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ABSTRACT This work investigates the stability of Halanay inequality. Some novel results are obtained by
means of constructing an auxiliary differential equation. Some previous works are improved and extended.
After that, the obtained results are applied to investigate the stability of neural networks with time-varying
and distributed delays. At last, some examples along with numerical simulations are presented to illustrate
the validity of the theoretical results.
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I. INTRODUCTION
In recent years, dynamical systems have come to play a more
and more important role in natural scientific, social scientific
and engineering. The main reason for this is that it allows
us to model some kinds of natural scientific, social scientific
and engineering problems appropriately. Due to their great
applications, dynamical systems have been developed very
fast, see for example [1]–[30].

In many real systems including telecommunication sys-
tems, manufacturing systems and network control systems,
time delays often occur due to the limitation of transmission
or switching speed. It is well known that the delay may
cause divergence, oscillation, instability and chaos in sys-
tems. Therefore, it is necessary to consider the influence of
the time delays in the investigation of these systems, and lots
of related literatures have been published [8]–[30].

In the study of the stability of time-delay systems, one
excellent technique is Lyapunov’s method (see for exam-
ple [9], [11], [12], [17]–[19], [22], [23], [29]). The key to
Lyapunov’s method is to construct a suitable Lyapunov func-
tion or functional. However, finding a suitable Lyapunov
function or functional is not an easy case. On the other
hand, many kinds of differential inequalities such as Halanay
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inequality and its generalisations can also be applied to study
the stability of time-delay systems (see for instance [8],
[10], [13]–[16], [24]–[27], [30]). Especially, [10], [13]–[16],
[24]–[26] the authors proposed many kinds of generalised
Halanay inequalities to consider the stability of neural net-
works (which can be seen as a multidimensional differential
equation) with delays.

We mention here that the existing works [8], [10], [14],
[16], [24]–[27], [30] all required some similar conditions, i.e.,

D+u(t) ≤ −a(t)u(t)+ b(t) sup
t−τ (t)≤s≤t

u(s) (1)

and

a(t) > 0, b(t) ≥ 0, − a(t)+ b(t) < 0 for t ≥ 0.

In [13], the authors studied the above inequality and obtained
some novel results, i.e., a(t) and b(t) can be negative in some
interval. However, the authors required the boundedness of
a(t), b(t) and τ (t). It should be pointed out that when−a(t)+
b(t) has no upper bound or lower bound, for example:

a(t) = 0.5t − t cos t and b(t) = e−4t ,

then the existing techniques can’t be used to deal with this
case. The main difficulty is that a(t) sometimes is positive
and sometimes is negative, the usual method characteristic
equation is no longer applicable.
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Inspired by the above discussion, we also investigate the
stability of Halanay inequality (1). The major contributions
of this work are as follows. (i) The uniform positiveness of
coefficient function, and the boundedness of coefficient and
delay functions are no longer required. (ii) The decay rate
of inequality (1) is considered. (iii) The results in [13] are
improved and extended.

The contents of this paper are organised as follows.
In section 2, the main theoretical results and their proof are
provided. In section 3, the theoretical results are applied to
investigate the stability of neural networks with time-varying
and distributed delays. In section 4, some examples along
with their numerical simulations are presented to illustrate the
validity of the theoretical results.
Natation: Throughout this paper, R = (−∞,+∞), Jn =
{1, 2, . . . , n} andD+ stands for Dini derivative. For a function
b(t) define b+(t) := max{0, b(t)}. BC((−∞, 0],R) is the
space of all bounded continuous functions. Rn stands for the
n-dimensional Euclidean space. AT denotes the transpose of
a vector or a matrix A. | · | denotes the Euclidean vector norm
in Rn. Let ‖y‖ := max

i∈Jn
|yi|, where y = (y1, . . . , yn)T ∈ Rn.

C := C([−τ, 0];Rn) stands for the space of all continuous
functions ψ from [−τ, 0] into Rn equipped with the norm
‖ψ‖C := sup

θ∈[−τ,0]
‖ψ(θ )‖. For a function F(t) define on

[0,+∞), we complementally define

F∗(t) =

{
F(t), t ≥ 0,
0, t < 0.

II. MAIN RESULTS
The main contribution of this section is to investigate the
stability of the following Halanay inequality:

D+u(t) ≤ −a(t)u(t)+ b(t) sup
t−τ (t)≤s≤t

u(s),

t ∈ [0,+∞),
u(t) = ϕ(t) ∈ BC((−∞, 0],R), t ∈ (−∞, 0]

(2)

where u(t) ≥ 0 for t ∈ R, a(t) and b(t) are two scalar
functions and τ (t) ≥ 0 is the delay function.
Remark 1 Without loss of generality, if delay function is

bounded by a constant τ , we define u(t) = ϕ(−τ ) for t < −τ ,
then system (2) is well defined.
Theorem 1: If b(t) ≥ 0 and

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)]dv = −∞, (3)

where

h(t) = e
sup

t−τ (t)≤s≤t

∫ t
s a
∗(v)dv

.

Then,

u(t)→ 0 as t →+∞.

In addition, if there exists a nonnegative function γ (t) such
that

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)+ γ (v)]dv = −∞, (4)

then, there is a constant K ∈ [1,+∞) such that

u(t) ≤ K sup
θ≤0
|ϕ(θ )|e−

∫ t
0 γ (s)ds, t ∈ [0,+∞).

Proof: Firstly, we show that

u(t) ≤ sup
θ≤0
|ϕ(θ )|e

∫ t
0 [−a

∗(v)+b∗(v)h(v)]dv, t ∈ R. (5)

In order to prove the above inequality, we need to construct
the following differential equation

dyε(t)
dt
= [−a(t)+ b(t)h(t)]y(t)dt, t ∈ [0,+∞),

yε(t) = (1+ ε) sup
θ≤0
|ϕ(θ )|, t ∈ (−∞, 0],

(6)

where ε is an arbitrary positive constant. Obviously,

yε(t) = (1+ ε) sup
θ≤0
|ϕ(θ )|e

∫ t
0 [−a

∗(v)+b∗(v)h(v)]dv, t ∈ R,

and

u(t) < yε(t), t ∈ (−∞, 0].

Suppose there exists a t∗ > 0 such that

u(t) < yε(t), t ∈ (−∞, t∗)

and

u(t∗) = yε(t∗).

By the nonnegativity of b∗(t) and h(t), we have

yε(t − τ (t)) = (1+ ε) sup
θ≤0
|ϕ(θ )|e

∫ t−τ (t)
0 [−a∗(v)+b∗(v)h(v)]dv

= (1+ ε) sup
θ≤0
|ϕ(θ )|e

∫ t
0 [−a

∗(v)+b∗(v)h(v)]dv

× e
∫ t
t−τ (t)[a

∗(v)−b∗(v)h(v)]dv

≤ yε(t)e
∫ t
t−τ (t) a

∗(v)dv
.

Then we have

sup
t−τ (t)≤s≤t

yε(s) ≤ yε(t)h(t), t ∈ [0,+∞).

By the above inequality, we get(
D+u(t)−

dyε(t)
dt

)∣∣∣∣
t=t∗

≤ −a(t∗)[u(t∗)− yε(t∗)]

+ b(t∗)[ sup
t∗−τ (t∗)≤s≤t∗

u(s)− yε(t∗)h(t∗)]

≤ −a(t∗)[u(t∗)− yε(t∗)]

+ b(t∗) sup
t∗−τ (t∗)≤s≤t∗

[u(s)− yε(s)] = 0,

which is a contradiction. This means that

u(t) < yε(t), t ∈ R. (7)

By letting ε→ 0+ on both sides of (7), we derive

u(t) ≤ sup
θ≤0
|ϕ(θ )|e

∫ t
0 [−a

∗(v)+b∗(v)h(v)]dv, t ∈ R. (8)
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From (3) and (8), we have

u(t)→ 0 as t →+∞.

In addition, from (4), we can find a T∗ ∈ [0,+∞) such that∫ t

0
[−a(v)+ b(v)h(v)]dv ≤ −

∫ t

0
γ (v)dv, t ∈ [T∗,+∞),

then

u(t) ≤ sup
θ≤0
|ϕ(θ )|e−

∫ t
0 γ (v)dv, t ∈ [T∗,+∞).

For t ∈ [0,T∗], we have

u(t) ≤ sup
θ≤0
|ϕ(θ )|e

∫ t
0 [−a(v)+b(v)h(v)+γ (v)]dve−

∫ t
0 γ (v)dv

≤ Ke−
∫ t
0 γ (v)dv,

where,

K := e
sup

s∈[0,T∗]

∫ s
0 [−a(v)+b(v)h(v)+γ (v)]dv

,

which implies

u(t) ≤ K sup
θ≤0
|ϕ(θ )|e−

∫ t
0 γ (v)dv, t ∈ [0,+∞).

The proof is completed.
Remark 2: For λ > 0, if we replace γ (s) by λ, λ

t+1 and
λ

(e+s−1) ln(e+s−1) , respectively. Then system (2) is exponential,
polynomial and logarithmic stability, respectively.
Theorem 2: If we don’t require the nonnegativity of b(t),

Theorem 1 remains true for replacing b(t) by b+(t).
Proof: Since u(t) ≥ 0 and b+(t) ≥ b(t), then we get the

following delay differential inequality:

D+u(t) ≤ −a(t)u(t)+ b+(t) sup
t−τ (t)≤s≤t

u(s).

The proof is similar to the proof of Theorem 1. The proof is
easy, so we omit it.
Remark 3: It should be pointed out that we do not require

the boundedness of a(t) or τ (t), which is imposed in [13],
i.e., |a(t)| ≤ Ma and |τ (t)| ≤ τ . Even in this special case,
our condition is

lim
t→+∞

∫ t

0
[−a(v)+ b+(v)h(v)]dv = −∞.

However, the corresponding condition in [13] is

lim
t→+∞

∫ t

0

[
−a(v)+ b+(v)eMaτ

]
dv = −∞.

Obviously, h(v) ≤ eMaτ for v ∈ [0,+∞). In this sense,
this paper improves the results in [13]. In addition, we don’t
have harsh restrictions on delay function τ (t). Obviously,
|a(t)| ≤ Ma, 0 ≤ b+(t) ≤ Mb, |τ (t)| ≤ τ , δ > 0,
τ ∈

(
0, 1

Ma
ln(1+ σ

MbT
)
)
, and there exist t0 ≥ 0 and T > 0

such that ∫ t0+(k+1)T

t0+kT
[−a(v)+ b+(v)]dv ≤ −δ

for k ∈ N imply

lim
t→+∞

∫ t

0
[−a(v)+ b+(v)h(v)+ λ]dv = −∞,

where

λ =
[δ −MbT (eMaτ − 1)]

T
.

Moreover, we also consider the decay rate of (2), which is not
considered in [13]. Based on the above discussion, this paper
improves and extends the results in [13].

III. STABILITY OF DELAY NEURAL NETWORKS
In this section, we apply the obtained results in section 2 to
consider the following non-autonomous neural networks with
time-varying and distributed delays:

dxi(t) =
[
− ai(t)xi(t)+

n∑
j=1

bij(t)fj(xj(t))

+

n∑
j=1

cij(t)gj(xj(t − τij(t)))

+

n∑
j=1

dij(t)
∫ t

t−rij(t)
hj(xj(v))dv+ Ii(t)

]
dt,

t ∈ [0,+∞), i ∈ Jn, (9)

In order to set the stability problem, we assume the follow-
ing assumptions hold:
(A.1) The functions ai(t), bij(t), cij(t), dij(t) and Ii(t) are all

integrable functions for t ∈ [0,+∞), where i, j ∈ Jn.
(A.2) The delay functions τij(t) and rij(t) satisfy

τij : [0,+∞)→ [0, τ ], rij : [0,+∞)→ [0, τ ],

where i, j ∈ Jn and τ > 0.
(A.3) The functions fj, gj and hj satisfy Lipschitz condition

with Lipschitz’s constants Lj,Mj and Nj, respectively,
where j ∈ Jn.

Definition 1 [9]: The system (9) is said to be globally
exponentially stable, if there exists a pair of positive constants
β and λ such that

‖x(1)(t)− x(2)(t)‖ ≤ β‖φ(1) − φ(2)‖Ce
−λt , t ∈ [0,+∞),

where x(1)(t) = (x(1)1 (t), x(1)2 (t), . . . , x(1)n (t))T and x(2)(t) =
(x(2)1 (t), x(2)2 (t), . . . , x(2)n (t))T are two different solutions
of system (9) starting form different initial values
φ(1)(t) = (φ(1)1 (t), φ(1)2 (t), . . . , φ(1)n (t))T and φ(2)(t) =
(φ(2)1 (t), φ(2)2 (t), . . . , φ(2)n (t))T .
Theorem 3: Suppose assumptions (A.1)-(A.3) hold, then

system (9) is globally exponentially stable if there is a con-
stant λ ∈ (0,+∞) such that

lim
t→+∞

∫ t

0

{
− ai(v)+

n∑
j=1

|bij(v)|Lj

+

n∑
j=1

[
|cij(v)|Mj + |dij(v)|τNj

]
hi(v)+ λ

}
dv

= −∞, (10)
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where

hi(t) = e
sup

{θ∈[−τ,0]}

∫ t
t+θ [ai(v)−

∑
j∈Jn
|bij(v)|Lj]∗dv

,

i ∈ Jn.
Proof: For system (9), we get

d[x(1)i (t)− x(2)i (t)]

dt

= −ai(t)
[
x(1)i (t)− x(2)i (t)

]
+

n∑
j=1

bij(t)
[
fj(x

(1)
j (t))− fj(x

(2)
j (t))

]

+

n∑
j=1

cij(t)
[
gj(x

(1)
j (t − τij(t)))− gj(x

(2)
j (t − τij(t)))

]

+

n∑
j=1

dij(t)
∫ t

t−rij(t)

[
hj(x

(1)
j (v))− hj(x

(2)
j (v))

]
dv,

t ∈ [0,+∞), i ∈ Jn.

Define

zi(t) := |x
(1)
i (t)− x(2)i (t)|, t ∈ [−τ,+∞), i ∈ Jn.

From (A.1)-(A.3), we can obtain the following inequalities:

D+zi(t) ≤ −ai(t)zi(t)+
n∑
j=1

|bij(t)|Ljzj(t)

+

n∑
j=1

|cij(t)|Mj sup
θ∈[−τ,0]

zj(t + θ )

+

n∑
j=1

|dij(t)|τNj sup
θ∈[−τ,0]

zj(t + θ ),

t ∈ [0,+∞), i ∈ Jn.

Define

U (t) := max
i∈Jn
{zi(t)}, t ∈ [−τ,+∞).

For any t ∈ [0,+∞), let it stand for the index such that
U (t) = |zit (t)|. For t ∈ [0,+∞), we get

D+U (t)

≤ −ait (t)U (t)+
n∑
j=1

|bit j(t)|Ljzj(t)

+

n∑
j=1

|cit j(t)|Mj sup
θ∈[−τ,0]

zj(t + θ )

+

n∑
j=1

|dit j(t)|τNj sup
θ∈[−τ,0]

zj(t + θ )

≤ −ait (t)U (t)+
n∑
j=1

|bit j(t)|LjU (t)

+

n∑
j=1

[
|cit j(t)|Mj + |dit j(t)|τNj

]
sup

θ∈[−τ,0]
U (t + θ )

≤

[
− ait (t)+

n∑
j=1

|bit j(t)|Lj

]
U (t)

+

n∑
j=1

[
|cit j(t)|Mj + |dit j(t)|τNj

]
sup

θ∈[−τ,0]
U (t + θ ).

Let

a(t) = ait (t)−
n∑
j=1

|bit j(t)|Lj

and

b(t) =
n∑
j=1

[
|cit j(t)|Mj + |dit j(t)|τNj

]
,

then we get the following delay differential inequality:
D+U (t) ≤ −a(t)U (t)+ b(t) sup

θ∈[−τ,0]
U (t + θ ),

t ∈ [0,+∞),
U (t) = sup

s∈[−τ,0]
U (s), t ∈ [−τ, 0].

From (10), we can obtain

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)+ λ]dv = −∞,

where

h(t) = e
sup

θ∈[−τ,0]

∫ t
t+θ a

∗(s)ds
.

From Theorem 1, we can find a constant β ∈ (0,+∞) such
that

U (t) ≤ β sup
s∈[−τ,0]

U (s)e−λt , t ∈ [0,+∞).

The proof is completed.

IV. EXAMPLES AND NUMERICAL SIMULATIONS
The main contribution of this section is to provide some
examples with numerical simulations to illustrate the effec-
tiveness of the obtained results in sections 2 and 3.
Example 1: Consider a delay differential equation:
du(t)
dt
=
(
−

1
√
1+ t

+ cos t
)
u(t)+

u(t − π | cos t|)

2e5
√
1+ t

,

t ∈ [0,+∞),
u(t) = 1, t ∈ [−π, 0].

(11)

Obviously,

a(t) =
1

√
1+ t

− cos t, b(t) =
1

2e5
√
1+ t

,

and

h(t) ≤ e5, t ≥ 0.
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FIGURE 1. The solution u(t) of (11).

Then,

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)]dv = −∞.

Consequently, all the assumptions of Theorem 1 are satisfied,
it is shown in FIGURE 1 that the solution of (11) is asymp-
totically stable.
Remark 4: We mention here that the delay function τ (t) =
|π cos(t)| are neither monotonous nor differentiable.
Remark 5: Obviously, there is no constant λ∗ > 0 satisfies

that

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)+ λ∗]dv = −∞.

This shows that system (11) is asymptotically stable but not
exponentially stable.
Example 2: Consider a delay differential equation:

du(t)
dt
= (−

1
t + 1

+ sin t)u(t)+
u(0.5t)

4(t + 1)e2
,

t ∈ [0,+∞),
u(0) = 1.

(12)

Obviously,

a(t) =
1

t + 1
− sin t, b(t) =

1
4(t + 1)e2

,

and

h(t) ≤ 2e2, t ≥ 0.

Then,

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)]dv = −∞.

Consequently, all the assumptions of Theorem 1 are satisfied,
it is shown in FIGURE 2 that the solution of (12) is asymp-
totically stable.
Remark 6: We mention that the delay function of (12) is

a proportional delay function which is an unbounded delay
function.

FIGURE 2. The solution u(t) of (12).

Remark 7: It should be pointed out that the existing
works [24]–[26] also considered the Halanay inequalities
with proportional delay. However, they all required uniformly
positive of a(t). In this example, a(t) sometimes is positive
and sometimes is negative, which means that the existing
works [24]–[26] are invalid for this example.
Example 3: Consider a delay differential equation:

du(t)
dt
= (−0.5+ sin t)u(t)

+0.4e−0.5π−2u(t − π | cos t|),
t ∈ [0,+∞),

u(t) = 1, t ∈ [−π, 0].

(13)

Obviously,

a(t) = 0.5− sin t, b(t) = 0.4e−0.5π−2,

and

h(t) ≤ e0.5π+2, t ≥ 0.

Then,

lim
t→+∞

∫ t

0
[−a(v)+ b(v)h(v)+ 0.05]dv = −∞.

Consequently, all the assumptions of Theorem 1 are satisfied,
it is shown in FIGURE 3 that the solution of (13) converges
exponentially.
Remark 8: Obviously, the function a(t) < 0 for t ∈ (2kπ+

π
6 , 2kπ +

5π
6 ), k ∈ N, which means that −a(t)+ b(t) can be

positive in some intervals. Therefore the results in [8], [10],
[14], [16], [27], [30]) can not be applicable to this example.
Remark 9: Obviously,

|a(t)| ≤ 1.5, t ∈ [0,+∞).

Though a(t) is a bounded function,

lim
t→+∞

∫ t

0

(
−0.5+ sin v+ 0.4e−0.5π−2 · e1.5π

)
dv = +∞.

Therefore the results in [13] can not be applicable to this
example.
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FIGURE 3. The solution u(t) of (13).

FIGURE 4. The solution u(t) of (14).

Example 4: Consider a delay differential equation:
du(t)
dt
= (−0.5t + t sin t)u(t)+ e−4tu(t − π | cos t|),

t ∈ [0,+∞),
u(t) = 1, t ∈ [−π, 0].

(14)

Obviously,

a(t) = 0.5t − t sin t, b(t) = e−4t

and

h(t) ≤ e4t , t ≥ 0,

then

lim
t→+∞

∫ t

0
[a(v)+ b(v)h(v)+ 0.4t]dv = −∞.

Consequently, all the assumptions of Theorem 1 are satisfied,
it is shown in FIGURE 4 that the solution of (14) converges
very fast for t ≥ 3.
Remark 10: It should be pointed that a(t) = 0.5t − t cos t

has no upper bound or lower bound, which means that the

existing works [8], [10], [13]–[16], [27], [30] can not be
applied to this situation.
Example 5: Consider 2-dimensional non-autonomous

neural networks with time-varying and distributed delays:

dxi(t) =
[
− ai(t)xi(t)+

2∑
j=1

bij(t)fj(xj(t))

+

2∑
j=1

cij(t)gj(xj(t − τij(t)))

+

2∑
j=1

dij(t)
∫ t

t−rij(t)
hj(xj(v))dv+ Ii(t)

]
dt,

t ∈ [0,+∞), i = 1, 2, (15)

where

a1(t) = − sin t + 0.5, a2(t) = −2 sin t + 1,

b11(t) = 0.1, b12(t) = 0.1, b21(t) = 0.2, b22(t) = 0.2,

c11(t) = c12(t) = d11(t) = d12(t) = 0.03e−1.3,

c21(t) = c22(t) = d21(t) = d22(t) = 0.06e−2.6,

I1(t) = cos t, I2(t) = sin t,

τ11(t) = τ12(t) = τ21(t) = τ22(t)

= r11(t) = r12(t) = r21(t) = r22(t) = |cos(t)|.

For each v ∈ R, f1(v) = f2(v) = arctan v, g1(v) = g2(v) =
v

1+v2
, h1(v) = h2(v) = v.

It is easy to see that L1 = L2 = M1 = M2 = N1 = N2 = 1

−a1(t)+
2∑
j=1

|b1j(t)|Lj = −0.3+ sin t,

−a2(t)+
2∑
j=1

|b2j(t)|Lj = −0.6+ 2 sin t,

2∑
j=1

[|c1j(t)|Mj + |d1j(t)|τNj] = 0.12e−1.3,

2∑
j=1

[|c2j(t)|Mj + |d2j(t)|τNj] = 0.24e−2.6.

and

h1(t) ≤ e1.3, h2(t) ≤ e2.6, t ≥ 0.

Then,

lim
t→+∞

∫ t

0

{
− ai(v)+

2∑
j=1

|bij(v)|Lj

+

2∑
j=1

[
|cij(v)|Mj + |dij(v)|τNj

]
hi(v)+ 0.1

}
dv

= −∞, i = 1, 2.

Then, all the assumption of Theorem 3 are satisfied, we con-
sider the dynamical behaviour of two solutions x(1)(t) =
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FIGURE 5. The states response x (1)
1 (t) and x (1)

2 (t) of (15).

FIGURE 6. The states response x (2)
1 (t) and x (2)

2 (t) of (15).

FIGURE 7. The states response z1(t) and z2(t) of (15).

(x(1)1 , x(1)2 )T , x(2)(t) = (x(2)1 , x(2)2 )T of (15) with different
initial values for t ∈ [−1, 0], respectively, which are as
follows{

ψ
(1)
1 (t) = 20+ 50e2t , ψ

(2)
1 (t) = 40+ 20e2t ,

ψ
(1)
2 (t) = 30+ 15e0.4t , ψ

(2)
2 (t) = 20+ 20e−2t .

Define

z(t) : = (z1(t), z2(t))T

= (|x(1)1 (t)− x(2)1 (t)|, |x(1)2 (t)− x(2)2 (t)|)T .

It is shown in Figure 7 that z(t) converges exponentially as
pointed out by Theorem 3.
Remark 11: Obviously, the function a1(t) < 0 and a2(t) <

0 for t ∈ (2kπ + π
6 , 2kπ +

5π
6 ), k ∈ N, which means that

a1(t) and a2(t) can be negative in some intervals. Therefore
the existing works [10], [15], [16] can not be applied to this
situation.

V. CONCLUSION
In this work, some novel stability results for Halanay inequal-
ity and delay neural networks have been derived by means of
constructing an auxiliary differential equation. The obtained
results have shown that the coefficient functions can be posi-
tive or negative in some intervals, and has no upper bound or
lower bound. It is noteworthy that our results have improved
and extended the results in [13]. At last, some examples
with numerical simulations have been presented to illustrate
the effectiveness of our main results. In the future, we will
investigate the neural networks whose coefficient functions
and delay functions are all unbounded.
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