemmodel is further
written by{

Xk = λ
n
k−18

n
k|k−1Xk−1 + ωk−1

Znk = µ
n
kH

n
kXk + υ

n
k ,

n = 1, 2, · · · ,N

(45)

Based on the linear system model, the predicted information
matrix and information contribution equations are given by

Yn
k|k−1 =

(
λnk−18

n
k|k−1

(
Yn
k−1

)−1(
λnk−18

n
k|k−1

)T
+Qn

k−1

)−1
ink =

(
µnkH

n
k

)T R̃n
kZ

n
k

Ink =
(
µnkH

n
k

)T R̃n
kβ

n
kH

n
k

(46)

where Yn
k|k−1 =

(
Pnk|k−1

)−1
, R̃n

k is defined in (39). Substi-
tute (6) into (30) to obtain the equivalent form of compensa-
tion matrix as

Enk = Pnz,k|k−1 −Hn
kP

n
k|k−1

(
Hn
k
)T

= Pnz,k|k−1 −
(
Pnxz,k|k−1

)T
Yn
k|k−1P

n
k|k−1
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×Yn
k|k−1P

n
xz,k|k−1

= Pnz,k|k−1 −
(
Pnxz,k|k−1

)T
Yn
k|k−1P

n
xz,k|k−1

= µnkH
n
kP

n
k|k−1

(
µnkH

n
k
)T
+ Rn

k

−

(
Pnk|k−1

(
µnkH

n
k
)T)TYn

k|k−1P
n
k|k−1

(
µnkH

n
k
)T

= µnkH
n
kP

n
k|k−1

(
µnkH

n
k
)T
+ Rn

k − µ
n
kH

n
kP

n
k|k−1

(
µnkH

n
k
)T

= Rn
k (47)

where Rn
k is the initial covariance matrix of measurement

noise.
Lemma 1:Anecessary and sufficient condition for positive

matrix A is that there is a nonsingular matrix U which meets
the equality A = UTU.
Lemma 2: If matrix A is positive, there is a real number

A
−
> 0 which meets the inequality A > A

−
Il , where l is the

dimension of A.
Lemma 3 ([27]): Suppose that εk is a stochastic process.

If a stochastic function V (εk), real number vmin, vmax > 0,
γ > 0 and 0 < η < 1 exist such that{

vmin‖εk‖
2 6 V (εk) 6 vmax‖εk‖

2

E {V (εk) |εk−1} − V (εk−1) 6 γ − ηV (εk−1)
(48)

are fulfilled for all time instant k . Then the stochastic process
is exponentially bounded in mean square, that is

E
{
‖εk‖

2
}
6
vmax

vmin
E
{
‖ε0‖

2
}
(1− η)k+

µ

vmin

k−1∑
i=1

(1− η)i

(49)

Lemma 4 ([30]): If integration N > 2, positive matrices
M1,M2, · · ·MN and vectors M1,M2, · · ·MN meet the fol-
lowing inequality(

N∑
i=1

Mivi

)T( N∑
i=1

Mi

)−1 ( N∑
i=1

Mivi

)
6

N∑
i=1

(vi)TMivi

(50)

Assumption 1:Weight matrix π T̄ =
(
π
n,j
T̄

)
m×m

of WAC is
supposed row stochastic and primitive at each time instant k ,
which can make sure the effectiveness of weight matrix.
Assumption 2: For time instant k > 0, there are real

numbers λ̄, φ̄, µ̄, H̄ 6= 0 and λ
−
, φ
−
, µ
−
,H
−
6= 0. Then the

following inequalities are defined by

λ
−

2Im 6 λnk (λ
n
k )
T 6 λ̄2Im

φ
−

2Im 6 8n
k|k−1

(
8n
k|k−1

)T
6 φ̄2Im

µ
−

2Il 6 µnk (µ
n
k )
T 6 µ̄2Il

H
−

2Il 6 Hn
k (H

n
k )
T 6 H̄2Il

(51)

Assumption 3: For real number q̄ > q
−
> 0, r̄ > r

−
> 0,

pmax > pmin > 0, p̄ > p
−
> 0, the following inequalities are

fulfilled 

q
−
Im 6 Qn

k 6 q̄Im

r
−
Il 6 Rn

k 6 r̄Il

pmin 6 pn 6 pmax

p
−
Im 6 Pnk|k−1 6 p̄Im

(52)

Remark 2: The following proof is provided to verify the
boundedness of estimation errors for the proposed DRCIF
according to Lemma 3. Although the initial covariance of
measurement noise is supposed to be bounded, the bound-
edness of R̃n

k is unknown. Hence R̃
n
k must be firstly proved to

be bounded, which is a key element to the course of the proof.
Proof: First of all, the local node that generating

extremely large outliers of measurement does not take part
in the process of information fusion, and the positive defini-
tion of R̄n

k for other nodes must be proved. Kernel function
ψ∗ = (ψ∗)1/2(ψ∗)T/2 for MCC is a positive matrix. Substi-
tute (47) into (35) and R̄n

k is rewritten by

R̄n
k =

(
Rn
k
)1/2(

ψ∗
)−1(Rn

k
)T/2

=
(
Rn
k
)1/2((

ψ∗
)1/2(

ψ∗
)T/2)−1(Rn

k
)T/2

=

((
Rn
k
)1/2(

ψ∗
)−T/2) ((

ψ∗
)−1/2(Rn

k
)T/2) (53)

Denote U = (ψ∗)−1/2
(
Rn
k

)T/2. Because of the positive
definition of ψ∗ and Rn

k , U is a positive matrix. Then, matrix
R̄n
k = UTU is positive according to Lemma 1. Based on

Lemma 2, there is a real number r
−

′ > 0 which meets the

inequality R̄n
k > r

−

′Il , and then R̃n
k =

(
R̄n
k

)−1
6
(
r
−

′

)−1
Il .

Secondly, the stochastic boundedness of estimation errors
is proved according to Lemma 3. For node n, the pre-
dicted error x̃nk|k−1 and estimation error x̃nk are defined by
x̃nk|k−1 = xk − x̂nk|k−1 and x̃nk = xk − x̂nk , respectively. Let

x̃k|k−1 = col
(
x̃nk|k−1, n ∈ N

)
be the column set of x̃nk|k−1

and x̃k = col
(
x̃nk , n ∈ N

)
be the column set of x̃nk . Let

p =
(
p1, · · · , pn, · · · , pN

)T
be the Perron-Frobenius left

eigenvector of weight matrix π T̄ . pn is positive according to
assumption 3. Vector pmeets the equality pTπ T̄ = pT , which
equals to

∑
j∈N

pnπn,j
T̄
= pn. Construct a stochastic process

through x̃nk|k−1

V
(
x̃nk|k−1

)
=

∑
n∈N

pn
(
x̃nk|k−1

)T
Yn
k|k−1x̃

n
k|k−1 (54)

whereYn
k|k−1 is given in (46). According to assumption 2 and

assumption 3, the stochastic bound of Yn
k|k−1 is defined by

(
λ̄2φ̄2p̄+ q̄

)−1
Im 6 Yn

k|k−1 6

(
λ
−

2φ
−

2p
−
+ q
−

)−1
Im (55)
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Denote
(
λ̄2φ̄2p̄+ q̄

)−1
= Y

−
and

(
λ
−

2φ
−

2p
−
+ q
−

)−1
= Ȳ ,

(55) is further written by

Y
−
Im 6 Yn

k|k−1 6 Ȳ Im (56)

Then, the stochastic bound for V
(
x̃nk|k−1

)
is

pminY−

∥∥∥x̃nk|k−1∥∥∥2 6 V
(
x̃nk|k−1

)
6 pmaxȲ

∥∥∥x̃nk|k−1∥∥∥2 (57)

which meets the first term of (48) on application of Lemma 3.
To prove the second term of (48), the predicted error x̃nk|k−1
is transformed into

x̃nk|k−1 = xk − x̂nk|k−1

= λnk−18
n
k|k−1

(
xk−1 − x̂nk−1

)
+ ωnk−1

= λnk−18
n
k|k−1

∑
j∈N

π
n,j
T̄

[(
Yn
k−1

)−1Yj
k−1|k−2x̃

j
k−1|k−2

−
(
Yn
k−1

)−1(
µ
j
k−1H

j
k−1

)T
R̃n
kυ

j
k−1

]
+ ωnk−1

=

∑
j∈N

ϒ
n,j
k−1x̃

n
k−1|k−2 +

∑
j∈N

4
n,j
k−1υ

n
k−1+ω

n
k−1 (58)

whereϒ
n,j
k−1 = λ

n
k−1π

n,j
T̄
8n
k|k−1

(
Yn
k−1

)−1Yj
k−1|k−2

4
n,j
k−1 = −π

n,j
T̄
λnk−18

n
k|k−1

(
Yn
k−1

)−1(
µ
j
k−1H

j
k−1

)T
R̃n
k

(59)

Insert (59) into (54) and take conditional expectation
of (54), one can obtain

E
{
V
(
x̃k|k−1

)
|x̃k−1|k−2

}
= 3x

k−1 +3
ξ
k−1 +3

ω
k−1 (60)

where

3x
k−1 = E


∑
n∈N

pn

∑
j∈N

ϒ
n,j
k−1x̃

j
k−1|k−2

T

Yn
k|k−1

×

∑
j∈N

ϒ
n,j
k−1x̃

j
k−1|k−2

∣∣∣x̃k−1|k−2


3
ξ
k−1 = E


∑
n∈N

pn

∑
j∈N

4
n,j
k−1υ

j
k−1

T

Yn
k|k−1

×

∑
j∈N

4
n,j
k−1υ

j
k−1

∣∣∣x̃k−1|k−2


3ωk−1 = E

{∑
n∈N

pn
(
ωnk−1

)TYn
k|k−1

(
ωnk−1

) ∣∣∣x̃k−1|k−2
}

(61)

The upper bound of 3x
k−1 is considered. Denote an instant

value 0 < κ̄ < 1 and Yn
k|k−1 meets the following

inequality [14]

Yn
k|k−1

=

(
λnk−18

n
k|k−1

(
Yn
k−1

)−1(
λnk−18

n
k|k−1

)T
+Qn

k−1

)−1
6 κ̄

(
λnk−18

n
k|k−1

)−T
Yn
k−1

(
λnk−18

n
k|k−1

)−1
(62)

Substitute (62) into the first term of (61), one can obtain

3x
k−1

6 κ̄E

{∑
n∈N

pn

×

∑
j∈N

ϒ
n,j
k−1x̃

j
k−1|k−2

T(
λnk−18

n
k|k−1

)−T
Yn
k−1

×

(
λnk−18

n
k|k−1

) ∑
j∈N

ϒ
n,j
k−1x̃

j
k−1|k−2

∣∣∣x̃k−1|k−2


= κ̄E


∑
n∈N

pn

∑
j∈N

π
n,j
T̄
Yj
k−1|k−2x̃

j
k−1|k−2

T

×
(
Yn
k−1

)−1∑
j∈N

π
n,j
T̄
Yj
k−1|k−2x̃

j
k−1|k−2

 ∣∣∣x̃k−1|k−2 }
(63)

Since Yn
k−1 >

∑
j∈N

π
n,j
T̄
Yj
k−1|k−2, (63) is further written by

3x
k−1

6 κ̄E

{∑
n∈N

pn

×

∑
j∈N

π
n,j
T̄
Yj
k−1|k−2x̃

j
k−1|k−2

T∑
j∈N

π
n,j
T̄
Yj
k−1|k−2

−1

×

∑
j∈N

π
n,j
T̄
Yj
k−1|k−2x̃

j
k−1|k−2

∣∣∣x̃k−1|k−2
 (64)

According to Lemma 4, the upper bound of 3x
k−1 is defined

by

3x
k−1 6 κ̄E

∑
n∈N

pn
∑
j∈N

π
n,j
T̄

(
x̃jk−1|k−2

)T
Yj
k−1|k−2

×

(
x̃jk−1|k−2

) ∣∣∣x̃k−1|k−2 }
= κ̄E

∑
j∈N

pj
(
x̃jk−1|k−2

)T
Yj
k−1|k−2

×

(
x̃jk−1|k−2

) ∣∣∣x̃k−1|k−2 }
= κ̄V

(
x̃k−1|k−2

)
(65)
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Then, the upper bound of 3ξk−1 +3
ω
k−1 is proved.

3
ξ
k−1 +3

ω
k−1

=E


∑
n∈N

pn


∑
j∈N

4
n,j
k−1υ

j
k−1

T

Yn
k|k−1

∑
j∈N

4
n,j
k−1υ

j
k−1


+
(
ωnk−1

)TYn
k|k−1

(
ωnk−1

) ∣∣∣x̃k−1|k−2


6 Ȳ E


∑
n∈N

pn


∑
j∈N

4
n,j
k−1υ

j
k−1

T ∑
j∈N

4
n,j
k−1υ

j
k−1


+
(
ωnk−1

)T (
ωnk−1

)] ∣∣∣x̃k−1|k−2


= Ȳ E

∑
n∈N

pn

∑
j∈N

(
4
n,j
k−1υ

j
k−1

)T (
4
n,j
k−1υ

j
k−1

)

+
(
ωnk−1

)T (
ωnk−1

)] ∣∣∣x̃k−1|k−2


= Ȳ E

∑
n∈N

pn

tr
∑
j∈N

(
4
n,j
k−1υ

j
k−1

)T (
4
n,j
k−1υ

j
k−1

)
+ tr

((
ωnk−1

)T (
ωnk−1

))] ∣∣∣x̃k−1|k−2


= Ȳ E

∑
n∈N

pn

∑
j∈N

tr
((
4
n,j
k−1υ

j
k−1

)T (
4
n,j
k−1υ

j
k−1

))

+ tr
((
ωnk−1

)T (
ωnk−1

))] ∣∣∣x̃k−1|k−2


= Ȳ

∑
n∈N

pn

∑
j∈N

tr
((
4
n,j
k−1

)T (
4
n,j
k−1R

n
k−1

))

+ tr
(
Qn
k−1

)] ∣∣∣x̃k−1|k−2
 (66)

According to assumption 2 and assumption 3 and substitute
4
n,j
k−1 of (59) into (66), the upper bound of 3ξk−1 + 3

ω
k−1 is

defined by

3
ξ
k−1 +3

ω
k−1

6 Ȳ
∑
n∈N

pn

∑
j∈N

(
π
n,j
T̄

)2 λ̄2φ̄2p̄2µ̄2H̄2r̄ l(
r
−

′

)2 + q̄m

 , γ
(67)

Combine (65) and (67), one can obtain

E
{
V
(
x̃k|k−1

)
|x̃k−1|k−2

}
− V

(
x̃k−1|k−2

)
6 γ − ηV

(
x̃k−1|k−2

)
(68)

where η = 1− κ̄ , 0 < η < 1. Eq. (68) meets the second con-
dition of (48) on the application of Lemma 3. The predicted
x̃k|k−1 is proved to be exponentially bounded in mean square.
Finally, the exponential bound of estimation error x̃nk is

proved. x̃nk and x̃
n
k+1|k meet the following equality

x̃nk+1|k = λ
n
k8

n
k+1|k

(
xk − x̂nk

)
+ ωnk (69)

Calculate the expectation of (69) and the following inequality
is fulfilled.

E
(∥∥x̃nk∥∥2) 6 (

λ
−
φ
−

)−2 (
E
(∥∥∥x̃nk+1|k∥∥∥2)− E (∥∥ωnk∥∥2))

(70)

Employing the same technique as before, ωnk still can be
proved exponentially bounded in mean square. Therefore,
x̃nk is exponentially bounded in mean square. The proof is
completed.
Remark 3: To simplify the proof process, we select lin-

earization approximation [11], [14], [31] of nonlinear sys-
tem models to analyse the boundedness of estimation errors.
Although the compensation vectors λnk and µnk is related to
nonlinear system model in (1), it is unnecessary to obtain the
exact magnitude of λnk and µ

n
k .

VI. PERFORMANCE EVALUATION AND DISCUSSION
To evaluate the effectiveness of the proposed algorithm,
MCC based unscented Kalman filtering (MCC-UKF) [23],
MCC based cubature Kalman filtering (MCC-CKF) [25]
and WAC based distributed cubature information filtering
(DCIF) [14] are selected for comparison analysis. Gener-
ally, the Gaussian kernel is selected as Gσ = exp(− e2

2σ 2
)

in MCC-UKF and MCC-CKF, but in this paper, the kernel
function is derived as ψ = 1

σ 2
exp

(
−

e2

2σ 2

)
. To verify the

impact of kernel bandwidth as coefficients on the accuracy
of state estimation, a new DRCIF (DRCIF1) is designed with
kernel function ψ = exp

(
−

e2

2σ 2

)
and the algorithm flow of

DRCIF1 is still consistent with DRCIF.
The coordinated turn (CT) model [14] is chosen in the

following simulation and a fixed angular speed γ of turning is
employed for maneuvering target in X/Y plane. The process
equation is given by

Xk =


1 0

sin(γT )
γ

−(1− cos(γT ))
γ

0 1
1− cos(γT )

γ

sin(γT )
γ

0 0 cos(γT ) − sin(γT )
0 0 sin(γT ) cos(γT )

Xk−1

+


T 2

2
0

0
T 2

2
T 0
0 T

ωk−1 (71)

whereXk =
[
pk,x , pk,y, ṗk,x , ṗk,y

]T is the state vector at time
instant k . pk,x and pk,y denote the target position. ṗk,x and ṗk,y

20210 VOLUME 8, 2020



J. Zhang et al.: Distributed Robust CIF for Measurement Outliers in WSN

denote the target speed. ωk ∼ N (0,Qk) is the process noise
with zero-mean and covariance Qk . T is the sampling period
of the system.
The measurement equation for distributedWSN is defined by

Znk =
[
ρnk
θnk

]
=


√(

pk,x − pnx
)2
+

(
pk,y − pny

)2
arc tan

(pk,y − pny
pk,x − pnx

)
+ υnk

(72)

where Znk is the measurement vector in sensor node n at time

instant k .
[
pnx , p

n
y

]T
denotes the position of node n. ρnk and

θnk denote the distance and angle from the target to node
n, respectively. υnk ∼ N [0,Rk ] is the measurement noise
with zero-mean and covariance Rk . Sensor nodes in dis-
tributed WSN are employed at the position of (20, 0), (80, 0),
(140, 0), (200, 0), (10, 40), (70, 40), (130, 40), (190, 40),
(0, 80), (60, 80), (120, 80) and (180, 80). The unit of position
is m. The topology map of distributed WSN is displayed
in Fig. 1. According to [28], [30], [31], the weighted matrix
is defined through Metropolis weight rule.

πn,j =


1/
(
1+max

{
dn, dj

})
, if (n, j) ∈ ε

1−
∑
(n,j)∈ε

πn,j, if n = j

0, otherwise

(73)

where dj is the number of jth node′s neighbours.

FIGURE 1. The topology map of distributed WSN.

In this paper, we mainly investigate the problem of state
estimation under measurement outliers or impulse noise,
which belongs to the scope of non-Gaussian measurement
noise. Hence, three different scenarios of state estimation
are designed: a) state estimation under Gaussian noise and
impulse noise; b) state estimation under Gaussian mixture
noise with heavy-tail property; c) state estimation under
Gaussian mixture noise and impulse noise. Sensor nodes
are equivalent to each other. MCC-UKF and MCC-CKF are
designed for state estimation on a single sensor node, but
DCIF, DRCIF1 and DRCIF are derived for state evaluation
in distribution WSN. Therefore, the state estimation of node
5 is selected for comparison analysis and 100 independent
Mentos Carlo is selected for following simulations. Then root
mean square error (RMSE) and average root mean square

error (ARMSE) are chosen to verify the effectiveness of
DRCIF. RMSE and ARMSE of position are defined, respec-
tively, as

RMSEnp,k

=

√√√√ 1
M

M∑
i=1

((
pik,x − p̂

i
k,x

)2
+

(
pik,y − p̂

i
k,y

)2)
(74)

ARMSEnp,K

=

√√√√ 1
M

M∑
i=1

1
K

K∑
k=1

((
pik,x − p̂

i
k,x

)2
+

(
pik,y − p̂

i
k,y

)2)
(75)

where the variable M is the number of Monte Carlo runs.[
pk,x , pk,y

]
and

[
p̂k,x , p̂k,y

]
stand for the real position and

estimated position of the target at time instant k , respectively.
K is the simulation period. Initial parameters for filtering
algorithms are given as follows. The number of consensus
steps is T̄ = 5 for WAC based algorithms. The simulation
period is K = 100s. The initial state vector of the target
is X0 =

[
100m 60m 3m/s 1m/s

]T and its corresponding
covariance matrix is P0 = diag[25, 16, 0.25, 0.25]. The
angular speed of the target is γ = 2rad/s. Covariance
matrices of process noise and measurement noise are
Qk = 0.01 ∗ I2 and Rk = diag[ 0.25 4 ∗ 10−4 ], respectively.

A. STATE ESTIMATION UNDER GAUSSIAN NOISE AND
IMPULSE NOISE
Impulse noise is injected into measurements at different
time instants of 19s, 26s, 27s, 31s, 33s, 57s, 65s, 69s,
87s and 97s with imparity values of ( 175.1m 1.8rad )T ,
( 60.5m 0.2rad )T , ( 25.8m 0.3rad )T , ( 197.8m 1.4rad )T ,
( 75.1m 0.1rad )T , ( 65.1m 1.5rad )T , ( 5m 0.5rad )T ,
(176.3m 0.8rad)T , (93.4m 0.9rad)T and (128.7m 0.7rad)T ,
respectively. The parameter of Gaussian noise is the same
with the initial condition. Different position ARMSEs of
DRCIF are presented in Table 2 under various kernel band-
width σ , values of which are 1, 5, 10 and 100, respectively.
Meanwhile, position ARMSEs of MCC-UKF, MCC-CKF,
and DRCIF1 are also displayed for comparison analy-
sis. Position RMSEs of related algorithms are presented
in figure 2.

From Table 2, although kernel functions are equivalent
to each other among MCC-UKF, MCC-CKF and DRCIF1,
ARMSE of DRCIF1 is better than the corresponding values
of MCC-UKF and MCC-CKF when σ = 1, 5, 10 due to the
WAC based distributed fusion method for state estimation.
However, while σ = 100, ARMSE of DRCIF1 is larger than
the corresponding values of MCC-UKF and MCC-CKF, and
we can get that kernel bandwidth with large values is useless
to improve the precision of state estimation. The inference
is also verified by the trend of ARMSE for MCC-UKF and
MCC-CKF. DRCIF acquires better ARMSE than DRCIF1,
and one point is obvious that kernel function with coefficients
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FIGURE 2. Position RMSE under Gaussian noise and impulse noise.

TABLE 2. Position ARMSE for various σ under Gaussian noise and
impulse noise.

can obtain better accuracy of state estimation than kernel
function without factors. ARMSE of DRCIF decreases with
the increase of kernel bandwidth, but the improvement of
precision is limited. Hence, 1 < σ < 5 is suggested for the
related algorithms and σ = 3 is selected for the following
simulations.

MCC-UKF and MCC-CKF acquire the similar RMSE
from Fig. 2. RMSE of DCIF is divergent after 19s since
DCIF is founded based on MMSE criterion which can-
not cope with state estimation under measurement out-
liers. Benefited from the distributed fusion method based on
WAC, DRCIF1 obtains better RMSE than MCC-UKF and
MCC-CKF. RMSE of DRCIF is better than DRCIF1 on the
account of the added coefficient in kernel function. We can
get that DRCIF is more applicable to state estimation under
Gaussian noise and impulse noise than the other related
algorithms.

B. STATE ESTIMATION UNDER GAUSSIAN MIXTURE NOISE
Gaussian mixture noise with heavy-tail property is consid-
ered to evaluate the performance of the proposed robust
algorithm, and the definition of measurement noise is
given by

υnk ∼ 0.8N
(
0, diag[ 0.25 4 ∗ 10−4 ]

)
+ 0.2N

(
0, diag[ 1 1 ]

)
where 0.8 and 0.2 are probabilities. RMSEs of related algo-
rithms are displayed in Fig. 3.

From Fig. 3, MCC-UKF and MCC-CKF obtain the worst
RMSEs since the information fusion of state estimation is
not contained in both algorithms. Although the MCC based
robust method is not included, RMSE of DCIF is similar to

FIGURE 3. Position RMSE under Gaussian mixture noise.

DRCIF1 on account of WAC based information fusion meth-
ods. Another point is obvious that the method of information
fusion can depress the impact of Gaussian mixture noise on
state estimation. Since the best RMSE is obtained, DRCIF
is more suitable for state estimation under Gaussian mixture
noise than the other related algorithms.

C. STATE ESTIMATION UNDER GAUSSIAN MIXTURE NOISE
AND IMPULSE NOISE
In this section, parameters setting of Gaussian mixture noise
are consistent with the related items in section 4.2, and the
setting of impulse noise stays same with section 4.1. The
position RMSEs of related algorithms are displayed in Fig. 4.

FIGURE 4. Position RMSE under Gaussian mixture noise and impulse
noise.

In Fig. 4, RMSE of DCIF is still divergent after 19s due to
the impact of measurement outliers on state estimation. Ben-
efited from WAC based distributed fusion method, contained
robust prosperity and added coefficients in kernel function,
DRCIF obtains the best RMSE among the related algorithms.
Because of incorporated information fusion process, RMSE
ofDRCIF1 is better thanMCC-UKF andMCC-CKF after 15s
when the state estimator is stable. Finally, DRCIF is more
applicable to state estimation under non-Gaussian measure-
ment noise than the other related algorithms.
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VII. CONCLUSION
In this paper, a distributed robust method is designed for non-
linear system to cope with state estimation under measure-
ment outliers or impulse noise in WSN. In the local sensor
node, MCC based RCIF is derived to deal with measure-
ment outliers. Meanwhile, covariance matrix of measurement
noise is modified to restrain the filtering divergence caused
by extremely large outliers. For the distributed WSN, WAC
based DRCIF is designed for information fusion to improve
the accuracy of state estimation and the stability of distributed
networks. Particularly, WAC based information fusion meth-
ods belong to the scope of CI, the stability of which can be
guaranteed by any times of consensus step (even a single
step). Then, the evaluated error of DRCIF is proved to be
bounded in mean square. Furthermore, the added coefficient
of kernel function in DRCIF can improve the precision of
state estimation, which is verified by numerical simulations.
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