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ABSTRACT The Internet of Vehicles (IoV) is an emerging paradigm, driven by recent advancements in
vehicular communications and networking. Meanwhile, the capability and intelligence of vehicles are being
rapidly enhanced, and this will have the potential of supporting a plethora of new exciting applications, which
will integrate fully autonomous vehicles, the Internet of Things (IoT), and the environment. In view of the
delay-sensitive property of these promising applications, as well as the high expense by using infrastructures
and roadside units (RSU), the task offloading among vehicles has gained enormous popularity considering
its free-of-charge and timely response. In this paper, by utilizing the gathering period of vehicles in urban
environment due to stopped by traffic lights or Area of Interest (AOI), a task offloading scheme merely
relying on vehicle-to-vehicle (V2V) communication is proposed by fully exploring the idle resources
of gathered vehicles for task execution. Through formulating the task execution as a Min-Max problem
among one task and several cooperative vehicles, the task executing time is optimized with the Max-Min
Fairness scheme, which is further solved by the Particle Swarm Optimization (PSO) Algorithm. Extensive
simulation demonstrate that our model could well meet the delay requirement of delay-sensitive application
by cooperative computing among vehicles.

INDEX TERMS Internet of vehicle, computing offloading, low latency, task allocation.

I. INTRODUCTION
With the rapid development of social economy and the pro-
cess of industrialization, the number of vehicles has been
growing rapidly in cities [1]–[5]. However, owing to limited
capacity, roads become crowded, which leads to a series of
issues, e.g., traffic accident, environmental pollution. Face
these relentless challenges, Internet of Vehicle (IoV) emerges
to fully use the information and communication technologies
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for achieving the coordinated development of human, vehi-
cle, and environment, which can alleviate traffic congestion,
enhance transportation efficiency [6]–[8].

However, there are still some technical problems to be
solved in the popularization and development of IoV [9],
[10], such as intelligent information processing [11], [12],
that is, filtering and processing data in IoV to fetch out useful
information [6], [13], [14]. For the challenge of intelligent
information processing, it can be mainly summarized into
three points. First, the IoV is engaged to provide timely
services relevant to driving safety and traffic efficiency, which
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FIGURE 1. The scene of offloading computing.

requires strong capability of computing and intelligence on
the edge [15]–[17]. Second, the strict latency requirement
of applications often makes the V2V communication a pre-
requisite, where a round-trip communication from infrastruc-
ture or RSU may fail the delay-sensitive services. Third,
in view of the high expense by using infrastructure or RSU
to process and store the collected information, the V2V
communication is free-of-charge thus attracting more atten-
tions. Considering above concerns, the information process-
ing cooperated by surrounding vehicles in a V2V pattern,
is very promising [2], [18], [19].

In addition, in urban environment, vehicles usually gather
together for various reasons, such as waiting for traffic lights,
passing through toll stations, or attracted by an AOI. For
example, as shown in Fig.1, these service vehicles that are
slowly moving together due to traffic lights will form a
resource pool for a short period of time. These vehicles may
have rich and idle resource for task execution, i.e., infor-
mation processing in IoV [20]. Therefore, we can certainly
offload the task to these service vehicles, and make the task
vehicle and several surrounding vehicles cooperatively com-
pleting the vehicle-carried task to reduce the task execution
time [21]–[23].

There has been considerable amount of work focusing
on computation offloading [24]–[26]. The authors consid-
ered/analyzed the problem of binary offloading decision,
where each user independently chooses whether to execute
the task locally or to offload the whole task to the edge
servers, to minimize the task execution time. Studies, such
as Luo et al. [26] used dynamic programming and improved
greedy algorithm to assign different tasks to multiple edge
servers, to minimize the latency. Liu et al. [27] formulated
the multiple vehicles computation offloading problem as a
multi-user computation offloading game problem, prove the
existence ofNash equilibrium (NE) of the game and propose a
distributed computation offloading algorithm to compute the
equilibrium. Compared to binary offloading, it is more rea-
sonable to offload partially to service vehicles, since wireless
channel resource is limited and local computing power should
not be ignored [28]–[30]. Motivated by such considerations,
in this paper, we dynamically offload parts of the computation

task from the task vehicle to service vehicles [14]. What
is more, in IoV, rapid vehicle movement results in frequent
network topology changes and shorter communication link
lifetime. So in the process of offloading, we need to consider
the node movement problem to prevent communication link
interruption [31].

Combine the above two considerations, in this paper,
we propose a cooperative task scheduling scheme in which
one task vehicle and multiple service vehicles jointly execute
the vehicle-carried task [14], [32]. The task vehicle com-
prehensively considers the computing power and maximum
service time of each service vehicle to decide what percent-
age of the task should be assigned to each service vehicle,
to minimize the task execution time. Here, the maximum
service time of each service vehicle depends not only on its
residence time at the gathering point, but also on the relative
movement of the task vehicle and the service vehicle. Because
we must ensure that the task vehicle and each service vehicle
are alwayswithin the communication range of each other. The
key contribution of this paper include:
• We propose the concept of "resource pool" formed by
service vehicles that are slowly moving together. Based
on these idle resources that can be scheduled in resource
pool, we propose a cooperative task scheduling scheme
to minimize the task execution time.

• We formulate the task execution time optimization
model as Min-Max problem under the permissible
latency constraint. In addition, we also incorporate node
mobility into problem formulation.

• For the Min-Max problem, we modify Max-Min Fair-
ness Algorithm and Particle Swarm Optimization (PSO)
Algorithm respectively according to whether to call all
service vehicles, to find the best task allocation scheme
to minimize the task execution time. Simulation results
demonstrate the effectiveness of proposed schemes.

The rest of this paper is organized as follows. The
system model which includes the mobility model, commu-
nication model, computation model and problem formula-
tion is presented in Section II. The problem solution is
given in Section III. We evaluate the performance of pro-
posed schemes and provide illustrative results in Section IV.
We conclude this paper in Section V. Tomake the readers eas-
ily follow, the notations used in our paper are listed in Table1.

II. SYSTEM MODEL
We mainly focus on V2V-based task offloading model in
order to minimize the needed time for task processing by
leveraging all available idle resources in vehicular networks
as shown in Fig.2. The considered scenario includes one
task vehicle which has one task to execute and N service
vehicles which have idle computation resources, where N
vehicles are within the communication range of task vehi-
cle. Specially, let N = {Vidle1,Vidle2,Vidle3 · · ·VidleN }
be the set of N service vehicles. We adopt three parameters
{c, data, tmax

} to indicate the generated task of task vehicle.
Here, c (in CPU cycles per bit) is the computation resource
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TABLE 1. List of important notations.

required for processing the task, data (in bits) specifies the
task size, and tmax represents the completion deadline for task
execution. Each service vehicle uploads its own information
to its nearby RSU, including vehicle ID, position, velocity
and available computation resource. The task vehicle can get
the information about these service vehicles from this RSU.
Generally, the task vehicle can process its task locally or
by computation offloading. With the aim to reduce the task
execution time, the task vehicle can offload part of its task to
surrounding vehicles which possess idle resources. Then, two
problems arise for the task vehicle: (1) how to select service
vehicles for computation offloading, and (2) how to offload
the computation task to these service vehicles.

A. MOBILITY MODEL
In our model, we assume that identical vehicles are driving
on a two-way straight road, regardless of vehicle turning.
Vehicles canmove toward the oppositive directions.We adapt
Intelligent Driver Model with Intersection Management

(IDM_IM) mobility model to accurately capture the realistic
mobility characteristics of moving vehicles [33], [34].

As for the behavior of a single car in straight road, it can
be described as follows. Assume the length of vehicle α is
lα , the position of vehicle α at time t is xα(t), the velocity of
vehicle α at time t is vα(t), the position of the leading vehicle
α−1 at time t is xα−1(t), the velocity of vehicle α−1 at time t
is vα−1(t). Note that the velocity here represents a vector. If it
is less than 0, the vehicle is moving toward the left; otherwise,
the vehicle is driving toward the right. The acceleration in the
IDM model can obtained as follows:

dvα(t)
dt
= aα[1− (

vα(t)
v∗α

)δ − (
s∗(vα(t),1vα(t))

sα(t)
)2] (1)

where aα is maximum acceleration, δ is acceleration expo-
nent, the gap sα(t) := xα(t) − xα−1(t) − lα , the velocity dif-
ference 1vα(t) := vα(t)− vα−1(t), v∗α is desired velocity for
vanishing interactions(sα(t) → ∞). The desired minimum
gap s∗(vα(t),1vα(t)) can be obtained as follows:

s∗(vα(t),1vα(t)) = s′α + s
′′
α

√
vα(t)
v∗α
+ vα(t)T

+
vα(t)1vα(t)

2
√
aαbα

(2)

where s′α and s′′α are jam distances, T is safe time headway
and bα is desired deceleration [35].
According to [35], we usually set s′′α = 0, so we can get

s∗(vα(t),1vα(t)) ≈ s′α + vα(t)T +
vα(t)1vα(t)

2
√
aαbα

(3)

According to [36], we can integrate Eq.(1) with a simple
Euler scheme using a coarse time discretization of1t = 0.4s,
and get velocity and displacement calculation formula:

vα(t +1t) = vα(t)+1t ·
dvα(t)
dt

xα(t +1t) = xα(t)+1t · vα(t)+
1
2
(
dvα(t)
dt

)(1t)2. (4)

Here, smaller value of 1t yields nearly indistinguishable
results [36]. By partitioning the interval [t, t + tα] based on
step 1t , we can get the displacement 1Xα(tα) as follows:

1Xα(tα)

= xα(t + tα)− xα(t)

= [xα(t +1t)− xα(t)]+ [xα(t + 21t)− xα(t +1t)]

+ · · · + [xα(t+btα/1tc1t)− xα(t+(btα/1tc − 1)1t)]

+[xα(t + tα)− xα(t + [tα/1t]1t)] (5)

B. COMMUNICATION MODEL
When the task vehicle has a task to calculate, it needs to
assign the task to available service vehicles for task execu-
tion time reduction. Receiving the assigned task by this task
vehicle, service vehicles are responsible for implementing
the task. To this end, we adopt the WBSS (WAVE-based
basic service set) communication mode after analyzing the
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FIGURE 2. The illustration of system model, where b1, b2, b3,b4 indicates the offloaded task proportion.

IEEE 802.11p/WAVE (Wireless Access for Vehicular Envi-
ronment) standard [37]. The task vehicle broadcasts a WBSS
announcement message, and the WAVE Service Advertise-
ment(WSA) on the control channel (CCH), which contain
all the information identifying the WAVE application and
the network parameters are necessary to join a WBSS [38],
[39]. Especially, WAVE application corresponding to the task
needs to be processed and these network parameters include
the WBSS ID and the service channel (SCH) which this
WBSS will use. By monitoring the CCH, service vehicles
are capable of knowing about the initiated WBSS by the
task vehicle and then join this WBSS by simply switching
to the specified SCH. Switching between CCH and SCH
adopts immediate channel access [37], which allows imme-
diate communications access on a designated channel for an
extended period without consideration for time slot bound-
aries. We use tCCH to indicate the time spent on the CCH for
the task vehicle and service vehicles. tSCH is the transmission
delay taken on the SCH for transmitting data, which can be
written as

tSCH =
data

B log(1+ P·G
σ 2

)
(6)

where B is the bandwidth of the SCH that the WBSS initiated
by the task vehicle will use. P is the transmission power of the
task vehicle. G is the channel gain between the task vehicle
and service vehicles. σ 2 is the noise power.
For simplicity, the time for the task vehicle and service

vehicles to access the CCH and SCHvia the carrier sensemul-
tiple access protocol with collision avoidance (CSMA/CA)
mechanism is negligible, and the time spent on channel
switching, such as guard interval, also is negligible. So the
total time for transmitting data can be obtained as follows:

t tr = tCCH + tSCH (7)

Because the calculation result after task processing is quite
small [20], the link transmission delay of service vehicles
feeding back the calculation result to the task vehicle is
neglected.

C. COMPUTATION MODEL
Before introducing the computation model, some assump-
tions are given:

• Assumption 1: the computation task can be divided into
two or more parts.

• Assumption 2: there are two options for task calcu-
lation. All of the computation task can be calculated
locally, or part offloaded to multiple service vehicles for
processing.

1) THE TASK EXECUTION TIME OF LOCAL COMPUTING
For local task computing, we define f0 as the CPU computing
capability of the task vehicle. Then, the local execution time
needed for implementing the task is expressed as follows:

tlocal = c/f0 (8)

2) THE TASK EXECUTION TIME OF OFFLOADING
COMPUTING
Denote bi ∈ [0, 1) be the task proportion which service
vehicle i is responsible for processing. In other words, the task
offloading strategy is presented by b = {b1, b2, b3 · · · bN }.
Define fi as the CPU computing capability of service vehicle
i. Then, the time needed for service vehicle i to execute its
assigned task workload is obtained as follow:

tci =
bi · c
fi

(9)

Based on the communication model described above,
the data is broadcasted by the task vehicle. So, the time
needed for the service vehicle to receives the data from the
task vehicle can be obtained as follows:

t tri = t tr + δ (10)

where δ is the propagation delay.
Thus, the total time for service vehicle i to process the

assigned workload by the task vehicle is given as:

ti = tci + t
tr
i (11)
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On the other hand, the needed time for task vehicle to
process the rest task workload is written as:

t0 = c(1−
N∑
i=1

bi)/f0 (12)

According to Eq.(11) and Eq.(12), the total task execution
time of task vehicle is calculated as:

tedge = max(ti), i = 0, 1, 2 · · ·N (13)

D. PROBLEM FORMULATION
With the aim to minimize the task execution time, the follow-
ing optimization problem is formulated:

minimize T = s · tlocal + (1− s) · tedge

subject to C1 :
N∑
i=1

bi < 1(0 ≤ bi < 1)

C2 : ti ≤ tres_i (i = 1, 2 · · ·N )

C3 : |1Xi| ≤ 2 |x0(t)− xi(t)| (i = 1, 2 · · ·N )

(14)

herein, s = 1 if the total task is implemented locally, s =
0, otherwise. tres_i indicates the residence time of service
vehicle i in assembly point. x0(t) and xi(t) represent the
X-dimensional coordinate of task vehicle and service vehicle
i at time t, respectively. 1Xi indicates the relative displace-
ment between task vehicle and service vehicle i after ti.
Constraint C1 corresponds to Assumption 2. Constraint

C2 guarantees that each service vehicle can finish the task
computing before leaving the assembly point. Constraint
C3 ensures that the link between the task vehicle and its ser-
vice vehicle keeps available during task offloading. Specially,
Constraint C3 is explained as follows: Due to the mobility,
the value of 1Xi is changing with time as shown in Fig.3.
Based on Eq.(5), we can get

1Xi = 1Xi(ti)−1X0(ti)

= [xi(t + ti)− xi(t)]− [x0(t + ti)− x0(t)]. (15)

In order to guarantee the success of task offloading, service
vehicle i should not move out of the communicate range of
task vehicle with dis as the radius. It is known that a straight
line is the shortest distance between two points. Thus, accord-
ing to the properties of isosceles triangle, the maximum value
of 1X is equal to 2 |x0(t)− xi(t)|.

III. PROBLEM SOLVING
In this section, we present an algorithm to solve the problem
in Eq.(14).

A. THE OPTIMAL SOLUTION FOR SPECIAL CASE
In this section, a special case of computation offloading
is considered where all service vehicles participate in task
processing.

When s = 1, T = tlocal = c/f0. If s = 0, then

T = tedge = min{max(ti)} i = 0, 1, 2 · · ·N (16)

FIGURE 3. The sketch of Constraint C3.

For the optimal problem in Eq.(16), we adapt Max-Min
Fairness Algorithm to solve it. According to Max-Min Fair-
ness Algorithm, by reasonably adjusting the size of bi, we can
guarantee each vehicle (including N service vehicles and the
task vehicle) has the same service time, i.e.,

t0 = t1 = t2 = · · · = tN (17)

According Eq.(17), we have:

bequal_1 ·
c
f1
+ t tr1 = bequal_2 ·

c
f2
+ t tr2

= · · · = bequal_N ·
c
fN
+ t trN (18)

Based on Eq.(18), we can get:

bequal_i =
fi
f1
bequal_1 +

t tr1 − t
tr
i

c
fi(i = 1, 2, · · ·N ) (19)

Under the condition that t0 = t1, the following equation
holds:

c
f0
(1−

N∑
i=1

bequal_i) = bequal_1 ·
c
f1
+ t tr1 (20)

where bequal_i is the task segmentation ratio of each service
vehicle under the condition of average distribution.

By combining Eq.(19) and Eq.(20), we have:

bequal_1 =

c/f0 − t tr1 −
N∑
i=1

fi
f0
(t tr1 − t

tr
i )

c
f1
+

c
f0
·

N∑
i=1

fi
f1

(21)

As a result, the service time of each service vehicle is
expressed as:

t0 = t1 = t2 = · · · = tN = Tequal = bequal_1
c
f1
+ t tr1 (22)

However, due to the mobility, the link between the
task vehicle and its service vehicle may be not available
for such a long time. For Constraint C3, according to
Eq.(4) and Eq.(5), we can see that the displacement and
time are quadratic inequality relations, which are solvable.
We assume that the solution is [0, tconstraint_c3]. Then, com-
bining Constraint C2, we can get 0 < ti ≤ tmax _i
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(tmax _i := min{tres_i, tconstraint_c3}). By ascending sort,
tmax _1 ≤ tmax _2 ≤ tmax _3 ≤ · · · ≤ tmax _N . When compared
with Tequal , tmax _l < Tequal ≤ tmax _r l, r ∈ {1, 2, · · · ,N }
and l < r . So, the task workloads assigned to Vidle1,Vidle2,
· · · ,Vidlel are too big and need to be further adjusted.
First, it is required to calculate all extra task offload-

ing ratios. Take Vidle1 as an example. The maximum task
offloading ratio that Vidle1 can undertake is bmax _1, which
is obtained as follows:

tmax _1 = bmax _1 ·
c
f1
+ t tr1

⇒ bmax _1 =
tmax _1 − t tr1

c
f1 (23)

As a result, the extra task offloading ratio of Vidle1 is calcu-
lated as:

bextra_1 = bequal_1 − bmax _1 (24)

Correspondingly, all extra task offloading ratios can be given
by:

bextra =
l∑
i=1

bextra_i (25)

Then, the extra task offloading ratio bextra will be dis-
tributed to Vidlel+1,Vidlel+2,Vidlel+3, · · · ,VidleN and the
task vehicle. Similar to the above uniform distribution,
the following equation holds:

bequal2_i =
fi
fl+1

bequal2_l+1

+
t trequal2_l+1 − t

tr
i

c
fi(i = l + 2, · · ·N )

bequal2_l+1 ·
c
fl+1
+ t trl+1

=
c
f0
(bextra −

N∑
i=l+1

bequal2_i)

bequal2_l+1 =

bextra · c/f0 − t trl+1 −
N∑

i=l+1

fi
f0
(t trl+1 − t

tr
i )

c
fl+1
+

c
f0
·

N∑
i=l+1

fi
fl+1

(26)

where bequal2_i is the taskworkload assigned toVidlei, i = l+
1, l+2, · · · ,N from bextra. The task offloading ratio assigned
to Vidli is: bi = bequal_i + bequal2_i,i = l + 1, l + 2, · · ·N .
Similarly, we should check whether Vidli can undertake such
big task offloading ratio according to its maximum service
time. If no, we need to follow the abovemethod to assign extra
segmentation ratio. Repeat the assignment scheme again and
again until all service vehicles are not overloaded. After that,
We can get the final bi, i = 1, 2, 3, · · ·N , and T = tedge =
max(ti)i = 0, 1, 2 · · ·N .

Finally, we compare the value of tlocal and tedge. If tlocal ≤
tedge, it is better to adapt local computing (s = 1 ), otherwise,

we should offload the task to service vehicles based on the
final bi.

B. THE FEASIBLE SOLUTION FOR GENERAL CASE
In this section, a more general case is considered where we
do not know whether each service vehicle will participate in
task processing. In order to solve the problem in Eq.(16), 2N

program is needed, which brings difficulty to the analysis and
optimization of the optimal problem. With the aim to deal
with this issue, we employ the PSO Algorithm to solve the
problem in Eq.(16).

According to the PSO Algorithm, define the position of
the jth particle in the N-dimensional space at step k as Bkj =
(bkj1, b

k
j2, · · · , b

k
jN )

T , j = 1, 2, · · · , l, the velocity as V k
j =

(vkj1, v
k
j2, · · · , v

k
jN )

T , j = 1, 2, · · · , l. The best position that jth

particle has experienced is pbestkj = (pkj1, p
k
j2, · · · , p

k
jN )

T , j =
1, 2, · · · , l. The best position that the particle group has expe-
rienced is gbestk = (gk1, g

k
2, · · · , g

k
N )

T . The fitness function
is shown in Eq.(27):

T kj = tedge(Bkj ) (j = 1, 2, · · · , l) (27)

What is more, when updating the best position of each parti-
cle, we not only take into account the fitness function, but also
take into account the number of service vehicles involved in
the calculation. That is, when the fitness function is reduced,
the number of service vehicles participating in the calculation
must also be reduced.

The jth particle updates its velocity and position according
to the following formula:

V k+1
j = wV k

j + c1r1(pbest
k
j − B

k
j )+ c2r2(gbest

k
− Bkj )

Bk+1j = Bkj + V
k+1
j (28)

where w is inertia weight, c1 and c2 are learning weight,
the elements of vector r1 and vector r2 are assigned values
from a uniform random distribution between−1 and 1 which
are independent with each other.

However, we need to be aware that in the process of initial-
ization and iteration according to Eq.(28), the position Bkj of
each particle must meet Constraint C1-C3. So, we make the
corresponding adjustment to the PSO Algorithm. When we
find that the current particle’s location information does not
meet the constraints, wewill adjust according to the following
steps:

Step1. For Constraint C1, we count the sum of the
N-dimensional positions of the current particles. If the sum
is greater than 1, for the part beyond 1, the position of each
dimension is reduced according to its proportion. Taking the
1-dimensional position of jth particle bk+1j1 as an example
during the k-th iteration based on the above adjustment rules,
we can get the following equation:

bk+1j1 = bkj1 −
bkj1
N∑
i=1

bkji

(
N∑
i=1

bkji − 1) (29)
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Step2. For Constraint C2 and Constraint C3, based on
the result of the Step1 adjustment, we check each dimen-
sion position of the current particle in turn. If its value is
greater than its maximum value according Eq.(23), directly
let its value be equal the maximum value. The PSO Algo-
rithm implementation steps are shown in Algorithm 1.

Algorithm 1 PSO Algorithm to Solve the Problem in Equa-
tion(16)
Input:

The parameter of the task vehicle, f0,X0(t);
The parameter of all service vehicles, fi,Xi(t);
The parameter of the task,{c, data, tmax

};
Output:

Get bi(gbest);
1: Set k = 1, iterative number K, error criterion δ,
tedge(gbest0) = ∞;

2: According to Constraint C1-C3, randomly determine the
initial position and velocity of l particles;

3: Check and adjust the initial position of l particles;
4: while k ≤ K ||tedge(gbestk )− tedge(gbestk−1) ≥ δ do
5: for j = 1, 2, · · · , l do
6: calculate fitness function T kj = tedge(Bkj ), update

pbestkj ;
7: end for
8: Update gbestk

9: k = k + 1
10: for j = 1, 2, · · · , l do
11: Update position and velocity of l particles according

Eq.(28);
12: end for
13: end while
14: return gbestK ;

Through PSO Algorithm, we can get the value of bi and
tedge = max(ti). Similar to the processing method in the
Special Case, we compare tlocal and tedge, and then decide
whether to offload the task to service vehicles.

IV. PERFORMANCE EVALUATION
In this section, we carry out simulations to evaluate the
performance of the proposed scheme. In order to simulate
realistic traffic, we use the TIGER map provided by The
United States Census Bureau, and then adopt the IDM_IM
model provided by VanetMobiSim [34] to generate vehicle
track files. Then, we analyze the track files to obtain the
moving parameters of vehicles in the resource pool, such as
tmax _i, and use ns3 to obtain related parameters of the IEEE
802.11p/WAVE standard, such as reliable communication
distance dis. Based on the parameters above, we compare the
performance of three computing schemes: Local computing
scheme, Offloading scheme with Max-Min Fairness Algo-
rithm and Offloading scheme with PSO Algorithm. The used
main simulation parameters are listed in Table 2.

FIGURE 4. The scene of offloading computing.

TABLE 2. Summary of the simulation parameters.

First, we compare the performance of three schemes over
different number of service vehicles. The task execution
time is greatly reduced in Fig.5(a) by the Max-Min Fairness
Algorithm and the PSO Algorithm, respectively. Because we
unload the part of the task to the service vehicles, and use the
idle computing resources of the service vehicle to help calcu-
late the task. From Fig.5(a), we can see that with the increase
of the number of service vehicles, the task execution time
in the latter two schemes is slowly decreasing. Because the
more service vehicles, the more idle computing resources that
can be scheduled for the task vehicle. The task vehicle can
unload a larger proportion of the task to the service vehicle.
Not only that, from Fig.5(a), at the beginning, by the Max-
Min Fairness Algorithm and the PSO Algorithm, the task
execution time is reduced to the same extent. But when
the number of service vehicles reaches 7, the performance
using the PSO Algorithm starts to be slightly lower than that
using the Max-Min Fairness Algorithm. However, it can be
seen from Fig.5(b) that the PSO algorithm does not call all
service vehicles at the same time. The cost of calling an
service vehicle is not considered in this paper. If the service
vehicle is called for a fee, the PSO Algorithm will greatly
reduce the cost of the unloading calculation. On the other
hand, this paper does not consider the scenario of multiple
tasks. If there are multiple tasks in the future that need to
be unloaded, we can also get better performance by using
PSOAlgorithm. Because each task only needs to be unloaded
to a part of service vehicles. The remaining service vehicles
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FIGURE 5. Effect of three schemes. (a)The task execution time over different number of service vehicles; (b)The
number of service vehicles involved in the calculation over different number of service vehicles. The default
setting is c = 20× 109, data = 750KB, tmax = 2.5, l = 150, K = 200. The value of fi is set according to Table 2.
The number marked on the curve indicates the number of service vehicles.

FIGURE 6. Effect of three schemes. (a)The task execution time over different size of the task; (b)The number of
service vehicles involved in the calculation over different size of the task. The default setting is N = 30,
data = 750KB, tmax = 2.5, l = 150, K = 200. The value of fi is set according to Table 2.

can be scheduled for other tasks. Compared with the Max-
Min Fairness Algorithm, the PSO Algorithm does not call all
service vehicles at the cost of not minimizing task execution
time. Considering the performance of the task execution time
and the number of service vehicles involved in the calculation,
we can see that the PSO Algorithm is slightly better than the
Max-Min Fairness Algorithm.

Second, we compare the robustness of three schemes over
different size of the task. In order to better compare the
performance of the three schemes, the task size we set is
relatively large at the beginning. When the task size grows
linearly, the task execution time locally also increases linearly
in Fig.6(a). The reason is that only the computing resources
of the task vehicle can be used in this case. The robust
performance of this scheme is the worst. For remaining two
schemes, although the task execution time increases with
the increase of the task size, the growth rate is much lower
than the task execution time locally. In addition, the per-
formance using the PSO Algorithm is also still slightly
lower than using the Max-Min Fairness Algorithm. Simi-
larly, from Fig.6(b), we also find that all service vehicles are

always scheduled using the Max-Min Fairness Algorithm.
With the PSO Algorithm, the number of service vehicles
scheduled fluctuates with the increasing the task size. But
the fluctuation range is small. And in the worst case, 18 ser-
vice vehicles are called. In the best case, less than half
of the service vehicles are called. All the results show the
third scheme using the PSO Algorithm has the best robust
performance.

Next, we analyze the impact of relative movement between
vehicles on the performance of these three schemes. Accord-
ing to the IDM_IM mobility model we use, the traffic light
time, the initial position and initial velocity of the vehicles
will affect the relative displacement 1Xi between the task
vehicle and each idle vehicle. Based on Constraint 3, the com-
munication time tconstraint_c3 between them will be affected,
further affects the value of tmax _i. In the simulation process,
we get different tconstraint_c3 by setting different movement
parameters in the VanetMobiSim software, and then get dif-
ferent tmax _i. But we still set the abscissa of Fig.7 directly
to different tmax _i instead of different movement parameters.
From Fig.7(a), we can see that with the increase of tmax _i,
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FIGURE 7. Effect of three schemes. (a)The task execution time over different service time of service vehicles;
(b)The number of service vehicles involved in the calculation over different service time of service vehicles. The
default setting is c = 10× 109, data = 750KB, tmax = 2.5, l = 150, K = 200. The value of fi is set according to
Table 2.

FIGURE 8. Effect of the PSO Algorithm. (a)The task execution time over different number of iterations; (b)The
number of service vehicles involved in the calculation over different number of iterations. The default setting is
N = 30, data = 750KB, tmax = 2.5, l = 150. The value of fi is set according to Table 2. The number marked on the
curve indicates the coordinates.

the task execution time in the scheme using the Max-Min
Fairness Algorithm and the PSO Algorithm keeps decreasing
until it is stable. Because the value of tmax _i is greater, the task
vehicle could allocate a larger proportion of the task to the
service vehicles for reducing the task execution time. From
Fig.7(b), the number of service vehicles called by the PSO
Algorithm fluctuates around 18, and nearly half of the service
vehicles are not scheduled.

Finally, we analyze the performance of the scheme using
the PSO Algorithm. In Fig.8(a), when the number of iter-
ations reaches 91, the task execution time is reduced to
a minimum value, which is much smaller than the task
execution time locally. This shows that using the PSO
Algorithm does not require iterating many times to achieve
optimal performance. The task vehicle does not need to
spend too much time cost to schedule service vehicles with
the PSO Algorithm. Through Fig.8(b), we can see that as
the number of iterations increases, the PSO Algorithm opti-
mizes the task execution time while the number of ser-
vice vehicles scheduled is also optimal. This shows the
PSO Algorithm can obtain good performance in the iterative
process.

V. CONCLUSION
In this paper, to reduce the expensive charge from cellular
or infrastructure communication, and guarantee the desired
latency for delay-sensitive applications in IoV, a task offload-
ing scheme merely relying on V2V communication is pro-
posed. By formulating the one task and multiple cooperative
offloading pattern into a Min-Max problem, the total task
execution time can be optimized with affordable commu-
nication and computing overhead. Numerical results have
demonstrated that our scheme could outperform some state-
of-the-art strategies in terms of task execration time and con-
sumed resources. In addition, the introduced PSO algorithm
also contributes a lot to the convergence speed and accuracy
of our envisioned problem. Our future work will investigate
the possibility to enroll multiple tasks into the offloading
procedure usingV2V communication, and analyze the impact
of high mobility of vehicles on the offloading performance.
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