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ABSTRACT The work presented in this paper deals with a proactive network monitoring for security and
protection of computing infrastructures. We provide an exploitation of an intelligent module, in the form of a
as amachine learning application using deep learningmodeling, in order to enhance functionality of intrusion
detection system supervising network traffic flows. Currently, intrusion detection systems work well for
network monitoring in near real-time and they effectively deal with threats in a reactive way. Deep learning
is the emerging generation of artificial intelligence techniques and one of the most promising candidates for
intelligence integration into traditional solutions leading to quality improvement of the original solutions.
The work presented in this paper faces the challenge of cooperation between deep learning techniques
and large-scale data processing. The outcomes obtained from extensive and careful experiments show the
applicability and feasibility of simultaneously modelled multiple monitoring channels using deep learning
techniques. The proper joining of deep learning modelling with scalable data preprocessing ensures high
quality and stability of model performance in dynamic and fast-changing environments such as network
traffic flow monitoring.

INDEX TERMS Deep learning, proactive forecasting, network monitoring, cyber security, anomaly
detection, neural machine translation.

I. INTRODUCTION
Computing infrastructures are constant targets of cyber
attacks in order to gain access to their valuable assets such as
data or computing power [1]–[3]. In order to enforce security
policies such as confidentiality, integrity and availability;
information risk management has to be built based on cyber
security strategy consisting of (at least) the following steps:
network monitoring, security protection, intrusion preven-
tion, incident management, user education and awareness,
and secure configuration [4], [5]. Each of these steps is
challenging and comprises a large portion of research and
development.

In general, network attacks can be divided into passive and
active attacks. The purpose of passive attacks is to silently
gain information about the target while not changing any data
on the target’s side; e.g., active or passive reconnaissance.
Active attacks aim to change the status of the target, or they
introduce new or alter existing data. Regarding the purpose
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of an attack, computer network attacks can be classified into
probe, concurrency, traverse, cheat, infection, exploiting and
specific attacks attempting to gain access to the target system
by using various types of system weaknesses [6], [7].

Whenever an attack has started it can be detected by
analyzing network activities with the help of the intrusion
detection system (IDS) supervising computing infrastructure.
An ongoing network activity is expected to create a mon-
itoring anomaly, if the activity stands for a behaviour that
deviates from the normal or expected one [8], [9]. From the
symptomatic viewpoint, computer network anomalies can be
divided into:

• Volumetric-temporal anomalies indicate changes in
usual traffic conditions for particular time slots;
e.g., traffic protocol volume, number of connec-
tions or connected machines at a specific time.

• Connection anomalies including geographic anomalies
like changes in the network connection pattern and user
anomalies such as suspicious activity of users like unau-
thorized or malicious use of resources.
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FIGURE 1. Network monitoring and data flows.

Other specific anomalies such as protocol anomalies (related
to attacks that violate protocol specifications) or business-
defined anomalies (that require special treatments) are not in
the focus of this work.

Most of the current IDSs are capable to respond in
real-time or near real-time to network activities. This is pri-
marily achieved by reactive solutions typically as a set of
rules [10]–[12]. However, there is a lack of proactive solu-
tions within existing IDSs (Section II-A), which is an open
challenge for research and development in this area.

Deep learning (DL) is the emerging generation of artificial
intelligence techniques [13], [14]. Recent advancements in
this field have made DL one of the most promising can-
didates for intelligence integration into traditional solutions
to improve their quality. DL evolution as a part of natural-
inspired techniques has tailored to proactive time series fore-
casting with applications covering industrial and life areas
such as energy consumption, predictive maintenance, remote
sensing and financial services [15]–[17]. A common feature
of these applications is processing of continuous informa-
tion flows and adaptation to situations. In this context the
cooperation of AI, in particular DL techniques with IDSs,
is unavoidable although their usage and potential are still not
fully exploited.

The scope of this work covers the proactive approach of
network monitoring towards detection of abnormal states in
monitored channels in order to protect computing infrastruc-
tures (Figure 1). The work proposes a design of an intelligent
module that aims to help network administrators to improve
monitoring and security protection. The outstanding feature
of the work is the cooperation of the cutting edge tech-
nologies such as DL [18], large-scale data processing [19]
and modern network IDS [10]. Obtained outcomes show the
applicability and feasibility of modellingmultiple monitoring
channels using DL techniques. The work also presents the
close to the production state of the intelligent module deploy-
ment in cooperation with scalable data processing and IDS
supervising network flows.

The structure of this paper is as follows. Section II reviews
existing studies and explains our work direction and contri-
butions. Section III presents our system architecture (both
for development and deployment) of the intelligent module
using deep learning techniques, which cooperates with IDS
supervising network traffic flows. Section IV describes the

learning phase with proactive forecasting for network traffic
monitoring. Details about large-scale data processing and fea-
ture engineering are presented in Section V. Section VI con-
tains experiments and evaluations of our approach to prove its
effectiveness and feasibility in real production. Section VII
concludes main points of the work as well outlines its future
development and extension.

II. BACKGROUND AND RELATED WORK
A. INTRUSION DETECTION SYSTEMS
Intrusion detection systems (IDSs) are well-known tools used
to monitor and detect suspicious activities in computer net-
works. They are software applications tailored to monitor
network traffic in order to detect malicious activities or non
allowed network traffic. These systems are designed to pro-
cess massive volumes of continuously produced time-ordered
raw data with time-limited processing constraints. IDSs must
react promptly to occurring events, thus alerts are raised in
time and threats can be handled appropriately. Currently,
IDSs are based on the following approaches [7]:
• Misuse-based detection, also known as knowledge-
based detection or signature-based detection, focuses on
the detection of intrusions based on the signatures of
already known threats, specified in a predefined rule set.

• Anomaly-based detection considers an anomaly as a
deviation from a known behavior (or profiles), repre-
senting the normal or expected behaviors derived from
monitoring regular activities over a period of time.

Other detection approaches such as specification-based
(or also known as stateful protocol analysis), which depend
on vendor-developed generic profiles for specific protocols
are not in the focus of this work. All of the above approaches
respond to (recent) past events or situations.

According to the systems that can be monitored, IDSs
are divided into network IDSs, host IDSs, wireless IDSs,
and their combinations. There is a large number of IDSs for
network monitoring and the most well-known are:
• ZEEK/Bro [10] is an open source misuse detection
system that monitors network traffic to identify intru-
sions in real-time by parsing the network traffic and
extracting semantics for application level information.
Subsequently, it uses a module to analyze and match the
input traffic pattern against stored signatures. ZEEK/Bro
is capable of performing detection without dropping any
network packet and being faster than its competitors.
It includes an extended set of scripts to support detection
of signature-based and event-oriented attacks with low
number of false alarms.

• Snort [20] is a lightweight signature-based IDS that
inspects TCP/IP traffic to identify network intrusions
based on feature rules and a content pattern matching
procedure. Once a packet matches a specified rule pat-
tern, Snort offers three actions: pass rules to drop the
packet, log rules to write the full packet selected by a
user at runtime, and alert rules to generate a certain set
of alarms as specified by the user.
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• Nessus [11] is an open source plug-in based detection
system for vulnerability identification. Its plug-ins are
expected to be written very carefully so that they iden-
tify their known types of intrusions (knowledge-based
detection) with minimum false alarms.

• Suricata [21] is a network IDS, which uses the signature
method to detect a cyber attack. It operates by fetching
one packet at a time from the system to be preprocessed
and then feeds the core engine running the detection
algorithms. Suricata evaluates packet from the feed and
raises an alert if it considers it to be malicious.

Apart from the above mentioned network IDSs, there is a
number of other products that can be used to perform intru-
sion detection to some extent: Zabbix [22] is a monitoring
engine with trend prediction (regression); the host monitoring
systemOSSEC [23] that uses both signature and profile-based
methods to detect cyber attacks; or Rapid7 [24] the secure
facility for IoT devices. However, the main scope of this work
is focused on IDSs for network surveillance.

Most of the current IDSs are capable to respond to network
activities in real-time or near real-time. This is primarily
achieved by reactive solutions (typically as if-then state-
ments/rules) covering specific types of known usage patterns
(misuse detection) or deviation from standard conditions
(anomaly-based detection). The weakness of misuse detec-
tion is the lack of real labelled datasets of known patterns in
real production. The weakness of anomaly-based detection
is its low accuracy in dynamic environments where observed
events change over time [7]–[9].

Based on above references and to the best of our
knowledge, there is evidently lacking of proactive monitoring
solutions within network IDSs, which stands as an open chal-
lenge for research and development in the field of network
monitoring and security protection.

B. PROACTIVE FORECASTING AND DEEP LEARNING
Proactive techniques tend to be based on control theory
like queueing models [25] or probability estimation [26].
If the monitoring is based on time-ordered data sequences
then data mining using sequence modeling, especially
time series forecasting [27], [28] is in the center of
many research and development efforts. Its evolution is as
follows.
Statistic approaches such as autoregressive integrated

moving average (ARIMA), autoregressive moving average
(ARMA), moving average (MA) and variances, are aimed
on prediction of the future values of a time series using
regression over the past values of the dependent variable
and modeling the stochastic part of them [29], for example,
for failure detection [30]. The main limitation is their lin-
ear form and that they are not appropriate for a stationary
time series (i.e., mean, variance, and autocorrelation should
be approximately constant in time [31]). In addition, with the
growing size of datasets [32] statistical models hardly capture
non-linear patterns to cover the variety that is characteristic
for dynamic sequence data [33].

Machine learning (ML) is mainly used in a reactive way.
For instance, fault diagnostics and prognostics in energy
sector [34] or failure detection in high-performance comput-
ing system [35] with decision tree, support vector machines
(SVM), artificial neural network (ANN) and k-nearest neigh-
bors (kNN). ML is also used for proactive forecasting such as
trend monitoring with regression implementation and thresh-
old specification in Zabbix [12]. The main limitation of ML
approach is the prediction accuracy, which is often improved
using fuzzy techniques [34], [36].
Meta-heuristic approach with natural-inspired algorithms

[37] is considered as a higher level of heuristic approach
(e.g., ML). They are also considered as more generalized and
less domain-knowledge dependent. These techniques trade
quality of the solution for run time, by finding good but not
necessarily the optimal solution within a feasible time. These
algorithms include genetic algorithms (GA) [38], particle
swarm optimization (PSO) [39] with variances such as coral
reefs optimization (CRO) [40], galactic swarm optimization
(GSO) [41], whale optimization algorithm (WOA) [42] as
well as their hybridization and evolution.Meta-heuristic algo-
rithms, for example, are used to optimize neural networks for
proactive cloud resource auto-scaling [43], [44].
Neural networks as a sub-field of ML provide advantages

of nonlinear modeling. Recently, deep neural networks are
considered to be capable of learning high-level features with
more complexity and abstraction due to the larger number of
hidden layers. They can be effectively used to achieve higher
accuracy in inference tasks [18].
Deep learning success [13], [14] is believed to be due

to the confluence of 3 different factors: 1) new algorithmic
advances that have significantly improved application accu-
racy and broadened applicable domains; 2) availability of
huge amounts of data to train neural networks; 3) increas-
ing computing power. DL techniques are compute-intensive,
but they are promising in predictive quality [18]. DL can
significantly contribute to proactive forecasting as well as
anomaly detection in time-ordered data as presented in the
recent literature and application report [45].

As a part of DL, recurrent neural networks (RNNs) [46]
with internal self-looped cells have been shown to be a
promising approach in many domains, for example in fault
diagnosis of power plants [15] due to their ability to model
long term non-linear dependencies in time. However, RNNs
experience vanishing gradient and exploding gradient prob-
lems. Long short-term memory (LSTM) is a special RNN
block, which was designed to address RNN drawbacks [46].
LSTM is able to learn from time series with long time spans;
it is currently considered as the most well-known for its
time series forecasting performance from the accuracy view-
point for applications; e.g., in aircraft industry [17] or remote
sensing [16]. It also provides more consistency in predictions
over time in comparison to ML models such as decision
tree or SVM [47]. LSTMs come in many variances such
as gated recurrent unit (GRU), bidirectional LSTM [48],
attention LSTM [49] and stacked variances that promise
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model quality improvements [50]–[52] at the cost of model
complexity and consequently higher requirement of compu-
tational power.

It is also suitable to mention the convolutional neural
networks (CNNs), autoencoders, generative adversarial net-
works (GANs), fully connected (FC) networks and any of
their combinations. They are also candidates for proac-
tive time series forecasting under neural network umbrella
[53]–[55]. The combination of CNN and attention function
[50] brings the new DL architecture called temporal con-
volutional nets (TCN). They have been reported to out-
perform RNN in several language-to-language translation
benchmarks in both speed and accuracy performance [56].

Based on our knowledge, the fusion of DL models with
IDSs for proactive monitoring and security protection has not
yet been fully investigated and exploited. There is a growing
interest in proactive monitoring solutions, meaning that the
monitoring systems are expected to provide an estimation
of the near future behaviour for multiple monitoring chan-
nels simultaneously. If the environment is extremely fast-
changing, it is a challenge to keep a normal profile of the
multi-channel monitoring activities up-to-date in a proactive
way. Normal profilewith the near future behaviour estimation
has to be built proactively based on the knowledge of the
past normal activities. Hence, significant deviations from the
normal profile should be considered as anomalous activity
[6], [57]. The training of DLmodel is thus required to forecast
the normal activity profile in the near future as accurate as
possible.

From the speed point of view, DL is making profits from
using specialized hardware in accelerated computing envi-
ronments. The current mainstream solution is to use Graph-
ics Processing Unit (GPU) as general purpose processors to
accelerate computing [14], [58], or other advancements such
as Tensor Processing Units (TPU) [13], [59].

C. MOTIVATION AND CONTRIBUTIONS OF THE WORK
Based on the context presented in Section II-A and II-B,
the motivation of our work is to provide a proactive network
monitoring solution, which collaborates with IDS supervis-
ing computing infrastructure. The aim is to challenge and
enhance security protection. The solution joins the newest
trend in multivariate time series forecasting with DL promise
(Section II-B) for simultaneous modeling of multiple mon-
itoring channels. The major contributions of the work pre-
sented in this paper are:

• Full architecture design for both development and
deployment phases of the intelligentmodule cooperating
with the IDS supervising network flows.

• Bridging the recent state-of-the-art DL architectures in
the problem of multi-channel sequence modeling as the
core of the intelligent module for proactive network
monitoring and anomaly detection.

• Joining self-supervised learning with data preprocess-
ing while ensuring high quality model performance in
dynamic and evolving environment.

• Building a data preprocessing module leveraging a Big
Data facility to deliver feature engineering automation,
working directly with raw logs and logging process.

• Employing advanced technologies such as DL model-
ing with GPU support, Big Data processing and data
analytic, modern generation IDS to work together for
network monitoring and security protection benefits.

• Providing extensive experiments on production datasets
with a thorough evaluation of model behavior, design
complexity and robustness of the chosen technologies.

III. EMBEDDING ARCHITECTURE FOR
INTELLIGENT MODULE
A. SYSTEM ARCHITECTURE
The proposed architecture of a computer network supervis-
ing IDS with embedded intelligent module is presented in
Figure 2. The solid lines depict data flow, dashed lines control
flow, and dotted lines with double-headed arrows stand for
labels. The architecture describes workflows for both devel-
opment and deployment phases with configurable parameters
(see Table 1). System components can be seen under 3 main
modules, where each module is built of several blocks:
1) The IDS module provides monitoring, logging, and

securitymanagement of computing infrastructure (green
blocks labelled with ‘‘supervising IDS’’ in Figure 2).

2) The data processing module manages online and offline
processing (dark green blocks) as well as feature engi-
neering (involves data cleaning, data transformation,
feature extraction, and feature selection as can be seen
in Figure 4). It interacts with the data repository block
(Figure 2) and controls model building (the orange
block) in deployment phase.

3) The proactive forecasting module produces DL models
based on MLmethodology and DL modeling. The mod-
ule closely works with the data processing module to
get access to data in the data repository and enable data
analytic as well as training and testing models during the
development phase.

After a model is developed, it undergoes usual training
process known from the ML application development life-
cycle. Once the training is complete, the model performance
(or model quality as described in Section IV-D) is evaluated
and the best model is used in the deployment phase on online
data. Evaluation results are reported to the security manage-
ment system as situational awareness (Section III-C) thus the
network administrators can evaluate possible threats.

B. PRODUCTION DATASET AND DATA LABELING
Due to real situations with monitoring services and protocols
as well as increase of network bandwidth, the building pro-
cess of the intelligent proactive module faces Big Data prob-
lems (Volume, Velocity, Variety and Veracity). Except that,
there is a lack of real datasets with labeled data. It is because
the data is sensitive and contains information such as internal
details on the system, network security information as well as
certain personal information. In general, providers of comput-
ing resources apprehensively concern with their monitoring
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FIGURE 2. Development and deployment of intelligent module for network supervising IDS functionality improvement.

TABLE 1. Parameters for building intelligent module.

log data, which also fall under data protection regulations like
GDPR in EU [60]. Therefore, real datasets are usually kept
private and are not freely distributed [3], [61], [62].

In this work, the dataset is built from a real network
monitoring, which is hanging on a production computing
infrastructure of the project partners [63]. Raw monitoring
logs are collected by ZEEK/Bro network IDS.

From the point of data labelling, ML techniques with DL
as its sub-field can be divided into: 1) supervised learning,
which learns from labeled training examples, and 2) unsuper-
vised learning, which attempts to extract information from
unlabelled train dataset. However, the distinction between
supervised and unsupervised learning is not strict, because
there is no objective distinguishing whether a value is a
feature or a target provided by a supervisor.

In this work, the self-supervised approach is used for mul-
tivariate time series preprocessing and labeling (Equation 4).
It is a part of the data processing (Section V) with parameters
(Table 1).

C. ZEEK/BRO AND HYBRID SECURITY SOLUTION
In our architecture, monitoring, logging and security man-
agement of network activities is performed by employing
ZEEK/Bro (Section III-B). The network IDS comes with an
extended set of scripts to support functionality enhancements

in a reactive way. However, the design presented in this
work can be easily adapted to another network IDS with
minimal integration effort. The IDS is supervising network
segment in production with hybrid (star) network topology
connecting computing infrastructure (Figure 1). The number
of nodes is around 200 in real production site and includes
nodes of the HPC, Grid, Cloud, and Mesos cluster for high
performance computing and Big Data processing as well as
web servers, DNS servers, data storage nodes (FTP, SFTP,
gridFTP services), service and control nodes.

It is important to mention that an universal solution, which
solves all the security problems, does not exist. Here is a
need for combining solutions into a complex solution. The
hybrid strategy for anomaly detection is composed of mis-
use detection, outliers detection and proactive monitoring
[64]. It works in an extendable way with external intelli-
gent modules as follows: 1) external modules provides their
detection results as probabilities [62] to the supervising IDS;
2) based on these probabilities, IDS leverages security pro-
tection actions required by the external ML modules.
Misuse detectionworks fast and in near real-time like reac-

tive solutions. Concretely, ZEEK/Bro is ready to work with
external intelligent modules for IDS functionality enhance-
ments. Examples of suchmodules include our prior work [62]
and the works [65], [66].
Outliers detection in a reactive way is also well-examined.

ZEEK/Bro Analysis Tools [67] also contain the Isolation For-
est method, which can point out anomaly data points in
protocol logs as outliers. The IDS is ready to work with other
implementations such as logistic regression, SVM,multilayer
perceptron, decision tree or kNN if delivered.
Proactive monitoringmodule in our work detects abnormal

states of monitored channels. Anomalies are identified as
significant deviations from the normal activity level values.
The most important point is the accuracy of forecasting ŷ in
comparisonwith real values of y in order to keep false positive
warnings as low as possible. The overall anomaly detection
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FIGURE 3. Sliding window w , k-horizon forecasting and p sequence
dependency.

score for m monitoring channels at time t is calculated in
Equations 1 and 2.

scoret = cosine
(̂
yuppert , yt

)
(1)

ŷuppert,i = (1+ αi) · ŷt,i (2)

where

yt is a vector of real values of m channels at time t;
ŷt is a vector of predicted values of yt computed at

time (t − k);
ŷuppert is an upper boundary for y at time t;
αi is a threshold coefficient for ith monitoring

channel, where αmodeli > (1/2) · SMAPEmodeli
and SMAPE value is in 200% range;

model is a type of the selected model in production

Abnormal state warning in time t is triggered when the
condition in Equation 3 is valid.

scoret > θscore > 0 (3)

Fine-tuning of α and θ is realized in cooperation with
network administrators. Experimental results (Section VI-B)
show that trained DL models (Section IV) have a stable
behavior with low error levels.

IV. PROACTIVE FORECASTING MODULE
A. FORMAL DESCRIPTION
The mathematical ground of proactive forecasting of the y
value at the next time point (t + 1) is based on the y values
at previous p time points [68], [69] with added/subtracted
error terms. It is also generalized to k-horizon forecasting
(Equation 4 and Figure 3) as follows:

yt−p+1, . . . , yt−1, yt → yt+k (4)

where (1 ≤ k < p).
In our domain data, yt is a multi-dimensional vector con-

taining values yt,1, yt,2, . . . , yt,m of m monitoring channels
for proactive modeling.

yt =
(
yt,1, yt,2, . . . , yt,m

)
(5)

Usually, real data is not stationary, however different meth-
ods can be applied in order to keep it in its trend [68].
Ordinary differential equation (ODE) describes dynamically

changing phenomena using mathematical differentials and
derivatives. We denote the use of ODE stabilization as ∂
parameter in Table 1. The first order of ODE expresses the
evolution of y in time denoted as y′ (Equation 6).

y′ =
∂y
∂t
=

(
∂y1
∂t
,
∂y2
∂t
, . . . ,

∂ym
∂t

)
(6)

B. LEARNING PHASE
Based on DL architecture templates, the learning phase
employs the following models, with detailed descriptions
presented in the remainder of this subsection:

(a) multilayer perceptron (MLP),
(b) autoencoder MLP,
(c) long short-term memory (LSTM),
(d) gated recurrent unit (GRU),
(e) bidirectional LSTM,
(f) autoencoder (seq2seq) LSTM,
(g) attention LSTM,
(h) convolutional neural network (CNN),
(i) temporal convolutional nets (TCN),
(j) stacked models (LSTM, TCN).

Neural networks are effective universal approximators,
which have recently shown promising results in many ML
tasks including those with sequence inputs [70]. The simplest
and widely used formal description of a neural network is the
nonlinear weighted sum (Equation 7)

y = fA(x) = fA

(
b+

n∑
i

wixi

)
(7)

where y is the output, fA is the activation function (e.g., tanh,
sigmoid, softmax or rectifier), b is the bias; w is the weight
vector; and x is the input vector of size n.

1) MULTILAYER PERCEPTRON (MLP)
MLP is build as a baseline model for comparison. Our
MLP model is a feed-forward neural network (FFNN) with
(at least) 3 fully-connected (FC) layers: input, hidden and
output. The number of hidden layers is customizable and
MLP model is trained using back-propagation.

2) AUTOENCODER MLP
MLPs can be deeper with more layers in special structures,
such as non-recurrent autoencoder with MLP. The autoen-
coder consists of two parts: encoder and decoder [18], [71].
The encoder (Equation 8) compresses data from the input (X )
into a short code (latent vector). The decoder (Equation 9)
decompresses the code back, attempting to minimize the
reconstruction error through the euclidean distance (Equa-
tion 10).

φ : X → F (8)

ψ : F → X (9)

φ,ψ = argmin
φ,ψ

‖X − (ψ · φ)X‖2 (10)
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When observations are modeled as multi-channel vectors,
our MLP encoder consists of FC 128, 64, and 32
neuron layers. The decoder is constructed the same way, but
the in reverse order. The latent layer is a FC 16 neuron layer.
The sizes of the filters are based on experiments conducted
on domain data.

3) LONG SHORT-TERM MEMORY (LSTM)
As mentioned in Section II-B, RNNs handle sequences by
having a recurrent hidden state, whose activation at each time
is dependent on previous time steps [18]. The most famous
RNN special units (building blocks) are LSTM (Equations 11
to 16) and GRU (Equations 17 to 20). They are similar in
overall structure, but GRU has a simpler form [46], [72].

Input gate it = σ
(
xtU i
+ ht−1W i) (11)

Forget gate ft = σ
(
xtU f

+ ht−1W f ) (12)

Hidden state C̃t = tanh
(
xtUg

+ ht−1Wg) (13)

Internal memory Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
(14)

Output hidden state ht = tanh(Ct ) ∗ ot (15)

Output gate ot = σ
(
xtUo

+ ht−1Wo) (16)

where x is the input vector; W is the recurrent connection at
the previous hidden and current hidden layer;U is the weight
matrix connecting the inputs to the current hidden layer; ∗ is
the element-wise multiplication and ignore bias term; σ is a
logistic sigmoid function; C̃ is a hidden state computed based
on the current input and the previous hidden state.

4) GATED RECURRENT UNIT (GRU)
GRU has a reset (r) gate and an update gate (z) instead of the
input (i), output (o), and forget (f ) gates of the LSTM. GRU
also has shown to be faster in training than LSTM [72].

Update gate zt = σ
(
xtU z
+ ht−1Wz) (17)

Reset gate rt = σ
(
xtU r

+ ht−1Wr) (18)

Hidden state h̃t = tanh
(
xtUh
+(rt ∗ht−1)Wh) (19)

Output hidden state ht = (1− zt ) ∗ ht−1 + zt ∗ h̃t (20)

LSTM (as well as GRU and RNN) comes with more
complex versions such as bidirectional LSTM, autoencoder
LSTM, or stacked LSTM with more RNN blocks.

5) BIDIRECTIONAL LSTM
This architecture [48] combines an LSTM thatmoves forward
through time from the start of the sequence, with another
LSTM that moves backward through time from the end of
the sequence. This allows ot to compute a representation that
depends on both the past and the future, with most sensitive
input gate it , without fixed time-step specification around t .

6) AUTOENCODER (seq2seq) LSTM
The idea is borrowed from natural language processing
and video representation [73] as sequence to sequence
(seq2seq) modeling of time series data. Our autoencoder

LSTM model is built with two recurrent blocks (which can
be LSTM or GRU) connected by repeat vector.

7) ATTENTION LSTM
The attention mechanism for sequence to sequence modeling
is recently published in [49], [50], [74] for neural machine
translation. The mechanism is an improvement to the model
that allows it to pay attention to different words in the input
sequence as it outputs each word in the output sequence. The
attention LSTM model in this work is built by adding one
self-attention layer with local attention to bidirectional LSTM
block.

8) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNNs were originally developed for working with
two-dimensional image data. However, they also show effec-
tiveness in automatic feature extraction and feature learning
from sequence data. Our CNN model consists of a convo-
lutional layer (Conv1D) that reads across the subsequence,
followed by a max pooling layer that reduces to the most
salient features and the output vector goes through flatten and
FC layer.

9) TEMPORAL CONVOLUTIONAL NETS (TCN)
The recent combination of CNN and attention function brings
a new TCN architecture [53], [75], which promises outstand-
ing performance in speed and accuracy in natural language
processing [56]. Our TCNmodel has a customizable structure
and it is built using the keras-tcn library [76].

10) STACKED MODELS
Stacked models and stacked hidden layers make the model
deeper [71]. This promises more accurate learning but at
the cost of the model complexity and the cost of computing
resources during training. Stacked model consists of mul-
tiple hidden layers (or blocks) where each layer contains
customizable multiple memory cells, one on top of another.
An example of a stacked model is stacked LSTM or stacked
TCN.

C. MODEL BUILDING
Our model building process is presented in Algorithm 1 as
a simplified workflow of the proactive forecasting module.
The common characteristic of all of our models is that
they have the same multi-channel input layer (as model-
ing variables) and the same multi-channel output FC layer
with sigmoid activation. Details about the loss functions,
stochastic optimization, activation functions, model quality
evaluation and optimization of the learning phase are as
follows.

1) LOSS FUNCTIONS
Loss functionsmeasure the inconsistency between the ground
truth vector y and the forecasting vector ŷ of n observa-
tions. Robustness of a model increases with the decrease
of the loss function value. In this work we use the mean
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Algorithm 1Model Building: Training and Validation

1 Train (arch,D,R,Q)
Input : arch: DL architecture template

D: datapool
R: time range
Q: data query selection

Output : model
quality

Defaults: p: sequence dependency length
k: horizon forecasting (1 ≤ k < p)
∂: ODE stabilization
m: monitoring channels

2 R = {Rtrain,Rtest }
3 DS = {dstrain, dstest } ← Select(D,R,Q)
4 foreach ds ∈ DS do
5 n← |ds|
6 if ∂ then
7 ds← ds′ (Equation 6)
8 end
9 ds← Scale(ds)← Normalize(ds)

10 ds =


ds1,1, ds1,2, · · · , ds1,m
ds2,1, ds2,2, · · · , ds2,m

· · ·

dsn,1, dsn,2, · · · , dsn,m

 =

ds1
ds2
· · ·

dsn


11 for t ← (p+ k − 1) to n− (p+ k − 1) do
12 tst = [dst−p+1, . . . , dst−1, dst ][dst+k ]

(Equation 4)
13 ts← ts+ tst
14 end
15 ds← ts
16 end
17 model ← DefineModel(arch)
18 model ← Train(model, dstrain)
19 quality← Validate(model, dstest ) (Equations 25, 26)
20 return model, quality
21 while True do
22 R← R+ T
23 model ← Train(arch,D,R,Q) in period T
24 end

absolute error (MAE) (Equation 22) and the mean squared
error (MSE) (Equation 21).

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (21)

MAE =
1
n

n∑
i=1

|yi − ŷi| (22)

Other metrics such as the cosine similarity cosine or the mean
absolute percentage error (MAPE) are available as optional
reference metrics.

2) STOCHASTIC OPTIMIZATION
Stochastic optimization is used to optimize loss functions.
In our work, Adam (adaptive moment estimation) [77]

is applied. Adam uses the first-order gradients to compute
individual adaptive learning rates for different parameters.

3) ACTIVATION FUNCTIONS
Activation functions of the hidden units are used to capture
non-linearity. Without the non-linearity, the network would
not be more powerful than plain perceptrons without hid-
den layers. The most frequently used activation functions
(also in ourwork) are sigmoid function, tanh, Rectified Linear
Unit (ReLU) and softmax [78].

In this work, sigmoid (Equation 23) is used for the output
layer and ReLU (Equation 24) is used for the hidden layers.

sigmoid σ (x) =
1

1+ e−x
(23)

ReLU f (x) = ln(1+ ex) (24)

D. MODEL QUALITY EVALUATION
In order to evaluate model quality with real values,
the symmetric mean absolute percentage error (SMAPE)
(Equations 25) and cosine similarity (Equations 26) are cho-
sen for the main metrics. SMAPE formula provides results
in 200% scale interpretation instead of the frequently used
100% scale interpretation. It is less sensitive to low-volume
items (i.e., near-zero) in comparison with other similar
metrics such asMAPE [79].

SMAPE =
1
n

n∑
i=1

|yi − ŷi|
(|yi| + |ŷi|)/2

100% (25)

cosine =
y · ŷ
‖y‖ · ‖̂y‖

=

∑n
i=1 yiŷi√∑n

i=1 y
2
i

√∑n
i=1 ŷi

2
(26)

Other metrics such as the mean absolute percentage error
(MAPE), the coefficient of determination R2, and the root
mean square error (RMSE) are also available as optional ref-
erence metrics. In this work, we use phrases ‘‘model quality’’
and ‘‘model performance’’ interchangeably.

The difference between loss functions and the model qual-
ity evaluation is the data scale dimension. Loss functions deal
with y and ŷ in transformed min-max scale, while the model
quality evaluation compares y and ŷ in the real scale. Data
transformation for k-horizon forecasting (Equation 4) is done
in Algorithm 1 (line 11 to 15).

E. MODEL OPTIMIZATION AND SELECTION
ML and optimisation are two important fields of AI inter-
acting frequently with each other in order to improve
learning and/or search capabilities [80]. In the context of
our work, the optimization process focuses on finding the
best (optimal) model from a group of alternative candi-
dates based on the already described evaluation metrics
(Section IV-D and Equations 25, 26). The most well-known
approach is to perform a grid search over different param-
eters. More advanced optimization algorithms follow meta-
heuristic direction [37]. However, they are very complex
for ML/DL modeling with potentially large datasets due to

VOLUME 8, 2020 19703



G. Nguyen et al.: DL for Proactive Network Monitoring and Security Protection

TABLE 2. Hyperparameter settings and values for experiments. The first
value is default, if not stated otherwise. The number of monitoring
channels and data selection query are as in Section V.

higher computational cost. Bayesian optimization based on a
sequential design strategy is used for our model behavior esti-
mations (Section VI); i.e., hyper-parameter (Table 2) tuning
in the multi-dimensional space [81].

F. LEARNING COMPLEXITY
The complexity of the production learning phase
(Algorithm 1), which has to be retrained periodically in T ,
is

Tlearning = Ots(n · m)+ Omodel(n,m, p) (27)

where

Ots is the complexity of creating training data
in the predefined time series format (Equation 5);

Omodel is the complexity of model training,
which depends on the DL architecture;

p is the sequence dependency length (Table 1);
m is the number of monitoring channels;
n is the number of observations in the training data.

Usually, Ots does not get a large value, Omodel is in
the range of hours for one year data (Table 6) even
for the most expensive DL model, and T is in the
range of months for model adaptive retraining (Table 2,
Section VI-A - Computing resource). Therefore, the com-
plexity of the learning phase is not critical in production even
with DL modeling.

It is suitable to remark that the learning phase is
highly compute-intensive in ML development due to model
optimization and selection (Section IV-E).

V. DATA PROCESSING
A. FEATURE ENGINEERING
Data processing, especially data preprocessing, is a crucial
part of the whole model training process. It is periodically
triggered and controlled in the feature engineering phase
(Figure 2). Although DL has a strong feature-learning ability,
in our case it still cannot learn the domain knowledge directly
from all the types of data logs. Therefore, data preprocessing
provides an efficient way to help deep neural networks to

work properly and to provide better quality and stability of
models.

It cooperates with the IDS in-situ filtering to challenge
massive online data streams coming from the network moni-
toring as raw sensitive logs, which are continuously stored in
the data repository (Figure 2). Based on the IDS configura-
tion, logs of the selected protocols (connection, DNS, HTTP,
SIP, SSL, and SSH) are streamed into separate log files with
time-based ordered data. These files are further organized in a
hierarchical directory structure by year, month and day. Each
monitored network activity is recorded with various features
including timestamps and unique ID.

In order to cope with off-line and intensive model
development phase, state-of-the-art Big Data processing and
analytic stacks are used. These comprise of Apache Spark
[19], Apache Parquet [82] (columnar data storage format) and
Apache Arrow [83] (cross-language development platform
for columnar in-memory data). Apache Arrow also provides
computational libraries and zero-copy streaming messaging
and inter-process communication.

Smooth sliding transformation is an operation that helps
to remove short-term variations from a series in order to
reveal long-term trends [84]. Therefore, the transformation
from raw logs into ML data is realized with settable window
size w and sliding step s, where s ≤ w (Figure 3). When
following this approach, dependencies among observations
are reinforced. Here, the Spark SQL [85] is employed, which
includes a cost-based optimizer, columnar storage and code
generation to make queries fast.

B. FEATURE EXTRACTION
The feature extraction process is presented in Algorithm 2.
It aims to cover already mentioned processing mechanisms
in Section V. The most complex function here is the data
transformation mapping(tx(p) → tx(l)), which transforms
and aggregates data (sliding window) into a logical tax-
onomy. The transformation is based on physical taxonomy
mapping of raw logs [10]. The mapping is realized with
Spark SQL [85], which enables processing of time-growing
datasets at a scale.

C. FEATURE SELECTION
Due to the large number of protocol features that can be
extracted from the datapool, data selection query (Q) is
designed with descriptive syntax. The point is to obtain a
narrower set of features (i.e., multiple channels for monitor-
ing) across different protocols and consequently join them by
sliding window #window_start,window_end . An example of
such selection query is as follows:

data_select_query =
conn|in_count_uid~in|out_count_uid~out;
dns|in_count_uid~in|in_distinct_query~in_distinct;
http|in;
sip|in_count_uid~in;
ssh|in;
ssl|in
#window_start,window_end

This query is used for experiments presented in this work
(Section VI). The query syntax provides renaming manner
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FIGURE 4. Development workflow and data preprocessing.

Algorithm 2 Data Preprocessing: Feature Extraction

1 Transform (D,R)
Input : D: datapool

R: time range 〈begin, end)
Output : D′: datapool
Defaults: tx(p): physical taxonomy of protocols

tx(l): logical taxonomy of ML data
w: window duration
s: slide duration

2 i← |D|
3 beg← Rbegin
4 end ← Rend
5 foreach protocol ∈ protocols do
6 d ← ∅
7 while beg < end do
8 end ← beg+ w
9 channel ← channel in range 〈beg, end)
10 di←−−−−−−−−−−

tx(l)channel←tx(p)channel

channel

11 d ← d + di
12 beg← beg+ s
13 i← i+ 1
14 end
15 D′chanel ← D′chanel + d
16 end
17 return D′

18 while True do
19 R← R+ τ
20 D← Transform(D,R) in period τ
21 end

(using∼) applied on column names in the output ML dataset
(D) thus a name conflict can be solved easily. Monitoring
activities are classified as protocols and then for each protocol
into incoming (in), outgoing (out) and internal (internal)

flows (Figure 1 and 5). While the main interest is towards
the incoming activities, outgoing and internal flows are also
interesting from the anomaly monitoring point of view. In this
way, data selection query defines logical taxonomy of theML
data. The query syntax makes it easy to change, extend and
adapt to the needs of the ML development phase.

Features extracted in the data preprocessing phase are
tested against linear correlations by matrix reduced row
echelon form (RREF), intermittent demand, autocorrelation
(ACF) and unit root using Augmented Dickey-Fuller (ADF)
test with the critical value θ = ± 1.96

√
n where n is the number

of observations. Features that fail the tests are not further
considered for modelling.

Non-linear feature correlations are tested using the mutual
information (MI or I ) for variables with continuous dis-
tribution. The MI of two random variables X and Y is a
measure of the mutual dependence between them. MI has a
straightforward interpretation, it is insensitive to the size of
X and Y [86]. The concept of MI is linked to information
entropy (H) [87], [88] denoted as in Equation 28:

H(X ) = −
∫
dx µ(x) logµ(x) (28)

The unit of information depends on the base of the logarithm.
If the base is 2, the most used, then the information is mea-
sured in bits.

I (X ,Y ) = −
∫ ∫

dx dy µ(x, y) log
µ(x, y)

µx(x) µy(y)
(29)

In case of variables with continuous value distribution,
it is hard to calculate MI from real values (Equation 29).
Therefore, MI estimation relies on non-parametric methods
based on entropy estimation from κ-nearest neighbors dis-
tances to avoid the binning approach [89], [90]. Small values
of κ reduce general systematic errors, while large κ leads
to smaller statistical errors. Monitoring channels with higher
non-linear correlations are selected for joint multivariate
modeling.
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FIGURE 5. A part of the physical taxonomy of raw sensitive monitoring logs.

D. DATA PROCESSING COMPLEXITY
Data preprocessing deals with Big Data and is compute-
intensive in the ML development phase. This is challenging
due to exploratory data analysis natural for ML application
building process, which has to be done (in addition) repeat-
edly. However, in production (i.e., deployment phase) in each
period τ , the preprocessing (Algorithm 2) is triggered with
the complexity:

Tpreprocessing = protocols · O(w) (30)

where

protocols is the number of protocols in IDS logs
as in physical taxonomy (Figure 5),

w is the window size (Table 1).

The number of protocols is constant [10]. In production,
the period (τ = s) is in 1 to 10 minutes range, which is
always much bigger than Tpreprocessing. Technological support
and realization (Section V) ensure a fast and light-weight
data transformation in deployment as well as robustness to
challenge large-scale data transformation in development.

VI. EXPERIMENTS AND EVALUATIONS
A. SETUP
1) DATASET DESCRIPTION
Thework presented in this paper deals with real data collected
from an existing network IDS (ZEEK/Bro, as already stated
in Section III), which supervises computing infrastructure
network, services and activities. Collected data is available as
raw logs and continuous stream with sensitive security infor-
mation. Online traffic data contains approximately 2TB/day

of network traffic monitoring. The data preprocessed from
massive raw binary form (Section V) is continuously growing
in time. Currently, its total size is 150 GB. Each day, more
than 3.7 millions (106) events ordered in time is stored in
more than 400 files. There are more than 1.35 billion (109)
events after one year.

2) DATA TAXONOMY
Physical taxonomy of the raw collected data is described in
the online ZEEK/Bro documentation [10]. ML data is pre-
pared using the Algorithm 2 for all the evaluated DL models
that are described in Section IV-B. As depicted in Figure 1,
monitoring channels are divided in incoming (in), outgoing
(out) and internal (internal) flows taking into account pref-
erence order of the system administrator. As described in
Section V, they are part of protocols and built from cus-
tomizable data selection queries; ML datasets for multiple
channel modeling are also selected. While the main interest
of the system administrator is towards incoming activities,
we present experiment results towards incoming flows, espe-
cially for connections conn and ssh protocol in more details
in comparison to other protocols.

3) DATAPOOLS
Data transformation (Algorithm 2) based on the data taxon-
omy and predefined parameter settings (Table 2) results in a
datapool with time ordered data. TheML dataset for sequence
modeling can be queried from the datapool by user-defined
data selection queries.

4) CROSS VALIDATION
Due to the nature of time series data, the standard k-fold cross
validation cannot be performed. Instead of it, we employ the
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TABLE 3. Model quality evaluation with SMAPE(avg) and ODE stabilization (∂ = True). The best (smallest) values are highlighted.

time-based hold-out validation [91], [92], for which training
data has always lower time indexes than testing data. Time
ranges for training and testing data are also hyper-parameters
(Table 2). In this work, Bayesian optimization is chosen
as the sequential strategy for optimal model selection and
hyper-parameter tuning.

5) MODEL QUALITY AND MODEL STABILITY
In general, neural networks depend on the initial weights,
which are initialized randomly. In addition, different random
seed value will lead to inconsistent prediction performance
from one training sessions to another. For this reason,
the evaluation is repeated multiple times (10x in our case)
to ensure model quality and stability in production. After
that, average avg (Equation 31), standard deviation std (Equa-
tion 32) and coefficient of variation cv (Equation 33) are
used to quantify the dispersion of values in resulting series
r = {r1, . . . , rn}.

avg =
1
n

n∑
i=1

ri = r̄ (31)

std =

√√√√ 1
n− 1

n∑
i=1

(ri − r̄)2 (32)

cv =
std
r̄

(33)

6) PARAMETER SETTING
Parameter description is presented in Table 1 with default
values in Table 2. The first value is the default one used in the
experiments unless a different one is not explicitly declared.
Libraries and source code of the DL models are defined
and built as customizable architectures based on developer’s
settings using DL building layers and blocks with extensions.

7) LIBRARIES
The main libraries that we work with in this work are Keras
and Tensorflow for DL modeling [13] and Apache Spark
[19] for data preprocessing. Other python libraries for data
analytic, data transformation as well as extended packages
are mentioned by in-place references.

8) COMPUTING RESOURCES
For the most of our experiments, a diverse set of
hardware resources with GPU is used through the

DEEP-Hybrid-DataCloud project [63]. These resources are
provided by distributed computing e-Infrastructures and
accessed through the DEEP stack. However, runtime mea-
surements in Section VI-B are performed on fixed hard-
ware resources, which is Intel R© CoreTM i7-7700K CPU @
4.20GHz with 32GB RAM and a NVIDIA GeForce GTX
1070 8GB GDDR5.

9) OPEN-SOURCE
Source code of the proactive forecasting module is available
as a set of open-source components included in the DEEP
Open Catalogue [63], [93]. The module can be downloaded
in the form of a source code [94] or as a Docker container
[95], which leverages the DEEPaaS API [96] and is ready to
use. Due to the collected data sensitivity, raw datasets are not
publicly available, but the ML datasets used for DLmodeling
are publicly available in [97].

B. RESULTS AND EVALUATION
In order to evaluate the intelligent module functionality,
we have carried out the following experiments with the setup
already described in Section VI-A:

1) Model quality evaluation by SMAPE of multiple moni-
toring channels with ODE stabilization (Table 3).

2) Model stability comparison by SMAPE with std, cv for
conn and ssh (Table 4).

3) Model stability comparison by cosine with std, cv for
conn and ssh (Table 5).

4) Model performance comparison by loss and runtime
(Table 6).

5) k-horizon forecasting with LSTM (Table 8).
6) p sequence dependency with GRU (Table 7).
7) Model quality evaluation by SMAPE with avg, std, cv

for conn and ssh without ODE stabilization (Table 9).
8) Model quality evaluation without sliding windows (pre-

sented in Section V) and without ODE stabilization
(Table 10).

Based on the experimental results presented in Tables 3, 4,
5, 6, 8, 7, 9 with vizualization in Figures 6, 7, 8, 9, 10, 11 the
following evaluation points are conducted:

1) QUALITY OF DL MODELS
The cooperation of data preprocessing works well with DL
modeling. That ensures high quality of models by means of
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TABLE 4. Model stability evaluation with SMAPE(avg, std , cv ) and ODE stabilization (∂ = True). The best (smallest) values are highlighted.

TABLE 5. Model stability evaluation with cosine (avg, std , cv ) and ODE stabilization (∂ = True). The best values are highlighted.

TABLE 6. Model evaluation with loss(avg) and runtime(seconds). The best values are highlighted.

low prediction error (SMAPE and cosine) and better model
stability (low std and cv).
• Although there is not a clear winning model of the
experiments, LSTM derivates (including GRU) are the
best candidates regarding the quality with comparatively
similar performance.

• The best top-3 models, which work properly with our
domain data, are Attention LSTM, LSTM and GRU
(unordered).

• Shallower models like MLP or Conv1D are less stable
in prediction as well as in runtime.

• Autoencoder with LSTM (Seq2seq LSTM) provides
better prediction in comparison to Autoencoder MLP.

2) ATTENTION LSTM AND TCN
Attention LSTM and TCN models are currently in the cen-
ter of DL research community. Alhough these models were

originally designed for neural machine translation, their out-
standing feature is that they can deal with the variability
of sequences. This feature is not yet fully exploited by our
domain data (Equation 5), but we observe the following
results so far:
• Attention LSTM often in the top-3 rank of prediction
quality. In many cases its runtime performance is
comparable to or better than other LSTM
variances.

• TCN is a complex model with the longest runtime
(Table 6). It has significantly better quality than MLP,
Con1D and Autoencoder MLP, but worse than LSTM
variances (Table 9).

3) IMPACT OF DATA PREPROCESSING ON MODEL QUALITY
• All the models have obviously worse performance with
less proper data preprocessing (Figure 7).
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TABLE 7. p sequence dependency with GRU: SMAPE(avg), 6 month train data, 2 month test data. The best values (smallest) are highlighted.

TABLE 8. k-horizon forecasting with LSTM: SMAPE(avg), 6 month train data, 2 month test data. The best values (smallest) are highlighted.

TABLE 9. Model evaluation with SMAPE(avg, std , cv ) without ODE stabilization (∂ = False). The best values are highlighted.

TABLE 10. Model performance with tumbling windows, w = 10m, s = 10m, without ODE stabilization (∂ = False). The best values are highlighted.

• Model quality is in a narrow range with proper data
preprocessing for ∂ = True. Table 3 shows the power of

the data preprocessing, which provides the best quality
ML data.
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FIGURE 6. Model quality illustration based on results in Table 9 with ∂ = False.

• Table 9 and Figure 6 with ∂ = False (i.e., less
proper data preprocessing) provide error-prone insight
into model quality.

• The comparison of ∂ = True, ∂ = False and tum-
bling windows effect in prediction quality is depicted in
Figure 7, which also supports the previous conclusion
on cooperation of data preprocessing and DL modeling.

Figure 10 and Figure 11 depict predictions over two days
of unseen data with Attention LSTMmodel with and without
ODE stabilization (∂). All models have better performance
and stability for ∂ = True (Table 4) in comparison to ∂ =
False (Table 9).

4) HYPER-PARAMETERS k-HORIZON AND p SEQUENCE
DEPENDENCY
• k-horizon forecasting parameter is important for the near
future forecasting. k defines the horizon as k th sliding
step from the time t . Table 8 with visualization in Fig-
ure 9 show the stability of our models with parameter
conditions as described in Table 1.

• p sequence dependency length influences the modelling
complexity as described in Algorithm 1 and analyzed
in Section III-C. The range (6 ≤ p < 18) is fixed
based on exploratory data analysis and feature selection
tests (SectionV) for the experiment data. Table 7 and
Figure 8 show increasing training time in correlation
with increasing value of p.

5) MODEL PERFORMANCE FROM THE
SPEED POINT OF VIEW
Apart from the modelling performance regarding the
accuracy, the speed factor is also interesting and useful.
Table 6 presents runtime comparison of the models with
default settings in Table 2.
• In general, the runtime is quite stable with low cv val-
ues for LSTM variances including GRU. The exception
is Seq2seq LSTM, which is the 4th worst model out
of 10 models in runtime stability.

• MLP, Conv1D and TCN have high cv values not only in
accuracy (SMAPE) but also in runtime.
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FIGURE 7. Comparison of ∂ = True (with ODE), ∂ = False (without ODE)
and tumbling windows effect on prediction quality with Attention LSTM
model.

FIGURE 8. Runtime ratio for p sequence dependency with GRU model,
6 month train data, 2 month test data.

FIGURE 9. k-horizon forecasting with LSTM model: SMAPE(avg), 6 month
train data, 2 month test data.

• Attention LSTM has one more layer (attention layer) in
comparison to LSTM. However, its average runtime is
shorter in our experiments with early stopping setting.

• Theoretically, as presented in Section IV-B, GRU is
slightly faster than LSTM. The early stopping effect
also causes slightly vice-versa runtime results in our
experiments.

• It is clear that deeper models like seq2seq LSTM,
stacked LSTM and TCN have higher complexity, which
reflects in longer runtime. Simpler models like MLP,
Conv1D and Autoencoder MLP are faster in training;

• From the balance viewpoint between prediction quality
andmodel complexity, models like Bidirectional LSTM,
Seq2seq LSTM, TCN including stacked TCN are too
expensive.

6) PREDICTIVE POWER OF MONITORING
CHANNEL DATA SERIES
As ML/DL models learn from data, various monitoring
channels have various prediction quality as presented in
(Table 3) or Table 10.
• TCN is the most sensitive to intermittent demand
especially with sip protocol; TCN performance is not
included in Table 10.

• sip_in can be modeled for prediction with proper data
preprocessing. The decision of feature selection is done
as described in Section V.

However, data characteristics evaluation depends on collected
data by the specific monitoring site. It can be changed when
applicable to other sites; i.e., with another network traffic
characteristics.

7) PAYLOAD MONITORING
Exploratory data analysis was also performed for payload
prediction modeling, when multiple monitoring channels
were used; i.e., features extracted from the datapool. The
results show that from 4 extracted features —in_sum_orig,
in_sum_resp, out_sum_orig, and out_sum_resp—only the
last one, which indicates mainly the web server payload
traffic, can be modeled with good results (SMAPE from 6%
to 8% with LSTM model). Payload features are extracted
as a volume summaries of sent (orig) and received (resp)
data in combination with data flow direction (in and out).
They indicate data volume transfer in interaction with com-
puting infrastructure services and its users. The reason of
such results is the high stochastic character of download
and upload processes of the monitored computing infrastruc-
ture. The exploratory data analysis diagram shows near-zero
activity for long periods with very high peaks; i.e., some
users download or upload large data volumes without any
predictable behavior. From the anomaly detection point of
view, network administrators get warnings about high peaks
based on a simple rule in the monitoring system. Therefore,
there is no need for sophisticated modeling of simple cases
like the one described.

8) FINAL LOOK BACK ON EXPERIMENTS
In Figure 10, the model is Attention LSTM with forecast-
ing horizon of one step in advance (10 minutes) and data
preprocessing with ODE. Although it seems from the graph
that the prediction (dashed line) adheres the real line, there
are differences where it deflects from the real values. These
differences are numerically calculated (Section IV-D) and
presented in Table 3. With a less proper data preprocessing
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FIGURE 10. Prediction (dashed) with Attention LSTM, ∂ = True, 3 months train data, prediction 1 step forward (10 min.) over 2 days of unseen data.

(without ODE), the prediction (dashed line) adheres less with
the real line, which is reflected in worse model stability
(Figure 11) as numerically presented in Table 9. Based on the

results presented in Table 3, Table 9 and Table 10 the effect of
preprocessing quality (with ODE, without ODE and tumbling
windows) on forecasting quality is depicted in Figure 7.
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FIGURE 11. Prediction (dashed) with Attention LSTM, ∂ = False, 3 months train data, prediction 1 step forward (10 min.) over 2 days of unseen data.

VII. CONCLUSION AND PERSPECTIVE
The work presented in this paper provides a deep insight
into the building process of an intelligent module for
proactive network monitoring and security protection for

computing infrastructures. The intelligent module extends
the monitoring capacity of the IDS supervising network traf-
fic flows through a proactive solution using DL techniques,
simultaneously modelling multiple monitoring channels.
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We presented the system’s architecture, covering both the
development and deployment phases of the module as ML
application. The proper connection of DL modelling with
scalable data preprocessing ensures high quality model per-
formance in dynamic and fast-changing environments. The
data preprocessing module leverages Big Data technologies
to deliver feature engineering automation at scale. The pro-
posed solution is carefully evaluated with experiments and
presented in Section VI-B.

If there is not an universal solution that solves all the
problems, it is suitable to combine several partial into a
hybrid solution, where each partial solution can be strong
and suitable for fitting different cases (Section III-C). A con-
siderable amount of work needs to be done to deliver an AI
solution to a real production environment, in close coopera-
tion with network administrators, in order to cover security
incident recognizing, abnormal range exclusion specification
(Table 1) as well as feed-backs for next level detection.
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[31] A.-C. Petricǎ, S. Stancu, and A. Tindeche, ‘‘Limitation of ARIMA
models in financial and monetary economics,’’ Theor. Appl. Econ.,
vol. 23, no. 4, pp. 19–42, 2016. [Online]. Available: http://store.ectap.
ro/articole/1222.pdf

[32] V. Cerqueira, L. Torgo, and C. Soares, ‘‘Machine learning vs sta-
tistical methods for time series forecasting: Size matters,’’ 2019,
arXiv:1909.13316. [Online]. Available: https://arxiv.org/abs/1909.13316

[33] Y. Kajitani, K. W. Hipel, and A. I. Mcleod, ‘‘Forecasting nonlinear time
series with feed-forward neural networks: A case study of Canadian
LYNX data,’’ J. Forecasting, vol. 24, no. 2, pp. 105–117, Mar. 2005,
doi: 10.1002/for.940.

19714 VOLUME 8, 2020

http://dx.doi.org/10.1002/widm.1232
http://dx.doi.org/10.1002/for.940


G. Nguyen et al.: DL for Proactive Network Monitoring and Security Protection

[34] M. Tahan, E. Tsoutsanis, M.Muhammad, and Z. A. Karim, ‘‘Performance-
based health monitoring, diagnostics and prognostics for condition-
based maintenance of gas turbines: A review,’’ Appl. Energy, vol. 198,
pp. 122–144, Jul. 2017. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0306261917304415

[35] B. Mohammed, I. Awan, H. Ugail, and M. Younas, ‘‘Failure prediction
using machine learning in a virtualised HPC system and application,’’
Cluster Comput., vol. 22, no. 2, pp. 471–485, 2018. [Online]. Available:
https://link.springer.com/article/10.1007/s10586-019-02917-1

[36] D. Tran, N. Tran, G. Nguyen, and B. M. Nguyen, ‘‘A proactive cloud
scaling model based on fuzzy time series and SLA awareness,’’ Pro-
cedia Comput. Sci., vol. 108, pp. 365–374, 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1877050917306865

[37] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, ‘‘Metaheuristic
algorithms: A comprehensive review,’’ in Computational Intelligence for
Multimedia Big Data on the Cloud With Engineering Applications. Ams-
terdam, TheNetherlands: Elsevier, 2018, pp. 185–231. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/B9780128133149000104

[38] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[39] J. Kennedy, ‘‘Particle swarm optimization,’’ Encyclopedia Mach. Learn.,
vol. 93, pp. 760–766, Jan. 2010. [Online]. Available: https://link.
springer.com/content/pdf/10.1007/978-0-387-30164-8_630.pdf

[40] S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, and
J. Portilla-Figueras, ‘‘The coral reefs optimization algorithm: A novel
metaheuristic for efficiently solving optimization problems,’’ Sci. World
J., vol. 2014, Jul. 2014, Art. no. 739768, doi: 10.1155/2014/739768.

[41] V. Muthiah-Nakarajan and M. M. Noel, ‘‘Galactic swarm optimization:
A new global optimization metaheuristic inspired by galactic motion,’’
Appl. Soft Comput., vol. 38, pp. 771–787, Jan. 2016. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1568494615006742

[42] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv.
Eng. Softw., vol. 95, pp. 51–67, May 2016. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0965997816300163

[43] T. Nguyen, B. M. Nguyen, and G. Nguyen, ‘‘Building resource auto-scaler
with functional-link neural network and adaptive bacterial foraging opti-
mization,’’ in Theory and Applications of Models of Computation (Lecture
Notes in Computer Science), vol. 11436. Cham, Switzerland: Springer,
2019, pp. 501–517. [Online]. Available: http://link.springer.com/10.1007/
978-3-030-14812-6_31

[44] T. Nguyen, T. Nguyen, B. M. Nguyen, and G. Nguyen, ‘‘Efficient time-
series forecasting using neural network and opposition-based coral reefs
optimization,’’ Int. J. Comput. Intell. Syst., vol. 12, no. 2, p. 1144, 2019.
[Online]. Available: https://www.atlantis-press.com/article/125921354

[45] J. C. B. Gamboa, ‘‘Deep learning for time-series analysis,’’ 2017,
arXiv:1701.01887. [Online]. Available: https://arxiv.org/abs/1701.01887

[46] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[47] D. Bruneo and F. De Vita, ‘‘On the use of LSTM networks for predic-
tive maintenance in smart industries,’’ in Proc. IEEE Int. Conf. Smart
Comput., Jun. 2019, pp. 241–248. [Online]. Available: https://ieeexplore.
ieee.org/document/8784003

[48] M. Schuster and K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.
[Online]. Available: http://ieeexplore.ieee.org/document/650093/

[49] T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to
attention-based neural machine translation,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2015, pp. 1412–1421. [Online]. Avail-
able: http://aclweb.org/anthology/D15-1166

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need

[51] T. Hollis, A. Viscardi, and S. E. Yi, ‘‘A comparison of LSTMs
and attention mechanisms for forecasting financial time series,’’ 2018,
arXiv:1812.07699. [Online]. Available: https://arxiv.org/abs/1812.07699

[52] N. Tran, T. Nguyen, B. M. Nguyen, and G. Nguyen, ‘‘A multi-
variate fuzzy time series resource forecast model for clouds using
LSTM and data correlation analysis,’’ Procedia Comput. Sci., vol. 126,
pp. 636–645, 2018. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1877050918312754

[53] S. Bai, J. Z. Kolter, and V. Koltun, ‘‘An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,’’ 2018,
arXiv:1803.01271. [Online]. Available: https://arxiv.org/abs/1803.01271

[54] S.-Y. Shih, F.-K. Sun, and H.-Y. Lee, ‘‘Temporal pattern attention
for multivariate time series forecasting,’’ Mach. Learn., vol. 108,
nos. 8–9, pp. 1421–1441, Sep. 2019. [Online]. Available: http://link.
springer.com/10.1007/s10994-019-05815-0

[55] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, ‘‘MAD-GAN: Multi-
variate anomaly detection for time series data with generative adversarial
networks,’’ in Proc. Int. Conf. Artif. Neural Netw. Cham, Switzerland:
Springer, 2019, pp. 703–716, doi: 10.1007/978-3-030-30490-4_56.

[56] W. Vorhies. (2018). Temporal Convolutional Nets (TCNs) Take Over
From RNNs for NLP Predictions. Accessed: Sep. 9, 2019. [Online].
Available: https://www.datasciencecentral.com/profiles/blogs/temporal-
convolutional-nets-tcns-take-over-from-rnns-for-nlp-pred

[57] J. M. Kizza, Guide to Computer Network Security (Computer Com-
munications and Networks), 4th ed. London, U.K.: Springer-Verlag,
2017. [Online]. Available: https://link.springer.com/book/10.1007/978-3-
319-55606-2

[58] NVIDIA. (2019). High Performance Computing. Build Scalable GPU-
Accelerated Applications. Faster. Accessed: Sep. 9, 2019. [Online]. Avail-
able: https://developer.nvidia.com/hpc

[59] Google. (2019). Tensor Processing Unit (TPU). Accessed: Oct. 9, 2019.
[Online]. Available: https://cloud.google.com/tpu/docs/

[60] P. Voigt and A. Von dem Bussche, The EU General Data Protection Reg-
ulation (GDPR). Cham, Switzerland: Springer, 2017. [Online]. Available:
https://link.springer.com/content/pdf/10.1007/978-3-319-57959-7.pdf

[61] L. Gil and A. Liska, Security with AI and Machine Learning, V. Wilson,
Ed., 1st ed. Newton,MA,USA:O’ReillyMedia, 2019. [Online]. Available:
https://get.oreilly.com/ind_security-with-ai-and-machine-learning.html

[62] G. Nguyen, B. M. Nguyen, D. Tran, and L. Hluchy, ‘‘A heuristics approach
to mine behavioural data logs in mobile malware detection system,’’
Data Knowl. Eng., vol. 115, pp. 129–151, May 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0169023X17303063

[63] DEEP-Hybrid-DataCloud. (2019). Designing and Enabling e-
Infrastructures for Intensive Processing in a Hybrid Datacloud.
Accessed: Sep. 9, 2019. [Online]. Available: https://deep-hybrid-
datacloud.eu/

[64] R. Sun, S. Zhang, C. Yin, J. Wang, and S. Min, ‘‘Strategies for data
stream mining method applied in anomaly detection,’’ Cluster Comput.,
vol. 22, no. 2, pp. 399–408, 2018. [Online]. Available: https://link.springer.
com/article/10.1007/s10586-018-2835-2

[65] P. Burnap, R. French, F. Turner, and K. Jones, ‘‘Malware classifica-
tion using self organising feature maps and machine activity data,’’
Comput. Secur., vol. 73, pp. 399–410, Mar. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167404817302535

[66] M. Monshizadeh, V. Khatri, B. G. Atli, R. Kantola, and Z. Yan,
‘‘Performance evaluation of a combined anomaly detection platform,’’
IEEE Access, vol. 7, pp. 100964–100978, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8771247/

[67] (2017). Bro Analysis Tools (BAT), GitHub. Accessed: Sep. 9, 2019.
[Online]. Available: https://github.com/SuperCowPowers/bat

[68] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[69] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-
tice. OTexts, 2018. [Online]. Available: https://otexts.com/

[70] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical
evaluation of gated recurrent neural networks on sequence modeling,’’
2014, arXiv:1412.3555. [Online]. Available: https://arxiv.org/abs/
1412.3555

[71] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec. 2010. [Online]. Available: http://www.
jmlr.org/papers/v11/vincent10a.html

[72] C. Olah. (2015). Understanding LSTM Networks. Accessed: Sep. 9, 2019.
[Online]. Available: http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

[73] N. Srivastava, E. Mansimov, and R. Salakhudinov, ‘‘Unsupervised learn-
ing of video representations using lstms,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 843–852. [Online]. Available: http://www.jmlr.org/
proceedings/papers/v37/srivastava15.pdf

[74] CyberZHG. (2019). Keras Self-Attention GitHub. Accessed: Sep. 9, 2019.
[Online]. Available: https://pypi.org/project/keras-self-attention/

VOLUME 8, 2020 19715

http://dx.doi.org/10.1155/2014/739768
http://dx.doi.org/10.1007/978-3-030-30490-4_56


G. Nguyen et al.: DL for Proactive Network Monitoring and Security Protection

[75] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
‘‘WaveNet: A generative model for raw audio,’’ 2016, arXiv:1609.03499.
[Online]. Available: https://arxiv.org/abs/1609.03499

[76] P. Remy. (2019). Keras TCN GitHub. Accessed: Sep. 9, 2019. [Online].
Available: https://pypi.org/project/keras-tcn/

[77] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[78] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, ‘‘Activation func-
tions: Comparison of trends in practice and research for deep learning,’’
2018, arXiv:1811.03378. [Online]. Available: https://arxiv.org/abs/1811.
03378

[79] S. Kim and H. Kim, ‘‘A new metric of absolute percentage error
for intermittent demand forecasts,’’ Int. J. Forecasting, vol. 32, no. 3,
pp. 669–679, Jul. 2016. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0169207016000121

[80] H. Song, I. Triguero, and E. Özcan, ‘‘A review on the self and dual inter-
actions between machine learning and optimisation,’’ Prog. Artif. Intell.,
vol. 8, no. 2, pp. 143–165, 2019. [Online]. Available: https://link.springer.
com/article/10.1007/s13748-019-00185-z

[81] R. Astudillo and P. I. Frazier, ‘‘Bayesian optimization of composite
functions,’’ 2019, arXiv:1906.01537. [Online]. Available: https://arxiv.org/
abs/1906.01537

[82] A. S. Foundation. (2019). Apache Parquet—Columnar Storage Format.
Accessed: Sep. 9, 2019. [Online]. Available: https://parquet.apache.org/

[83] A. S. Foundation. (2019). Apache Arrow: A Cross-Language Development
Platform for in-MemoryData. Accessed: Sep. 9, 2019. [Online]. Available:
https://arrow.apache.org/

[84] A. B. Downey, Think DSP: Digital Signal Processing in Python. Newton,
MA, USA: O’Reilly Media, 2016.

[85] A. S. Foundation. (2019). Spark SQL: Apache Spark’s Module for Work-
ing With Structured Data. Accessed: Sep. 9, 2019. [Online]. Available:
https://spark.apache.org/sql/

[86] B. Frénay, G. Doquire, and M. Verleysen, ‘‘Is mutual information
adequate for feature selection in regression?’’ Neural Netw., vol. 48,
pp. 1–7, Dec. 2013. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0893608013001883

[87] G. Peyre. (2019). Mathematical Foundations of Data Sciences.
CNRS and DMA, Ecole Normale Superieure. [Online]. Available:
https://mathematical-tours.github.io

[88] J. González-López, S. Ventura, and A. Cano, ‘‘Distributed selection of
continuous features in multilabel classification using mutual information,’’
IEEE Trans. Neural Netw. Learn. Syst., to be published. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8877992

[89] A. Kraskov, H. Stögbauer, and P. Grassberger, ‘‘Estimating mutual infor-
mation,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 69, no. 6, Jun. 2004, Art. no. 066138, doi: 10.1103/PhysRevE.
69.066138.

[90] B. C. Ross, ‘‘Mutual information between discrete and continuous data
sets,’’ PLoS ONE, vol. 9, no. 2, Feb. 2014, Art. no. e87357. [Online].
Available: https://dx.plos.org/10.1371/journal.pone.0087357

[91] S. Arlot andA. Celisse, ‘‘A survey of cross-validation procedures formodel
selection,’’ Statist. Surv., vol. 4, pp. 40–79, 2010. [Online]. Available:
http://projecteuclid.org/euclid.ssu/1268143839

[92] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and
M. Kawanabe, ‘‘Direct importance estimation for covariate shift adapta-
tion,’’ Ann. Inst. Stat. Math., vol. 60, no. 4, pp. 699–746, 2008. [Online].
Available: https://link.springer.com/article/10.1007/s10463-008-0197-x

[93] (2019). DEEP-Hybrid-DataCloud, Deep Open Catalog—Deep Market-
place. Accessed: Oct. 9, 2019. [Online]. Available: https://marketplace.
deep-hybrid-datacloud.eu/

[94] S. Dlugolinsky, V. Tran, and G. Nguyen. (2019). Massive Online
Data Streams (MODS). CSIC-UC - Instituto de Fisica de Cantabria.
Accessed: Oct. 9, 2019, doi: 10.20350/digitalCSIC/8975.

[95] S. Dlugolinsky and G. Nguyen. (2019). Deep as a Service: Mods Con-
tainer. Accessed: Oct. 19, 2019. [Online]. Available: https://github.com/
deephdc/DEEP-OC-mods

[96] Á. L. García, ‘‘DEEPaaS API: A REST API for machine learning and deep
learning models,’’ J. Open Source Softw., vol. 4, no. 42, p. 1517, Oct. 2019,
doi: 10.21105/joss.01517.

[97] S. Dlugolinsky, V. Tran, and G. Nguyen. (2019). Aggregated Net-
work Monitoring Data. CSIC-UC-Instituto de Fisica de Cantabria.
Accessed: Oct. 9, 2019, doi: 10.20350/digitalCSIC/8974.

GIANG NGUYEN received the M.Sc. degree
in information technology and the Ph.D. degree
in applied informatics from the Slovak Uni-
versity of Technology (STU), Bratislava, Slo-
vakia. She is currently a Senior Researcher with
the Institute of Informatics, Slovak Academy
of Sciences (IISAS). She is a coauthor of
scientific articles. She has been working in
EU IST RTD, EU H2020 projects, such
as DEEP-Hybrid-DataCloud, PROCESS,

EGI-InSPIRE, PELLUCID, ANFAS, and national projects. Her research
topics focused on soft computing, machine learning, deep learning, cyber
security, and high-performance computing. She is a member of program
committees. She is the Supervisor of Ph.D. degree students at IISAS, FIIT
STU, Bratislava, and FEI TUKE, Košice, Slovakia, and a Reviewer of CC
journals and national proposals.

STEFAN DLUGOLINSKY received the Ph.D.
degree in applied informatics from the Slovak
University of Technology (STU), Bratislava, Slo-
vakia. He is currently a Scientific Researcher
with the Institute of Informatics, Slovak Academy
of Sciences (IISAS). He is a coauthor of sci-
entific articles. He has been working on EU
IST RTD, EU H2020 projects, such as Design-
ing and Enabling E-infrastructures for inten-
sive Processing in a Hybrid DataCloud (DEEP-

HybridDataCloud), PROCESS, VENIS, COMMIUS, EUSAS, and national
projects. His main research interests include information systems, informa-
tion extraction, machine learning, and knowledge-oriented technologies.

VIET TRAN received the M.Sc. degree in infor-
matics and information technology and the Ph.D.
degree in applied informatics from the Slovak
University of Technology (STU), Bratislava, Slo-
vakia. He is currently a Senior Researcher with
the Institute of Informatics, Slovak Academy of
Sciences (IISAS). He is also actively participates
on preparations and solving a number of EU IST
RTD 4th, 5th, 6th, 7th FP, and EU H2020 projects.
He is also working as the Work Package Leader

of EU H2020 projects DEEP-HybridDataCloud, PROCESS and as a Key
Person with EOSC-Hub and EOSC-Synergy. His primary research fields
are complex distributed information processing, grid and cloud computing,
system deployment, and security.

ÁLVARO LÓPEZ GARCÍA received the Ph.D.
degree in science, technology, and computing
from the University of Cantabria (UC). He was a
Visiting Researcher with the IN2P3/CNRS Com-
puting Center, Lyon, France, and a Research Asso-
ciate with the Italian National Institute for Nuclear
Physics (INFN). He is currently a Postdoctoral
Researcher with CSIC. He is also an Assistant
Professor with UC, teaching several computer’s
architecture subjects, and a Professor with the offi-

cial master’s degree in data science with the Universidad Internacional
Mendendez Pelayo (UIMP). He has taken a part in several national and Euro-
pean projects, such as EGEE-II/III, Int.Eu.Grid, EUFORIA, EGI-InSPIRE,
EGI-Engage (task leader of the Federated Cloud JRA), INDIGO-DataCloud
(task leader of the Cloud Computing Virtualization JRA), and AARC-II.
He is also coordinating the DEEP-Hybrid-DataCloud H2020 project and
participating in the EOSC-Hub and EOSC-Synergy. In the last years, he has
beenworking on the adoption of the cloud by scientific datacenters and users.

19716 VOLUME 8, 2020

http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.20350/digitalCSIC/8975
http://dx.doi.org/10.21105/joss.01517
http://dx.doi.org/10.20350/digitalCSIC/8974

