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ABSTRACT A ubiquitous tool in science, physics, and engineering at large, the transfer matrix
method (TMM) is particularly suited to deal with complex nonuniform systems (NUS). In the field of
electrical engineering, the method is employed in a variety of disciplines that span the electromagnetic
spectrum, from power frequencies through RF, millimeter-waves, and terahertz. In this work, three nested
goals are pursued. The first is to present a general comprehensive review of the transfer matrix method
utilizing two distinct languages: the state space (via the matricant) and the modal analysis (via matrix
diagonalization). The second goal, focused on electrical engineering issues, is the application of TMM to
the interdisciplinary theme of nonuniform multiconductor transmission lines (MTL) −a good example of a
complex reciprocal multiport system. The third goal is to offer the reader novel research results in the context
of MTL analysis. Making use of a simple microwave stripline-coupler structure new theoretical results are
presented showing that, in some cases, load impedance matching of nonuniform MTLs, using only passive
components, may not be physically possible (negative resistors being required), even if the global NUS is
longitudinally and transversally symmetric, with or without losses.

INDEX TERMS Impedance matching, matricant, modal analysis, multiconductor transmission lines,
nonuniform structures, reciprocal multiport systems, state-space approach, transfer matrix method.

I. INTRODUCTION
All physical structures, natural or artificial/man-made, are
nonuniform systems in the sense that their 3D volume
description includes periodic, quasiperiodic or nonperiodic
variations at least in one direction (x, y, or z), either in terms
of topology or medium properties.

The transfer matrixmethod (TMM) is a key tool [1]–[38] in
science, physics, engineering, and technology research when
nonuniform structures (NUS) are at play; the method being
specially fitted for the frequency-domain analysis of linear
time-invariant systems with stratified material media and/or
layered geometries.

The subject of NUS/TMM is interdisciplinary. It turned
out a very important area of research in electrical engineer-
ing [14]–[28] owing to its impact on almost all of its sub-
areas: control, electromagnetics, microwaves, optics, power
systems, telecommunications, etc. Other engineering fields
like acoustics, bio, civil, fluids, materials, mechanics, etc.
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also employ TMM [29]–[35], even genetic science is using
TMM in DNA research [36]–[38].

As mentioned, the transfer matrix method is well suited
for the frequency-domain analysis of NUS, especially when
the components of the NUS are lossy and have dispersive
behavior.

Time-domain results can be retrieved from their spectral
counterparts via Fourier transforms. Albeit very accurate,
ordinary time-domain→frequency-domain→time-domain
methods may require long computation times. CPU
times can be greatly reduced by opting for conventional
finite-difference time-domain algorithms, but, unfortunately,
these are not unconditionally stable, and do not work well
with dispersive media.

This article is organized into seven sections, the first of
which is introductory. The four following sections are ded-
icated to the review of the transfer matrix method. The
sixth section, focused on a concrete application, combines
review and research. The article ends with a conclusion
section and a bibliographic list whose references cover the
timespan 1888 to 2019.
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Section II presents the frequency-domain theoretical
framework for the general analysis of nonuniform multiport
structures, where the state-space approach, or ‘matricant’,
is utilized to obtain/compute the structure’s transfer matrix in
the form of a convergent series expansion. The results offered
in Section II are particularized in Section III to the simple, but
important, case of uniform multiport structures, and, in that
context, the ‘matricant’ approach is confronted with the rival
method of ‘diagonalization’ (eigenproblem).

The well-known segmentation technique is briefly
addressed in Section IV. Useful and rather intuitive the
technique consists of replacing the nonuniform multiport
structure by the chain connection of a large number of small
uniform multiport cells, the global transfer matrix being
obtained by continuous multiplication of the cells’ individual
transfer matrices.

The topic of extracting the transfer matrix of an NUS
black-box from experimental measurements is touched upon
in Section V, taking account of the properties peculiar to the
transfer matrix.

Finally, in Section VI (the longest one), the utilization
of the transfer matrix method is concretized and illustrated
with the electrical engineering subject of multiconductor
transmission-line structures (MTL) —a cross-disciplinary
theme whose interest spans the whole spectrum, from 60 Hz
long-length power lines to terahertz tiny optical devices.
Section VI comprises three subsections. The first is aimed at
the determination of the transfer matrix of nonuniform MTL
problems; the second to their solutions via modal analysis.
Dedicated to novel research results, the last subsection deals
with the curious example of a microwave stripline coupler
with two cascaded halves imperfectly connected, where load
matching terminations may turn out to be unfeasible.

II. THEORETICAL BACKGROUND
The complexity of anNUS depends on its degrees of freedom,
determined from the number n of pairs of scalar state-space
variables required for its complete description, for example:
displacement and force components, pressure and velocity
components, tension and torque components, voltages and
currents, electric-field and magnetic-field components, etc.

Consider a linear passive nonuniform structure of length l,
whose internal constitution varies along the x-coordinate, and
whose complexity requires 2n scalar state variables for its
characterization: pk and qk (for k = 1 · · · n), all of them
depending on x and t coordinates.
Assuming, without loss of generality that pk and qk are

time-harmonic, of frequency ω (= 2π f ), one can write{
pk (x, t) = <

{
P̄k (x)ejωt

}
qk (x, t) = <

{
Q̄k (x)ejωt

} (1)

where P̄k and Q̄k are phasor representations of pk and qk .
The transfer matrix Tl (also known by the name of ABCD

matrix, transmission matrix, or chain matrix) is a complex
non-symmetric 2n×2nmatrix that permits the calculation of

the phasor pairs (P̄k , Q̄k ) at the output end, x = l, from those
at the input end, x = 0, for all values of k , that is

9 l = Tl90, Tl =
[
A B
C D

]
(2)

where, for x ∈ [0 , l],

9x = 9(x) = T(x)90 =

[
Px
Qx

]
(3)

and

Px =


P̄1(x)
P̄2(x)
...

P̄n(x)

 , Qx =


Q̄1(x)
Q̄2(x)
...

Q̄n(x)

 (4)

Assuming (in addition to passivity) that the NUS is also a
reciprocal structure, its transfer matrix will be unimodular

∀x : detT(x) = 1 (5)

The transfer matrix usually shows up in connection
with first-order linear homogeneous differential matrix
equations [28], [39]–[41], of the type

d
dx
9(x) = S(x)9(x) (6)

where S often bears the name of state transition matrix.
Integration of (6) from x = 0 to x = l gives

9(x=l) = 90 +

l∫
0

S(x)9(x)dx (7)

Substituting (T(x)90) for 9(x) into (7) yields

T(l) = 1+

l∫
0

S(x)T(x)dx (8)

where 1 is the identity matrix.
Next, by endlessly substituting T(l), with l replaced by x,

in the right-hand side of (8), we obtain the solution for Tl in
terms of nested integrals of S(x),

Tl = 1+

l∫
0

S(x)

×

1+

x∫
0

S(x1)

1+ x1∫
0

S(x2)
(
1+

∫
· · ·

)
dx2

 dx1

dx
(9)

or as an infinite series

Tl =
[
A B
C D

]
= 1+ ϒ1 + ϒ2 + ϒ3 + · · · =

∞∑
m=0

ϒm (10)
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where ϒ0 = 1, and

ϒ1(l) =
l∫
0
S(x) dx

ϒ2(l) =
l∫
0
S(x)

ϒ1(x)︷ ︸︸ ︷ x∫
0

S(x1)dx1

 dx

ϒ3(l) =
l∫
0
S(x)

ϒ2(x)︷ ︸︸ ︷ x∫
0

S(x1)

 x1∫
0

S(x2)dx2

 dx1

 dx

...

ϒm(l) =
l∫
0
S(x)ϒm−1(x) dx

(11)

The solution in (10)-(11), known in Linear Algebra by
the matricant [32], [39], [40], is an absolutely uniformly
convergent series expansion. The series, firstly obtained
by Peano, was later developed by Baker and, modernly,
by Magnus, [28], [42]–[48].

In addition to (5), the n×n submatrices ofTl in (10) satisfy
the following properties, [20],

ABT − BAT
= DTB− BTD = 0

DCT
− CDT

= ATC− CTA = 0
ADT

− BCT
= DTA− BTC = 1

(12)

[
A B
C D

]−1
=

[
D −C
−B A

]T
(13)

where superscript T denotes matrix transposition.
We can see from (12) that one of the four submatrices

of Tl is redundant, for it can be found from the remaining
three. For example, given A,B, and C, we can find D
from

DT
= A−1(1+ BCT ) = (1+ BTC)A−1 (14)

If the nonuniform structure is periodical with period l, that
is, if it is made of the chain connection of N identical cells,
then the overall transfer matrix will simply be given by the
N th power of Tl .

III. UNIFORM STRUCTURES
For the particular case of uniform structures, where S is x-
independent, the calculation of the terms of the series expan-
sion in (11) is not difficult, yielding

ϒ1(l) = Sl

ϒ2(l) =
1
2
(Sl)2

ϒ3(l) =
1
6
(Sl)3

...

ϒm(l) =
1
m!

(Sl)m

(15)

The terms appearing in (15) are quite well-known; they
are the terms of Taylor’s series for the exponential function.
This leads to the conclusion that the transfer matrix Tl is the
exponential function of (Sl)

Tl =
[
A B
C D

]
=

∞∑
m=0

(Sl)m

m!
= eSl (16)

In the case of uniform structures, the results in (12)-(13)
simplify, [20], yielding

A = DT , B = BT , C = CT

AB = BD, DC = CA
A2
− BC = D2

− CB = 1
(17)

[
A B
C D

]−1
=

[
A −B
−C D

]
(18)

The properties listed now in (17) show that two of the
four submatrices of Tl are redundant. The transfer matrix of
uniform structures can be fully characterized by only two of
its submatrices; for example, if A and B are known, then
C and D will be determined from

C = B−1(A2
− 1), D = AT (19)

The matricant solution in (15)-(16) is an infinite summa-
tion which must be truncated at some order according to
a prescribed accuracy level, the number of necessary terms
depending on the frequency ω.

A rather different strategy —diagonalization, [39],
[40]—can be used to find the transfer matrix in (16).
It involves the solution of an eingenvalue problem focused
on the state transition matrix S,

M−1S M = g or (S− gk1)mk = 0 (20)

where g is a diagonal matrix gathering the gk eigenvalues of
S (for k = 1 to 2n); the corresponding eigenvectorsmk being
gathered in the transformation matrix M.

Once (20) is solved, the exponential matrix function of S
is readily obtained through, [39], [40],

Tl = eSl =M egl M−1 (21)

where, like g, matrix egl is 2n× 2n diagonal

egl =
[
e−γ l 0
0 e+γ l

]
(22)

where γ and eγ l are n× n diagonal.
Exceptionally, when irregular multiple eigenvalues exist

in γ , the diagonalization procedure in (20)-(21) fails,
M is singular, and the transfer matrix Tl cannot be obtained
from (21), [39], [40], [49]. However, the matricant procedure
in (15)-(16) can always be implemented regardless of the
presence of irregular eigenvalues.

The arrangement of the eigenvalues of Tl in (22),
where they are gathered in two block-diagonal matrices
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(inverse of each other), makes evident the property in (5) valid
for reciprocal structures,

det Tl = det
(
egl
)
= det

(
e+γ l

)
det

(
e−γ l

)
= 1 (23)

An immediate consequence of (20), (22) and (23) is that
the 2n× 2n diagonal matrix g is also partitioned in two n× n
diagonal matrices,

g =
[
−γ 0
0 +γ

]
→ tr(g) = 0 (24)

The traces of the similar matrices g and S ought to coin-
cide, therefore we see that the diagonal entries of the state
transition matrix are such that

2n∑
k=1

Skk = 0 (25)

Note that the results in (23)-(25) hold for uniform and nonuni-
form structures, reciprocity provided.

IV. SEGMENTATION TECHNIQUE
The general matricant approach in (9)-(11) is a superb numer-
ical technique provided that the entries of the state-transition
matrix S(x) are known in advance and are described by
closed-form functions of x —which seldom happens with
real NUS.

However, sometimes, a discretized description of S may
be available. The NUS, of length l, is conceptually bro-
ken down into a number N of chained segments of length
1l = l/N , where each small segment, centered at x =
xi = (2i− 1)1l/2, is considered uniform. In other words, the
S matrix is replaced by a stepwise approximation with
N steps, S1 · · · SN , each small segment characterized by
its transfer matrix, T1 · · · TN ,
S(x1) = S1→ T1 = eS11l, for 0 < x < 1l
...

S(xN ) = SN → TN = eSN1l, for l −1l < x < l

(26)

The NUS transfer matrix is then obtained from

Tl = TN · · · T1 = eSN1l . . . eSi1l . . . eS11l (27)

but, be aware, writing (27) in the form

Tl = e Sav l, with Sav =
1
N

∑
i

Si (28)

would be a mistake, for the multiplication of matrices
is a non-commutative operation. Commutativity holds if
all the Si matrices share the same set of eigenvectors,
[39], [40].

Nonetheless, an equivalent state transition matrix
Seq ( 6= Sav) based on the contributing Si matrices can be
defined

Seq = 1
N1l ln

(
eSN1l . . . eSi1l . . . eS11l

)
(29)

moreover, matrix Seq can even be written in the form of a
series expansion, like in (9)-(10).

The problem of finding the solution Seq of the matrix
equation

eSeq = eSaeSb (30)

in terms of known Sa and Sb is not a soft problem. During
the 1900s, the problem was an issue of very great concern
in the field of Physics (quantum mechanics/high energy) as
well as in pure and applied Mathematics (linear algebra/Lie
algebras). The so-called Baker-Campbell-Hausdorff-Dynkin
formula, [42]–[48], provided a solution to (30) in the form of
a series expansion with nested commutators whose first terms
are

Seq = (Sa + Sb)

+
1
2! [Sa,Sb]+

2
4! [Sa, [Sa,Sb]]+

2
4! [Sb, [Sb,Sa]] · · ·

(31)

where the notation [Sa,Sb] refers to the commutator of the
Sa and Sb matrices, i.e., [Sa,Sb] = SaSb − SbSa.
It is now clear that the solution Seq = Sa+Sb, in (28), will

only apply if Sa and Sb commute.

V. TRANSFER MATRIX MEASUREMENT
Quite often, detailed data on the internal constitution of the
NUS are badly known or unknown at all —the structure is
a black box, accessible only at its input and output ends,
x = 0 and x = l. In such circumstances, analytical tools are of
little use to determine Tl ; the transfer matrix will have to be
found experimentally, measuring the values of the state space
complex phasors of the NUS gathered in the n × 1 column
matrices P0, Pl , and Q0, Ql .

Let us go back to (2) and rewrite

[
Pl
Ql

]
=

Tl︷ ︸︸ ︷[
A B
C D

] [
P0
Q0

]
(32)

By enforcing the boundary condition Q0 = 0 we have

Pl = AP0, Ql = CP0 (33)

A first set of n independent experiments is performed.
In the k th experiment (k = 1 to n) the structure is driven at the
output end by one single stimulus: Pk (l) = p and Pi(l) = 0,
for i 6= k . Afterward, the remaining state-space variables
belonging to P0 and Ql are measured.

Hence, we have:
Experiment #k (1st set):

P(k)
l = p



0
...

0
1
0
...

0


→ P(k)

0 =



P1(0)
...

Pk−1(0)
Pk (0)
Pk+1(0)

...

Pn(0)


, Q(k)

l =



Q1(l)
...

Qk−1(l)
Qk (l)
Qk+1(l)

...

Qn(l)


(34)
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The sets of n stimuli and measurement results are sepa-
rately gathered in three n× n square matrices

_

Pl =
[
P(1)
l , · · · ,P

(k)
l , · · · ,P

(n)
l

]
= p1

_

P0 =

[
P(1)
0 , · · · ,P

(k)
0 , · · · ,P

(n)
0

]
_

Ql =

[
Q(1)
l , · · · ,Q

(k)
l , · · · ,Q

(n)
l

] (35)

From (33) and (35) we see that submatrices A and C can
be retrieved through

A = p
_

P
−1

0 , C =
_

Ql
_

P
−1

0 (36)

Using a similar procedure the submatrices B and D are
found from a new second set of n experiments, where the
boundary condition P0 = 0 is enforced, leading to

Pl = BQ0, Ql = DQ0 (37)

As before, in the k th experiment (k = 1 to n) the structure
is driven by the single stimulus Pk (l) = p, and the remaining
state-space variables belonging to Q0 and Ql are measured,
that is:

Experiment #k (2nd set):

P(k)
l = p



0
...

0
1
0
...

0


→ Q(k)

0 =



Q1(0)
...

Qk−1(0)
Qk (0)
Qk+1(0)

...

Qn(0)


, Q(k)

l =



Q1(l)
...

Qk−1(l)
Qk (l)
Qk+1(l)

...

Qn(l)


(38)

These measurements are gathered in two n × n square
matrices Q̆Q̆0 =

[
Q(1)

0 , · · · ,Q
(k)
0 , · · · ,Q

(n)
0

]
Q̆l =

[
Q(1)
l , · · · ,Q

(k)
l , · · · ,Q

(n)
l

] (39)

From (37) and (39) we see that submatrices B and D can
be retrieved through

B = pQ̆−10 , D = Q̆lQ̆−10 (40)

The correctness and precision of the measurements can be
assessed/controlled by employing the transfer matrix proper-
ties in (12). From ATC = CTA one must check that matrix
_

Ql is symmetric; likewise, fromDTB = BTD onemust check
the symmetry of Q̆l . The remaining properties of the transfer
matrix, listed in (12), may also be used to crosscheck the
measurement data obtained in the two sets of experiments,
which must be interdependent, provided, of course, that
the structure under test suffered no internal changes during
experiments.

The suggested sets of experiments —utilizing the same
stimulus source in all the tests, where in each test only one
output terminal of the NUS is excited— is just an example;
many other options are equally possible.

Regardless of the option, careful attention should be
paid to the need of synchronizing the measurements of the
state-space complex phasors at the two ends of the NUS. Dif-
ferent delay times resulting from different distances between
the measuring instrument and the two ends of the structure
may corrupt the phase information.

The above aspect may not be of great concern when
the measurement experiments are conducted on a lab
bench. Things can get more complicated when the input and
output ends of the NUS under test are some hundreds of miles
apart, as it happens in the problem of real-time monitoring
of overhead power lines —of undeniable socio-economic
impact the problem is currently a hot topic of investigation,
that involves synchrophasor measurement technology, phasor
measurement units, smart grids, global positioning systems,
and big data analytics, [50]–[52].

VI. APPLICATION OF TRANSFER MATRIX METHOD TO
NONUNIFORM MTL STRUCTURES
As was pointed out in the introductory section, the transfer
matrix method (TMM) is a very important tool in electrical
engineering for its utilization pervades a variety of areas, from
long power lines operating at low frequency (60 Hz) to tiny
optical devices functioning in the terahertz band.

Multiconductor transmission lines (MTL) is one of the
most interesting cross-disciplinary subjects in electrical engi-
neering and, for that reason, we chose it to exemplify the
application of TMM to nonuniform structures.

An MTL structure is made of n + 1 electromagnetically
coupled conductors (with n ≥ 2), one of them named
the reference or ground 0th conductor. The MTL conduc-
tors, of length l, run longitudinally along the x-axis —see
Fig. 1.

The state-space variables in (4) correspond here to the
voltages Vx and currents Ix of the MTL conductors,
that is

9(x) =
[
Px
Qx

]
=

[
Vx
Ix

]
,

where:

{
VT
x =

[
V̄1(x) · · · V̄k (x) · · · V̄n(x)

]
ITx =

[
Ī1(x) · · · Īk (x) · · · Īn(x)

] (41)

From MTL theory, [53]–[57], we have

d
dx

[
Vx
Ix

]
= −

[
0 Zx
Yx 0

] [
Vx
Ix

]
(42)

where Zx = Z(x, ω) and Yx = Y(x, ω) are, respectively,
the per-unit-length impedance and admittance matrices of the
MTL; both them are n × n nonsingular complex symmetric
matrices, whose real and imaginary parts, if not null, are
positive-definite.

From (6) and (42) we see the state transition matrix is such
that

Sx = −
[

0 Zx
Yx 0

]
,

{
tr(Sx) = 0
det(Sx) = (−1)n det(ZxYx)

(43)
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FIGURE 1. Voltages and currents along a nonuniform multiconductor
transmission line with n+1 conductors of length l. Each conductor
influences and is influenced by the remaining n conductors due to
electromagnetic field coupling.

and 
S2mx =

[
02m
x 0
0 (02m

x )T

]

S2m+1x = −

[
0 02m

x Zx
Yx0

2m
x 0

] (44)

where

02
x = ZxYx , 02T

x = YxZx (45)

A. MTL TRANSFER MATRIX
Next, we proceed to the determination of the transfer
matrix Tl of the nonuniform MTL structure

[
Vl
Il

]
=

Tl︷ ︸︸ ︷[
A B
C D

] [
V0
I0

]
(46)

employing the segmentation technique in Part IV, [58].
The NUS is broken down intoN chained uniform segments

of length li (with l =
∑N

i=1 li), each segment being described
by discrete values of Zi and Yi.

From (27) we have

Tl = TN · · · Ti · · ·T1 = eSN lN · · · eSili · · · eS1l1 (47)

where the exponential matrix Ti in (47) can be evaluated
from the state transition matrix Si using either the matricant
approach or the diagonalization approach.

Using the matricant series expansion approach in (10)
and (15), together with (44) leads to

Ti =
[
Ai Bi
Ci Di

]
= eSili =

∞∑
m=0

(Sili)m

m!

=

∞∑
m=0


(0ili)2m

(2m)!
−
(0ili)2m+1

(2m+ 1)!
(0−1i Zi)

−(Yi0
−1
i )

(0ili)2m+1

(2m+ 1)!

(0Ti li)
2m

(2m)!


(48)

or, in other words,
Ai = DT

i = cosh(0ili)
Bi = BTi = − sinh(0ili)Z

(i)
B

Ci = CT
i = −Y

(i)
F sinh(0ili)

(49)

where Y(i)
F and Z(i)

B , the so-called characteristic immittance
matrices for forward and backward waves, respectively, are
given by, [55], [59], [60],

Y(i)
F = Yi0

−1
i

Z(i)
B = 0

−1
i Zi

with Z(i)
B Y(i)

F = 0
−1
i ZiYi0

−1
i = 0

−1
i 02

i 0
−1
i = 1

(50)

Since matrices Ai, Bi, Ci, and Di are already known
for every MTL-segment i = 1 · · ·N , the global transfer
matrix Ti can be evaluated using (47),

Tl =
[
A B
C D

]
= eSeql =

1∏
i=N

Ti︷ ︸︸ ︷(
eSi1l

)
=

[
AN BN
CN DN

]
× · · ·

[
Ai Bi
Ci Di

]
× · · ·

[
A1 B1
C1 D1

]
(51)

where the contributing matrices Ti and the final resulting
matrix Tl have different properties, in general, B and C are
not symmetrical and D is not the transposed of A.

B. MODAL ANALYSIS
MTLs are mainly used in EEE for transmission purposes
(transmission of information or/and of energy) where the
aspects of attenuation, delay time, load impedance matching,
and so on, are of utmost concern.

To address these wave propagation aspects, well-known
modal analysis techniques are used, [55]. The core idea is to
find a vector-basis of n independent uncoupled propagation
modes, intrinsic to the MTL structure, onto which any prop-
agation event can be projected, regardless of the complexity
of its boundary conditions. This is accomplished through the
diagonalization of the transfer matrix, as in (21), (22),

M−1TlM =
[
e−γ l 0
0 e+γ l

]
(52)

where γ is a diagonal matrix, gathering the propagation
constants γ1, γ2, · · · γn of the set of n modes, conveying
information about mode attenuation, phase, and velocity,

Propagation constant: γk = αk + jβk , βk = ω/vk (53)

By definition, a propagation mode is a peculiar fixed
arrangement of voltages and currents that enforced at one
end of the MTL will be replicated at the other end, mul-
tiplied by the scaling factor (e±γk l), [55]–[57]. To account
for wave reflection phenomena, each mode must include
the contribution of two counter-propagating waves, the for-
ward wave (along positive-x), and the backward wave (along
negative-x).
The 2n × 2n transformation matrix M in (52), whose

columns m1 to m2 n are the eigenvectors of Tl , can be block
partitioned into four n× n submatrices,

M = [
F−wave︷ ︸︸ ︷

m1, · · · ,mk , · · · ,mn |

B−wave︷ ︸︸ ︷
m1+n, · · · ,mk+n, · · · ,m2n]

=

[
M11 |M12
M21 |M22

]
(54)
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where M11 and M22 are unitless, M12 is in �, and M21
in �−1.
The eigenvectors mk and mk+n define the voltage and

current arrangements of the forward and backward waves
of the k th propagation mode, respectively. Hence, we should
write,

[
Vl
Il

](F−wave)
(mode k)

= e−γk l
[
V0

I0

](F−wave)
(mode k)

∝ mk =

[
M11

M21

]
(column k)[

Vl
Il

](B−wave)
(mode k)

= e+γk l
[
V0

I0

](B−wave)
(mode k)

∝ mk+n =

[
M12

M22

]
(column k)

(55)

{
I(F−wave)l
I(F−wave)0

}
= +YF

{
V(F−wave)
l

V(F−wave)
0

}
, YF = +M21M−111{

V(B−wave)
l

V(B−wave)
0

}
= −ZB

{
I(B−wave)l
I(B−wave)0

}
, ZB = −M12M−122

(56)

In the general case of nonuniform MTLs, the forward
characteristic admittance matrix YF , and the backward char-
acteristic impedance matrix ZB are not inverse of each other.
The 2n-order diagonalization problem in (52)[
A B
C D

] [
M11 M12
M21 M22

]
=

[
M11 M12
M21 M22

] [
e−γ l 0
0 e+γ l

]
(57)

has to be solved as a whole —the problem does not split into
two independent n-order diagonalization sub-problems.

This is possible in one case only: when the NUS is longi-
tudinally symmetric, i.e., when the input and output ends of
the MTL are indiscernible, interchangeable. In this case, the
properties of A, B, C, D in (17) can be used, and from (57)
and (17) we find,

M−111 =MT
22, M−121 = −M

T
12

M−111 AM11 =M−122 DM22 = cosh(γ l)

M11M−121 = −M12M−122 → YFZB = 1

(58)

showing, not only, how the set of n modal propagation
constants can be obtained, but also, that the characteristic
immittance matrices for forward and backward propagation
coincide. The symmetrical characteristic admittance matrix
Yw necessary for load matching at both ends of the MTL,
is obtained from (55)-(58). Taking into account that, for
longitudinally symmetric NUS, matrices B and C are both
symmetrical, the equation for the computation of Yw may be
written in various formats:

Yw = YF = Z−1B =

{
B−1(BC)1/2 = (CB)1/2B−1

C (BC)−1/2 = (CB)−1/2C
(59)

where {
BC
CB

}
=

{
M11
M22

}
sinh2(γ l)

{
M−111
M−122

}
(60)

As a parenthetical note, we may add that the basic case of
uniform MTLs —see (48)-(50)— is a subcase of (58), where
the n×n transformationmatrixM11 brings the product matrix
ZY (= 02) to diagonal form:M−111 0M11 = γ .

C. EXEMPLIFICATION AND NOVEL RESULTS
The present review dedicated to the transfer matrix method
theory and its applications to nonuniform structures is now
complemented with a novel research contribution to the field
of NUS/MTL.

In a recent IEEE Transactions paper [61] the authors man-
aged to prove theoretically that longitudinally asymmetric
nonuniform MTLs (where D6=AT ) could, in special circum-
stances, require the presence of negative load resistors to
ensure full matching conditions; load matching is feasible for
each and every individual mode, but may not be when modes
coexist.

On the other hand, load matching is always physically
possible for any uniform MTL, where D = AT .
The pending issue is: What if the MTL is nonuniform

but longitudinally symmetric? May negative resistors still be
needed for full load matching?

The issue is addressed here using the analytical tools in
parts A and B. The simple structure (n= 2) shown in Fig. 2 is
used for exemplification purposes. The example describes the
chain connection of two equal, bilaterally symmetric, uniform
stripline couplers of length l/2. The structure’s nonuniformity
is created by a perturbation, occurring at the junction’s plane,
modeled through the lumped impedances ZJ .

To simplify matters, we will consider the usual high-
frequency approximation α /β→0, tantamount to saying that
the couplers are lossless, with purely real characteristic wave
admittances.

The transfer matrix of the NUS is obtained from (51)

Tl =
[
A B
C D

]
= eSeq. l =

1∏
i=3

[
Ai Bi
Ci Di

]
= T3T2T1 = TTJT (61)

where T = T1 = T3 is the transfer matrix of each stripline
coupler of length l/2. Owing to couplers’ bilateral symmetry,
the 2 × 2 submatrices A1, B1, C1, and D1, are not only
symmetric but also have the same diagonal entries, which
makes them similar matrices, commutable matrices, sharing
the same set of eigenvectors,

M11 = M22 = [m1 m2] ,

m1 =
1
√
2

[
1
1

]
and m2 =

1
√
2

[
1
−1

]
(62)

Note that the eigenvectorsm1 andm2 define the familiar pair
of even & odd modes, the transformation matrices Mii being
symmetric and orthogonal,

Mii =M−1ii =MT
ii =

1
√
2

[
1 1
1 −1

]
, i = 1, 2 (63)
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FIGURE 2. Symmetric nonuniform MTL structure. (a) Couplers’
cross-section. (b) Longitudinal view showing the perturbation at the
junction’s plane (x = l/2), and the network of matching load
admittances (x = l).

From (45), (48)-(50), and (58)-(60), we obtain
A1 = D1 = A3 = D3 =

(
cosh γ l2

)
1

B1 = B3 = −

(
sinh γ l2

)
Y−1u

C1 = C3 = −

(
sinh γ l2

)
Yu

(64)

and

Yu = Y(1 or 3)
w

=


Y10

−1
1 =

(
jωc11

[
1 −k
−k 1

])(
1
γ

[
1 0
0 1

])

vc11

[
1 −k
−k 1

]
=M11

[
Ye 0
0 Yo

]
M−111

(65)

where:
� γ = jβ = jω/v is the imaginary propagation constant

of traveling waves in a nonmagnetic lossless medium with
velocity v = (µ0ε)−1/2 where ε is the permittivity of the
couplers’ dielectric medium (Fig. 2a).

� Yu is the n× n characteristic admittance matrix of both
uniform couplers 1 and 3.

� k is the strips’ coupling factor,

k =
√
c12c21
c11c22

=
|c12|
c11

, 0 < k < 1 (66)

where c11 = c22 ( > 0) and c12 = c21 (< 0) are the entries of
the per-unit-length capacitancematrix of the uniform stripline
couplers.

� Ye and Yo are the scalar characteristic admittances of the
even and odd modes of the uniform couplers, respectively,

Ye =
G

1+ k
, Yo =

G
1− k

, Ye < Yo (67)

where G is the characteristic wave conductance of the same
stripline coupler but with one single strip.

Observing the couplers’ junction (Fig. 2b) readily leads to
the junction’s transfer matrix TJ = T2,

TJ =



[
AJ BJ
CJ DJ

]
, where

{
AJ = DJ = 1
BJ = −ZJ1, CJ = 0

1+ ZJU, where U =

[
0 −1
0 0

] (68)

Now, with the help of (61), (64), and (68), we get the global
NUS’ transfer matrix:

Tl =
[
A B
C D

]
= TTJT = T2

+

P︷ ︸︸ ︷
(ZJTUT) (69)

where the unperturbed term T2 describes a uniform stripline
coupler of length l, that is

T2
=



[
A2
1 + B1C1 2A1B1

2A1C1 A2
1 + B1C1

]
[

cosh γ l 1 − sinh γ l Y−1u
− sinh γ l Yu cosh γ l 1

] (70)

while the junction’s perturbation term P is

P = ZJ ×


−

[
A1C1 A2

1

C2
1 A1C1

]
[

1
2 sinh γ l Yu − cosh2( γ l2 ) 1
− sinh2( γ l2 ) Y

2
u

1
2 sinh γ l Yu

] (71)

Then, from (69)-(71), we find the submatricesA,B,C, and
D belonging to the global transfer matrix Tl

A = AT
= D =

(
cosh γ l 1+ 1

2ZJYu sinh γ l
)

B = BT = −
(
sinh γ l 1+ ZJYu cosh2(

γ l
2 )
)
Y−1u

C = CT
= −Yu

(
sinh γ l 1+ ZJYu sinh2(

γ l
2 )
) (72)

The above submatrices are symmetric, commute, and are
diagonalizable by the transformation matrix M11 in (63).
Owing to this feature, the computation of the characteris-
tic admittance matrix of the NUS, (59), greatly simplifies,
yielding

Yw = C1/2B−1/2 =M11

[
ye 0
0 yo

]
M−111

=
1
2

[
ye + yo ye − yo
ye − yo ye + yo

]
= (ye)︸︷︷︸

yG

1+ 1
2 (yo − ye)︸ ︷︷ ︸

yM

[
1 −1
−1 1

]
(73)

where the parameters yG = gG + jsG and yM = gM + jsM
are, respectively, the strip-to-ground admittance and the
mutual (interstrip) admittance that characterize the matched
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load network at x = l in Fig. 2b, where ym (for m = e, o) is
given by,

ym =

√
Cm
Bm
= Ym

√√√√ sinh γ l + ZJYm sinh2( γ l2 )

sinh γ l + ZJYm cosh2( γ l2 )
(74)

If the perturbation P were absent (ZJ = 0) we would get,
from (73), (74), (65), and (67),

lim
ZJ→0

Yw = M11

[
Ye 0
0 Yo

]
M−111 = Yu (75)

lim
ZJ→0

{
yG
yM

}
=

G
1− k2

{
1− k
k

}
> 0 (76)

Recent research on the subject of NUS, [60], [61], has
shown that the issue of load matching realizability is worthy
of attention only when the NUS resonates, when its length l
approaches amultiple of a one-half wavelength. Here, wewill
focus on the first resonance event, l ≈ λ/2, βl ≈ π, ω ≈

ωres = vπ /l and, for exemplification, consider the case of a
capacitive junction’s perturbation ZJ

ZJ (ω) =
1

jωCJ
, ZJ (ωres) = −jXres (77)

One may imagine that the junction’s perturbation is origi-
nated by a manufacturing defect that prevents the left and
right halves of the coupler to fully connect owing to an
unintended tiny gap between the contacting ends of the strips.

By making

γ l = jβl = j(π + θ ), θ = π
(
ω − ωres

ωres

)
(78)

we can rewrite (74) as

ym = Ym

√√√√ωCJ sin θ − Ym cos2( θ2 )

ωCJ sin θ + Ym sin2( θ2 )
(79)

For the case of small perturbations, ωresCJ � Ym, θ� π,

the above result simplifies to
ym(θ ) = Ym

√
|1− ϑm|︸ ︷︷ ︸
hm(θ ) ≥ 0

×

{
−j, for ϑm > 1
1, otherwise

where ϑm(θ ) = YmXres

(
1
θ
−

1
π

) (80)

which leads to the following conclusions
a) The frequency-dependent characteristic admittances ym

of the NUS’ propagation modes cannot exhibit negative real
part, regardless of the frequency;

b) At resonance, θ = 0, one gets ym → ∞, meaning that
the matched load is a full short-circuit termination;

c) For ϑm > 1, the characteristic admittance ym of the m-
mode is purely imaginary —the modes’ active power at the
MTL ends is zero; electromagnetic waves are pure standing
waves, the NUS behaves as a stopband filter.

Also from (80), and (73), we learn that:
d) The strip-to-ground load admittance required for

MTL matching can never exhibit negative real part,
gG = <(yG) = <(ye) ≥ 0 ;
e) The real part of the mutual (interstrip) admittance

required for MTL matching, gM = <(yM ) = <(yo − ye)/2,
can be negative, turning the load network in Fig. 2b into a
physically non-realizable termination.

At this point it is convenient to introduce a set of three
critical frequency values:

— the cutoff frequency ω = ωe (or θ = θe), for which the
e-mode transitions from stop to pass-band behavior.

— the cutoff frequency ω = ωo (or θ = θo), for which the
o-mode transitions from stop to pass-band behavior.
— the crossover frequency ω = ωx (or θ = θx), for

which the real positive characteristic admittanceω−functions
cross each other, ye (ωx) = yo(ωx).
After some algebra we find∖
θm = XresYm −

(XresYm)2

π
, for m = e, o, x (81)

where Ye and Yo are defined in (67) and Yx is obtained from
them through

Yx = Ye + Yo −
YeYo

Ye + Yo
=
G
2

(
3+ k2

1− k2

)
(82)

The terms (XresYm)2 in (81) are 2nd order corrections due
to small variations of the junction’s impedance near to res-
onance. For the sake of simplicity, those corrections will be
disregarded. The results that follow are accurate only at first-
order approximation level.

The case of a nonrealizable matched load (gM < 0) occurs
in the narrow band θ ∈ [θe, θx] whose width 1θ is

1θ = θx − θe =
G
2

(
1+ k
1− k

)
Xres (83)

In the interval [θe, θo] the o-mode is inside its stopband,
but the e-mode is out. From (80) we get

yM (θ ) = gM + jsM = −
G
2

(
he(θ )
1+ k

− j
ho(θ )
1− k

)
(84)

In the interval [θo, θx] both modes are outside their stop-
bands. From (80) we get

yM (θ ) = gM = −
G
2

(
he(θ )
1+ k

−
ho(θ )
1− k

)
+ j0 (85)

For θ = θe and θ = θx the interstrip conductance gM is
zero. For θ = θo it reaches its negative peak value:

gmin
M (k) = − 1

2ye = −G
√

k
2(1+k)3

(86)

The peak value is zero for uncoupled strips, increases up to
its extremal value (gmin

M )max = −G(2/33)1/2 at k = 1/2, and
decreases afterward.

Albeit a first-order approximation, the above results are
remarkable. They reveal two interesting things about the
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negative peak value of the interstrip matching conductance.
Firstly: It barely depends on the junction’s reactance Xres and,
secondly, it cannot exceed a certain limit.

The apparently paradoxical assertion that the peak value
gmin
M barely depends on the junction’s reactance must be read
from a distance. Consider a uniform coupler (ZJ = 0); how
come can it require a negative interstrip conductance for
matching purposes? It cannot. The point is that the relevance
of negatively valued gM (ω) must not be assessed by simply
looking at its peak value. As shown in (83) the spectral width
1θ of the ‘‘gM < 0 phenomenon’’ is directly proportional to
the junction’s reactance perturbation. When Xres goes to zero,
θe, θo and θx will go with it (ωx = ωo = ωe = ωres), i.e.,
the negative part of the gM (ω) function has no ω−support,
the phenomenon is inexistent for ZJ = 0.
Numerical and simulation results are presented next,

the following realistic data being considered:

k =
1
2
, G =

1
50 �

→ Ye =
Yo
3
=

1
75 �

(87)

The corresponding array of matching load resistances for
the uniform MTL coupler is depicted in Fig. 3a; the strip-to-
ground load and the interstrip load are equal to 75 �, both
positive of course.

With regard to the junction’s capacitive perturbation,
we take

GX res = 0.1→ Xres = 5 � (88)

Using the data in (87)-(88) we run MATLAB to com-
pute the normalized matching load admittances yG(ω)/G and
yM (ω)/G directly from the core equations (72)-(73) and (77),
without simplifications. Numerical simulation results for the
half-wavelength resonance case are offered in Fig. 4 and
Fig. 5, where the horizontal axis is the normalized frequency
(ω /ωres) varying in the vicinity of 1, in a narrow frequency
band where ωres, ωe, ωo, and ωx are included.
Fig. 4 and Fig. 5 depict the real and imaginary parts of

the strip-to-ground load admittance yG (dashed lines) and
the interstrip load admittance yM (solid lines). Fig. 4 con-
cerns the normalized conductance functions gG/G and gM /G
while Fig. 5 concerns the normalized susceptance functions
sG/G and sM /G. The circle marks sequentially identify, from
left to right, the notable frequencies ωres, ωe, ωo, and ωx ,
respectively.

Fig. 3b shows the resistors’ array (with r = g−1M ) needed
to load matching the NUS MTL-coupler at ω = ωo, when
gM reaches its negative peak value. Rest assured that the
presence of the negative resistor in Fig. 3b does not violate
any physical principle. No matter the enforced set of volt-
ages, the power delivered to the load can never be negative:
pload = 1

r (V1+ V2)
2
≥ 0.

For verification purposes, the exact MATLAB numerical
results were checked against the analytical first-order approx-
imate results in (81)-(86): the agreement is quite good —see
Table 1.

FIGURE 3. Array of lumped load resistors required for a matched
termination of the MTL-coupler. (a) Unperturbed coupler case, ZJ = 0;
frequency-independent matching. b) Perturbed coupler case, ZJ(ω) = −jX,
X(ωres) = 5�; matching at ω = ωo, when gM reaches its negative peak.

FIGURE 4. Normalized conductance functions gG and gM against ω/ωres.
Frequency plots of the real part of the strip-to-ground (dashed curve) and
interstrip (solid curve) matching load admittances of the MTL coupler
perturbed at the junction’s plane by insertion of a capacitive impedance
of –j5�.

Fig. 6 is, in part, a zooming in Fig. 4. It highlights
the details of the frequency-dependent normalized interstrip
matched-load conductance gM (ω), focusing on the ω−band
where gM is a negatively valued function.
Curve (a) is an amplified replica of the solid line in Fig. 4,

for the case ZJ = −jXresωres/ω, with Xres = 5 �.
The dashed curve (b) was obtained by considering that the

junction’s impedance perturbation, in addition to its reactive
part, also includes a resistive part RJ . Here, for ω = ωres,
we will take ZJ = (δ –j) Xres, with Xres = 5 � and δ = 5%.
As shown in Fig. 6 the evolution of gM (ω) through nega-
tive values is still present, leading again to a non-realizable
matching load despite the presence of losses at the cou-
pler’s junction. The main effect of RJ is to smooth out the
sharp corners in curve (a), at the critical frequencies ωe
and ωo.

Curve (c), in blue, illustrates the interesting results in (86)
and (83), considering the case ZJ = −jXres ωres /ω with
Xres = 2.5 �. The capacitive junction’s perturbation was
decreased 50% with respect to curve (a). One can see that the
bandwidth of the ‘‘gM < 0 phenomenon’’ has also squeezed
50% but the negative peak value of gM remained practically
unaltered, gM (ωo) = −0.272G.
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FIGURE 5. Normalized susceptance functions sG and sM against ω/ωres.
Frequency plots of the imaginary part of the strip-to-ground (dashed
curve) and interstrip (solid curve) matching load admittances of the MTL
coupler perturbed at the junction’s plane by insertion of a capacitive
impedance of –j5�.

TABLE 1. Wave parameters of the NUS MTL-Coupler at resonance.

VII. CONCLUSION
This article was devoted to the transfer matrix method largely
utilized in a variety of electrical engineering areas, from
power systems to optics, as well as in other science fields,
from materials to DNA research.

As the name suggests, the method is aimed to transfer
information/data from one system’s boundary end to another
boundary end, using conversion rules dictated by the internal
constitution of the system. Reciprocally, the system’s proper-
ties can be retrieved from measurements at its ends.

The above aspects were dealt with in Sections II to
V, offering the reader a survey on the formalisms ade-
quate for the analysis of general n-port nonuniform sys-
tems (NUS), including the matricant or state-space approach,

FIGURE 6. Frequency plots of the real part of the normalized interstrip
matching load admittance gM of the MTL-coupler perturbed at the
junction’s plane by insertion of an impedance ZJ = RJ – jX whose
assigned value (at ωres) is as indicated: Curve (a): X = 5� and RJ = 0.
Curve (b): X = 5� and RJ = X/20. Curve (c): X = 2.5� and RJ = 0. Leftmost
circle marks correspond to ωe, rightmost to ωx.

the diagonalization or modal-analysis approach, and also the
segmentation technique.

The article’s longest section —the sixth— focused on
the concrete case of multiconductor transmission-line sys-
tems (MTL) which are of great importance to electrical
engineers involved in guided-wave propagation problems.
MTL equations and general transfer matrix solutions were
reviewed and, in addition, an interesting novel research result
was delivered; we succeeded to prove that a very simple
two-port NUS, longitudinally and transversally symmetric,
lossless or lossy, cannot always be terminated on a realizable
matched load.
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