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ABSTRACT The Gaussian filtering is a commonly used method for nonlinear system state estimation.
However, this method requires both system process noise andmeasurement noise to be white noise sequences
with known statistical characteristics. However, it is difficult to satisfy this condition in engineering practice,
making the Gaussian filtering solution deviated or diverged. This paper adopts the randomweighting concept
to address the limitation of the nonlinear Gaussian filtering. It establishes the random weighting estimations
of system noise characteristics on the basis of the maximum a-posterior theory, and further develops a new
Gaussian filtering method based on the random weighting estimations to restrain system noise influences
on system state estimation by adaptively adjusting the random weights of system noise characteristics.
Simulation, experimental and comparison analyses prove that the proposed method overcomes the limitation
of the traditional Gaussian filtering in requirement of system noise characteristics, leading to improved
estimation accuracy.

INDEX TERMS Nonlinear system state estimation, Gaussian filtering, system noise characteristics, random
weighting.

I. INTRODUCTION
Nonlinear system state estimation is an important research
topic in many science and engineering fields, such as
vehicle navigation and guidance systems, robotic control,
target recognition, radar tracking, information fusion, space-
craft orbit determination, and signal processing [5], [21].
The nonlinear Gaussian filtering is a representative technique
for nonlinear system state estimation [1], [3], [20], [21],
[28]–[30], [32]. It can be classified into two categories.
One is the analytical approximation-based Gaussian filtering
method. The typical example is the extended Kalman fil-
ter (EKF), which is the commonly used for nonlinear state
estimation. EKF approximates the nonlinear system model
by the first-order Taylor expansion [17], and then conducts
nonlinear state estimation based on the linear structure of the
traditional Kalman filter. It is simple and easy to implement.
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However, the filtering accuracy of EKF is degraded due to the
truncation of the second-order and above terms in the system
model [19]. It also requires computing the Jacobian matrix,
which is a non-trivial calculation process [16].

The other category is the numerical approximation-based
Gaussian filtering method by approximating the probability
distribution of a nonlinear system rather than the nonlinear
system itself. The typical examples include UKF and CKF,
both in similar accuracy [1], [3], [21], [27]. UKF approx-
imates the posterior probability density function of a non-
linear system state with a set of sigma points by unscented
transformation [10], [22], [26], while CKF approximates the
posterior mean and variance of a nonlinear system function
by spherical-radial cubature rules [2], [27]. Comparing to the
analytical approximation-based Gaussian filtering method
such as EKF, the numerical approximation-based Gaussian
filtering method has higher accuracy and eliminates the non-
trivial calculation of the Jacobian matrix. However, due to the
inheritance of the linear structure of the traditional Kalman

19590 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1952-7390
https://orcid.org/0000-0002-3510-0162
https://orcid.org/0000-0002-2048-1855
https://orcid.org/0000-0002-7980-9085
https://orcid.org/0000-0002-0105-9296
https://orcid.org/0000-0002-4835-2828


Z. Gao et al.: Random Weighting-Based Nonlinear Gaussian Filtering

filter, the numerical approximation-based Gaussian filtering
method requires the prior knowledge of system noise charac-
teristics, which is generally unknown in engineering practice,
making its filtering solution sensitive to system noises [1],
[3], [21], [29], [30].

Research endeavors have been devoted to estimating sys-
tem noise characteristics to overcome the limitation involved
in the numerical approximation-based Gaussian filtering
method. The maximum a-posteriori (MAP) is an approach
to noise characteristics estimation based on the prior infor-
mation of system noises [4], [7]. The Sage windowing esti-
mates system noise characteristics at current time point by
the arithmetic mean of residual vectors within a small time
window [11], [25], [26], [31]. Since the residual vectors
within the time window equally contribute to the estima-
tion of noise characteristics at current time point, simi-
lar to the MAP approach, this method only works for the
cases that system noises are constant or involve small varia-
tions, rather than the cases that system noises involve large
variations. Cho et al. used the receding horizon, which is
a well-established concept in predictive control, to handle
noise characteristics estimation for nonlinear systems [6].
However, this technique involves an infinite covariance, and
thus may lead to the singularity problem for filtering [8].
Li studied an adaptive method to estimate and further cor-
rect system noise characteristics according to measured out-
put information [23]. Similar to the Sage windowing, this
method can only handle constant or small-variation sys-
tem noises due to the use of arithmetic mean for system
noise estimation. Chen and Hu studied a method by comb-
ing matrix analysis with second-order Taylor series expan-
sion to estimate the upper bound of nonlinear estimation
error [36]. However, this method is only suitable for bounded
noises.

Random weighting is a simple statistical method. It can
provide unbiased estimations for large samples with-
out requiring the probability distribution of variables
[9], [12], [13]. This method has applied extensively in sci-
ence and engineering for various problems [11], [14], [15],
[24]. However, the research on using the random weighting
method to improve the performance of the nonlinear Gaussian
filtering is still very limited.

This paper proposes a novel Gaussian filtering method
based on random weighting to overcome the shortcoming of
the traditional Gaussian filtering for nonlinear system state
estimation by adaptively estimating system noise character-
istics. This method establishes random weighting theories
to online estimate the means and covariance of both system
process andmeasurement noises based on theMAP principle.
Subsequently, it dynamically adjusts the random weights of
system noise statistics to restrain the interferences of sys-
tem noises on system state estimation, resulting in increased
estimation accuracy. Simulations and experiments as well as
comparison analysis with the traditional Gaussian filtering
were conducted to comprehensively evaluate the performance
of the proposed method.

II. PRINCIPLE OF RANDOM WEIGHTING
Suppose (S1, S2, · · · , Sn) are the independent random vari-
ables sharing the identical distribution function 9(s), and
their empirical distribution function is described by

9n(s) =
1
n

n∑
i=1

χ (Si≤s) (1)

where χ (Si≤s) denotes the characteristic function.
Then, the random weighting estimation of 9n(s) can be

expressed as [11]

8n(s) =
n∑
i=1

σiχ (Si≤s) (2)

where the random weighting vector (σ1, σ2, · · · , σn) is sub-

ject to Dirichlet distribution D(1, 1, · · ·, 1), that is,
n∑
i=1
σi = 1

and the united density function of (σ1, σ2, · · · , σn−1) is
f (σ1, σ2, · · · , σn−1) = G(n), in which G denotes the Gamma
function, (σ1, σ2, · · · , σn−1) ∈ Dn−1 and

Dn−1 =

{
(σ1, σ2, · · · , σn−1) : σk ≥ 0,

k = 1, · · · , n− 1,
n−1∑
k=1

σi ≤ 1

}
.

From the above, it can be seen that the arithmetic mean
estimation described by (1) applies one common factor to
each sample. This method is not capable of precisely char-
acterizing the real dynamic properties of system noises due
to the equivalent contributions of each sample to the estima-
tion. However, the random weighting estimation described
by (2) applies random weights to each sample, enabling us
to account for randomly variable characteristics of system
noises.

III. NONLINEAR GAUSSIAN FILTERING
A. NONLINEAR GAUSSIAN SYSTEM MODELS
Consider the nonlinear Gaussian system{

xk+1 = fk (xk )+ wk
yk = gk (xk )+ vk

(3)

where xk ∈ Rn is the n-dimensional system state vector,
yk ∈ R

m is the m-dimensional measurement vector, f (·) and
g(·) are the nonlinear system and measurement functions, and
wk ∈ Rn and vk ∈ Rm are the process noise and measurement
noise. It is assumed that wk and vk are mutually uncorre-
lated Gaussian white noises with the following statistical
characteristics

E (wk) = ak , cov
(
wk ,wj

)
= Akδkj

E (vk) = bk , cov
(
vk , vj

)
= Bkδkj

cov
(
wk , vj

)
= 0

(4)

where cov (·) denotes the covariance function, both
Ak ≥ 0 and Bk > 0 are a symmetric matrix, and δkj is the
Kronecker − δ function.
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Equation (4) can be rewritten as

ak = E [wk ] = E [xk+1 − f (xk )]
bk = E [vk ] = E

[
yk − g(xk )

]
Ak = cov

[
wkwTk

]
= E

[
(xk+1 − f (xk )− ak) (xk+1 − f (xk )− ak)T

]
Bk = cov

[
vkvTk

]
= E

[(
yk − g(xk )− bk

) (
yk − g(xk )− bk

)T ]
(5)

B. ANALYSIS OF TRADITIONAL GAUSSIAN FILTERING
For the nonlinear system described by (3), under the con-
dition that the state probability density function is subject
to the Gaussian distribution, the traditional Gaussian filter-
ing estimates the system state based on the linear update
structure of the standard Kalman filter to calculate the first-
order moment (mean) and second-order moment (variance).
It includes the following steps:

Step 1. Initialize estimated state x̂0 and its associated error
covariance P0

x̂0 = E[x0]

P0 = cov
(
x0, xT0

)
= E[(x0 − x̂0)(x0 − x̂0)T] (6)

Step 2. Calculate the predicted state and its error covari-
ance matrix

x̂k+1|k = E[f (xk )]

=

∫
f (xk )N (xk ; x̂k ,Pk )dxk (7)

Pk+1|k = E[(xk+1 − x̂k+1|k )(xk+1 − x̂k+1|k )T]

=

∫
f (xk )f T(xk )N (xk ; x̂,Pk )dxk

− x̂k+1|k x̂
T
k+1|k + Ak+1 (8)

Step 3. Calculate the predicted measurement and its error
covariance matrix

ŷk+1|k = E [g (xk+1)]

=

∫
g(xk+1)N (xk+1; x̂k+1|k ,Pk+1|k )dxk+1 (9)

P ỹk+1 = E[(yk+1 − ŷk+1)(yk+1 − ŷk+1)
T]

=

∫
g (xk+1)gT (xk+1)N

×
(
xk+1; x̂k+1|k ,Pk+1|k

)
dxk+1

− ŷk+1ŷ
T
k+1 + Bk+1 (10)

where ỹk+1 = yk+1 − ŷk+1|k .
Step 4. Calculate the cross covariance matrix between the

predicted state and measurement

N (x; x̂,P) =
exp

(
−

1
2 (x− x̂)

TP−1(x− x̂)
)

((2π )n detP)1/2
(11)

In (6)-(11), N (x; x̂,P) represents the Gaussian distribution
with mean x̂ and covariance P, i.e.

N (x; x̂,P) =
exp

(
−

1
2 (x− x̂)

TP−1(x− x̂)
)

((2π)n detP)1/2
(12)

Based on the linear update structure of the standard
Kalman filter, the state estimation is calculated by


x̂k+1 = x̂k+1|k + Kk+1(yk+1 − ŷk+1)
Kk+1 = P x̃k+1ỹk+1 (P ỹk+1 )

−1

Pk+1 = Pk+1|k − Kk+1P ỹk+1K
T
k+1

(13)

where x̃k+1 = xk+1 − x̂k+1|k .
It is known from (7)-(11) that the Gaussian filtering

requires the calculation of the following multi-dimensional
Gaussian integral

I (f ) =
∫
Rn
f (x) exp

(
−x xT

)
dx (14)

However, it is difficult to find the exact analytical solution
for the Gaussian integral (13). Unscented transformation and
spherical-radial cubature rules are the commonly used numer-
ical solutions to approximate the Gaussian integral, resulting
in UKF and CKF.
It is clear from the above that the Gaussian filtering

accuracy relies on the prior knowledge of the process and
measurement noises. If the process noise wk is inaccurate
or unknown, Ak given by (5) will be inaccurate. This will
further make the state error covariance Pk+1|k described
by (8) inaccurate, thus leading the predicted state x̂k+1|k to
be biased. Similarly, if themeasurement noise vk is inaccurate
or unknown, the predicted measurement ŷk+1|k will also be
biased.

IV. NOISE STATISTICS ESTIMATION
A. MAP ESTIMATION
Theorem 1: Assume h = p

[
x0:k+1, a,A, b,B, y1:k+1

]
is a

joint probability density function, i.e.

h = p
[
x0:k+1, a,A, b,B, y1:k+1

]
= p

[
y1:k+1 |x0:k+1, a,A, b,B

]
× p [x0:k+1 | a,A, b,B ] p [a,A, b,B] (15)

where p [a, A, b, B] can be calculated from pre-defined
information.

Then, the MAP estimates â, Â, b̂ and B̂ of a, A, b and
B at time point k+1 for both process noise statistics and
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measurement noise statistics are expressed as

âk+1 =
1

k + 1

k∑
j=0

{
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j

}
Âk+1 =

1
k + 1

k∑
j=0

{[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]
×

[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]T}
=

1
k + 1

k∑
j=0

{[
x̂j+1 − x̂j+1|j

] [
x̂j+1 − x̂j+1|j

]T}
(16)

and

b̂k+1 =
1

k + 1

k∑
j=0

{
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1

}
B̂k+1 =

1
k + 1

k∑
j=0

{[
yj+1−gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1− bk+1
]

×

[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1 − bk+1
]T}

=
1

k + 1

k∑
j=0

{[
yj+1 − ŷj+1|j

] [
yj+1 − ŷj+1|j

]T}
(17)

where fj
(
xj
) ∣∣∣xj←x̂j denotes the mathematical expectation

of estimated state x̂j via nonlinear system function fj (·);

gj+1
(
xj+1

) ∣∣∣xj+1←x̂j+1 denotes the mathematical expectation
of predicted state x̂j+1|j via nonlinear measurement function
gj+1 (·); and

x̂j+1|j = fj
(
xj
) ∣∣∣xj←x̂j + ak+1 (18)

and

ŷj+1|j = gj+1
(
xj+1

) ∣∣∣xj+1←x̂j+1 + bk+1 (19)

Proof of Theorem 1: The objective is to solve the condi-
tional probability density function

h∗ = p
[
x0:k+1, a, A, b, B

∣∣y1:k+1 ]
=

p
[
x0:k+1, a, A, b, B, y1:k+1

]
p
[
y1:k+1

] (20)

for the MAP estimates â, Â, b̂ and B̂. As â, Â, b̂ and B̂ are
independent of the denominator p

[
y1:k+1

]
, solving (20) for â,

Â, b̂ and B̂ is actually a problem to maximize the probability
density function p

[
x0:k+1, a,A, b,B, y1:k+1

]
.

Using the rule of probability multiplication, we have

p [x0:k+1 |a,A, b,B ]

= p [x0]
k∏
j=0

p
[
xj+1

∣∣xj, a,A ]

=
1

(2π)
n
2 |P0|

1
2

exp
{
−
1
2

∥∥x0 − x̂0∥∥2P−10

}

×

k∏
j=0

1

(2π)
n
2 |A|

1
2

exp
{
−
1
2

∥∥xj+1 − fj (xj)− a∥∥2A−1}

=
1

(2π)
n
2+

n(k+1)
2

|P0|
−

1
2 |A|−

k+1
2 exp

−1
2

∥∥x0 − x̂0∥∥2P−10

+

k∑
j=0

∥∥xj+1 − fj (xj)− a∥∥2A−1


= C1 |P0|
−

1
2 |A|−

k+1
2 exp

−1
2

∥∥x0 − x̂0∥∥2P−10

+

k∑
j=0

∥∥xj+1 − fj (xj)− a∥∥2A−1
 (21)

where n denotes the size of the system state, the symbols
‘‘|·|’’ and ‘‘||·||’’ represent the determinant of a matrix and the
magnitude of a vector, and C1 =

1
(2π)n(k+2)/2

.
If y1, y2, · · · , yk+1 are the uncorrelated measurements,

then

p
[
y1:k+1 |x0:k+1, a,A, b,B

]
=

k∏
j=0

p
[
yj+1

∣∣xj+1, b,B ]
=

k∏
j=0

1

(2π)
m
2 |B|

1
2

exp
{
−
1
2

∥∥yj+1 − gj+1 (xj+1)− b∥∥2B−1}

= C2 |B|
k+1
2 exp

−1
2

k∑
j=0

∥∥yj+1 − gj+1 (xj+1)− b∥∥2B−1

(22)

where m denotes the size of the system measurement and
C2 =

1
(2π)m(k+1)/2

.
Replacing (21) and (22) into (15) yields

h = C1C2 |P0|
−

1
2 · |A|−

k+1
2 · |B|−

k+1
2 · p [a,A, b,B]

· exp
{
−
1
2

[∥∥x0 − x̂0∥∥2P−10
+

k∑
j=0

∥∥xj+1−fj (xj)−a∥∥2A−1
+

k∑
j=0

∥∥yj+1 − gj+1 (xj+1)− b∥∥2B−1


= C|A|−
k+1
2 ·|B|−

k+1
2 exp

−1
2

 k∑
j=0

∥∥xj+1−fj (xj)−a∥∥2A−1
+

k∑
j=0

∥∥yj+1 − gj+1 (xj+1)− b∥∥2B−1
 (23)

whereC=C1C2
∣∣p0∣∣− 1

2 p [a,A, b,B] exp
{
−

1
2

∥∥x0−x̂0∥∥2P−10

}
.
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Applying the natural logarithm to (23) generates

ln h = −
k + 1
2

ln |A| −
k + 1
2

ln |B|

−
1
2

k∑
j=0

∥∥xj+1 − fj (xj)− a∥∥2A−1
−

k∑
j=0

∥∥yj+1 − gj+1 (xj+1)− b∥∥2B−1 + lnC (24)

Thus, solving (25) yields (16) (the detailed derivations are
described in Appendices 1 and 2).

∂ ln h
∂a

∣∣a=ak+1 = 0

∂ ln h
∂A

∣∣A=Ak+1 = 0
(25)

Similarly, solving (26) yields (17) (the detailed derivations
are described in Appendices 3 and 4).

∂ ln h
∂b

∣∣b=bk+1 = 0

∂ ln h
∂B

∣∣B=Bk+1 = 0
(26)

The proof of Theorem 1 is completed.
The statistics of both process and measurement noises can

be online estimated by (16) and (17), and further fed back to
the traditional Gaussian filtering procedure for nonlinear state
estimation. However, as shown in (16) and (17), the system
noise statistics are computed by the arithmetic mean with the
common weight 1

/
k + 1. This means that for each kind of

noise statistics, its estimates at all time points have equal
contributions to the evaluations of prediction errors. Thus,
the calculated prediction errors are not capable of precisely
characterizing the actual noise characteristics, resulting in
degraded estimation accuracy.

B. RANDOM WEIGHTING MAP ESTIMATION
Based on the principle of random weighting described in
Section II, from (16) and (17) the randomweighting estimates
â∗, Â

∗
, b̂
∗
and B̂

∗
of a, A, b and B at time point k+1 for both

process noise statistics and measurement noise statistics can
be written as

â∗k+1 =
k∑
j=0

σj

[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j

]
(27)

Â
∗

k+1 =

k∑
j=0

σj

{[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]
[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]T}
=

k∑
j=0

σj

{[
x̂j+1 − x̂j+1|j

] [
x̂j+1 − x̂j+1|j

]T} (28)

and

b̂
∗

k+1 =

k∑
j=0

σj

[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1

]
(29)

B̂
∗

k+1 =

k∑
j=0

σj

{[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1 − bk+1
]

[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1 − bk+1
]T}

=

k∑
j=0

σj

{[
yj+1 − ŷj+1|j

] [
yj+1 − ŷj+1|j

]T} (30)

where (σ1, σ2, · · · , σn) are the random weights subject to
Dirichlet distribution D(1, 1, · · ·, 1).
Remark: When implementing the algorithm described

by (27)-(30), if the state estimate at time point k+1 cannot
be obtained, it can be substituted with the state prediction at
time point k+1 to calculate the system noise statistics.
Theorem 2: The random weighting estimates of the first-

order noise statistics, i.e., â∗k+1 and b̂
∗

k+1 given by (27)
and (29), are unbiased. The random weighting estimates of
the second-order noise statistics, i.e., Â

∗

k+1 and B̂
∗

k+1 given
by (28) and (30), are sub-optimal unbiased.

Proof of Theorem 2: Define the innovation vector by

εj+1 = yj+1 − ŷj+1|j (31)

From (31), we have
E
(
εj+1

)
= E

(
yj+1 − ŷj+1|j

)
= 0

E
(
εj+1ε

T
j+1

)
=E

[(
yj+1−ŷj+1|j

) (
yj+1−ŷj+1|j

)T ]
= P ỹj+1

(32)

From (13), we have

P j+1|k − P j+1 = K j+1P ỹj+1K
T
j+1 (33)

and

P j+1|k − P j+1 = K j+1P ỹj+1K
T
j+1 (34)

Substituting (18), (13), (31) and (32) into (27), we have

E
(
â∗k+1

)
=

k∑
j=0

σjE
{[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j

]}
=

k∑
j=0

σjE
(
x̂j+1 − x̂j+1|j + ak+1

)
=

k∑
j=0

σjE
[
K j+1

(
yj+1 − ŷj+1|j

)
+ ak+1

]
=

k∑
j=0

σjE
(
K j+1εj+1 + ak+1

)
=

k∑
j=0

σjak+1

= ak+1 (35)

where
k∑
j=0
σj = 1 is used in the last derivation step.
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Similarly, substituting (19), (31) and (32) into (29) yields

E
(
b̂
∗

k+1

)
=

k∑
j=0

σjE
{[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1

]}
=

k∑
j=0

σjE
(
yj+1 − ŷj+1|j + bk+1

)
=

k∑
j=0

σjE
(
εj+1 + bk+1

)
=

k∑
j=0

σjbk+1

= bk+1 (36)

where
k∑
j=0
σj = 1 is used in the last derivation step.

It is known from (35) and (36) that the random weighting
estimates â∗k+1 and b̂

∗

k+1 of the first-order noise statistics are
unbiased.

Define

ρj = fj
(
xj
)
− fj

(
xj
) ∣∣∣xj←x̂j

= fj
(
xj
)
− E

[
fj
(
xj
) ∣∣yj ] (37)

Then, we have [23]

P j+1|j = E
(
ρjρ

T
j

)
+ Ak+1 (38)

Substituting (13), (31)-(34) and (38) into (28) yields

E
(
Â
∗

k+1

)
=

k∑
j=0

σjE
{[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]
×

[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]T}
=

k∑
j=0

σjE
{[
x̂j+1 − x̂j+1|j

] [
x̂j+1 − x̂j+1|j

]T}
=

k∑
j=0

σjE
{[
K j+1

(
yj+1−ŷj+1|j

)] [
K j+1

(
yj+1−ŷj+1|j

)]T}
=

k∑
j=0

σj

[
K j+1E

(
εj+1ε

T
j+1

)
KT

j+1

]
=

k∑
j=0

σjE
[
K j+1P ỹj+1K

T
j+1

]
=

k∑
j=0

σjE
[
P j+1|j − P j+1

]
=

k∑
j=0

σj

[
E
(
ρjρ

T
j

)
+ Ak+1 − P j+1

]
=

k∑
j=0

σj

[
E
(
ρjρ

T
j

)
− P j+1

]
+ Ak+1

6= Ak+1 (39)

Equation (39) shows that the random weighting estimate of
the second-order process noise statistic, i.e., Â

∗

k+1 described
by (28), is biased. However, (28) can be improved as the
following unbiased estimate

Â
∗

k+1 =

k∑
j=0

σj

[
K j+1P ỹj+1K

T
j+1
+ P j+1 − E

(
ρj+1ρ

T
j+1

)]
(40)

owing to

E
(
Â
∗

k+1

)
= E

 k∑
j=0

σj

[
K j+1PEyj+1K

T
j+1 + P j+1 − E

(
ρj+1ρ

T
j+1

)]
=

k∑
j=0

σj

[
E
(
K j+1PEyj+1K

T
j+1

)
+E

(
P j+1

)
−E

(
ρj+1ρ

T
j+1

)]
=

k∑
j=0

σj

[
E
(
P j+1|j − P j+1

)
+ E

(
P j+1

)
− E

(
ρj+1ρ

T
j+1

)]
=

k∑
j=0

σj

[
E
(
ρjρ

T
j

)
+Ak+1 − P j+1+P j+1−E

(
ρj+1ρ

T
j+1

)]
= Ak+1 (41)

Thus, the random weighting estimate of the second-order
process noise statistic, which is described by (28), is
sub-optimal unbiased.

Define

ζ j = gj+1
(
xj+1

)
− gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1

= gj+1
(
xj+1

)
− E

[
gj+1

(
xj+1

) ∣∣yj ] (42)

Thus, we have [23]

P ỹj+1 = E
(
ζ j+1ζ

T
j+1

)
+ Bk+1 (43)

Substituting (31), (32) and (43) into (30) yields

E
(
B̂
∗

k+1

)
=

k∑
j=0

σjE
{[
yj+1−gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1−bk+1
]

[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1 − bk+1
]T}

=

k∑
j=0

σjE
{[
yj+1 − ŷj+1|j

] [
yj+1 − ŷj+1|j

]T}

=

k∑
j=0

σjE
(
εj+1ε

T
j+1

)

=

k∑
j=0

σjP ỹj+1

=

k∑
j=0

σj

[
E
(
ζ j+1ζ

T
j+1

)
+ Bk+1

]
6= Bk+1 (44)
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Equation (44) shows that the random weighting estimate
of the second-order measurement noise statistic, i.e., B̂

∗

k+1
described by (30), is biased. However, (30) can be improved
as the following unbiased estimate

B̂
∗

k+1
=

k∑
j=0

σj

[
P ỹj+1 − E

(
ζ j+1ζ

T
j+1

)]
(45)

owing to

E
(
B̂
∗

k+1

)
= E


k∑
j=0

σj

[
P ỹj+1 − E

(
ζ j+1ζ

T
j+1

)]
= E

k∑
j=0

σj

{
E
(
ζ j+1ζ

T
j+1

)
+ Bk+1

−

[
E
(
ζ j+1ζ

T
j+1

)]}
= Bk+1 (46)

Thus, the random weighting estimate of the second-order
process noise statistic, which is described by (30) is sub-
optimal unbiased.

The proof of Theorem 2 is completed.

C. DESIGN OF RANDOM WEIGHTS
Define the residual vector of the state prediction by

1xk−j = x̂k−j − x̂k−j|k−j−1 (j = 1,2, · · · , n) (47)

Define the residual vector of the measurement by

1zk−j = ẑk−j − zk−j (j = 1,2, · · · , n) (48)

where ẑk−j = gk−j
(
x̂k−j

)
.

In case of a change in the process noise statistics, the contri-
bution of the state prediction x̂k−j|k−j−1 to the state estimate
will be decreased, leading the prediction to be biased. As a
result, the magnitude of the state prediction’s residual vector
1xk−j will be increased. Similarly, in case of a change in
the measurement noise statistics, the measurement’s residual
1zk−j will be biased and its magnitude will also be increased.

σj∞
∥∥1xk−j∥∥× ∥∥1zk−j∥∥ (j = 1,2, · · · , n) (49)

To characterize the changes of the system noise statistics,
consider where∥∥1xk−j∥∥ = √

1xTk−j1xk−j,
∥∥1zk−j∥∥ = √

1zTk−j1zk−j,
and the symbol ‘‘∞’’ denotes the proportional operation.

Equation (49) implies that the larger the value of∥∥1xk−j∥∥ × ∥∥1zk−j∥∥ is, the larger the weight is. Therefore,
the random weights σj can be determined as follows.
Let

ωj =
∥∥1xk−j∥∥× ∥∥1zk−j∥∥ (j = 1,2, · · · , n) (50)

By normalization, the random weights are obtained as

σj =
ωj
n∑
j=1
ωj

(51)

V. RANDOM WEIGHTED-BASED GAUSSIAN FILTERING
The proposed random weighting-based Gaussian filtering
method includes the following steps:

(i) Initialize the estimated state and its associated error
covariance

x̂0 = E[x0]

P0 = cov
(
x0, xT0

)
= E[(x0 − x̂0)(x0 − x̂0)T] (52)

(ii) Calculate the predicted state and its error covariance
matrix

x̂∗
k+1|k
= fk (xk)

∣∣xk←x̂k +â
∗

k+1 (53)

P∗k+1|k = E(ρkρ
T
k )+ Â

∗

k+1 (54)

(iii) Calculate predicted measurement and its error covari-
ance matrix

ŷ∗
k+1|k
= gk+1 (xk+1)

∣∣xk+1←x̂k+1 + b̂
∗

k

P∗ỹk+1 = E
(
ζ k+1ζ

T
k+1

)
+ B̂
∗

k

P∗x̃k+1ỹk+1 = E[x̃k+1ζ Tk+1]
(55)

(iv) State update
x̂∗k+1 = x̂∗k+1|k + Kk+1

(
yk+1 − ŷ

∗

k+1|k

)
Kk+1 = P∗x̃k+1ỹk+1P

∗−1
ỹk+1

P∗k+1 = P∗k+1|k − Kk+1P∗ỹk+1K
T
k+1

(56)

Equations (53)-(56) show that the presented Gaussian filter-
ing method based on random weighting can adaptively adjust
the weights of the process and measurement noise statistics
to restrain system noise interferences on the state estimation,
thus leading to improved estimation precision. Fig. 1 illus-
trates the algorithm of the proposed random weighting-based
Gaussian filtering.

VI. PERFORMANCE EVALUATION AND DISCUSSION
A prototype system was implemented using the proposed
randomweighting-based Gaussian filtering (RWGF) for non-
linear state estimation. Simulations and experimental analysis
were conducted to comprehensively evaluate and analyze the
performance of the proposed RWGF. Comparison analysis
with the traditional Gaussian filtering method such as CKF
for system state estimationwas also conducted to demonstrate
the improved performance of the proposed RWGF.

A. SIMULATION AND ANALYSIS
Simulation analysis was performed to examine the
effectiveness of the presented RWGF. Consider the univariate
nonstationary growth model [18]

xk0.5xk−1 + 25xk−1/(1+ x2k−1)
+8 cos[1.2(k − 1)]+ wk−1

zk = x2k/20+ vk

(57)

where both wk and vk are a Gaussian white noise of non-zero
mean.
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FIGURE 1. The random-weighting Gaussian filtering algorithm.

The initial state was x0 = 0.1, and its estimate was
x̂0 = 0.1. The initial estimation error covariance P0 was set
as a unit matrix. Monte Carlo simulations were carried out
150 times.

1) ESTIMATION OF PROCESS NOISE STATISTICS
To examine the estimation accuracy of RWGF for the statis-
tics of system process noise, the measurement noise statistics
were assumed to be exactly known and they were bk = 0,
b̂k = 0, Bk = 1 and B̂k = 1. The process noise’s mean and
covariance were ak = 0.1 and Ak = 20 in theory. The initial
process noise statistics were â0 = 0.05 and Â0 = 4, which
were biased from their theoretical values.

Fig. 2 shows the estimations of process noise’s mean and
covariance by RWGF, where after the initial oscillations

within about 80s, the estimated process noise statistics are
gradually converged to their theoretical values, respectively.
Fig. 3 shows the state estimation errors by both CKF and
RWGF in the presence of the biased process noise statistics.
Since RWGF can online estimate the process noise’s statistics
while CKF lacks this capability, the state estimate error by
RWGF is much smaller than that by CKF, in spite of the
disturbances of the biased process noise statistics. As shown
in Table 1, the mean error and root mean square error (RMSE)
are 1.0584 and 1.4443 for CKF, while 0.5351 and 0.6925 for
RWGF.

2) MEASUREMENT NOISE STATISTICS
To examine the estimation accuracy of RWGF for mea-
surement noise statistics, the process noise statistics were
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FIGURE 2. Estimated process noise statistics by RWGF.

FIGURE 3. State estimation errors of both CKF and RWGF under biased
process noise statistics.

TABLE 1. Statistical errors of state estimation by both CKF and RWGF
under biased process noise statistics.

assumed to be exactly known and they were ak = 0, âk = 0,
Ak = 5 and Âk = 1. The measurement noise’s mean and
covariance were bk = 0.1 and Bk = 0.4 in theory. The initial

FIGURE 4. Estimated measurement noise statistics by RWGF.

TABLE 2. Statistical errors of state estimation by both CKF and RWGF
under biased measurement noise statistics.

measurement noise statistics were b̂0 = 0.03 and B̂0 = 10,
which were biased from their theorical values.

Fig. 4 shows the estimations of measurement noise’s mean
and covariance by RWGF, where after the initial oscilla-
tions within about 80s, the estimated measurement noise
statistics are gradually converged to their theoretical values,
respectively. This demonstrates that the proposed RWGF can
effectively estimate the measurement noise statistics.

Fig. 5 shows that the state estimation errors by both CKF
and RWGF in the presence of the biased measurement noise
statistics. Since RWGF is capable of online estimating mea-
surement noise statistics while CKF does have this capability,
the state estimation error achieved by RWGF is much smaller
than that by CKF. As shown in Table 2, the mean error and
RMSE are 0.9740 and 1.1884 for CKF, while 0.5051 and
RMSE 0.6670 for RWGF.

3) SYSTEM STATE ESTIMATION
The means and covariances of both process and measurement
noises were assumed to be exactly known, and they were

ak = 0, âk = 0, bk = 0 and b̂k = 0 (58)

The theoretical covariances of the process and measurement
noises, which differed promptly, were represented by

Ak = 8+ 2 sin(0.05k) and Bk = 1+ 3 cos(0.02k)2 (59)
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FIGURE 5. State estimation errors by RWGF and CKF under biased
measurement noise statistics.

TABLE 3. Mean errors of the system noise covariances estimated by both
MAP and RWGF.

The initial process noise covariance was Â0 = 8 and the
initial measurement noise covariance B̂0 = 4. Obviously,
these initial covariances were biased.

As shown in Fig. 6, the influences on the estimates due
to the biases involved in the initial noise covariances are
within the initial time interval of ∼30s, where there are
significant oscillations in the estimation curves. After this
initial time interval, the estimated values of the noise covari-
ances are very close to their theoretical values. These results
demonstrate that the proposed RWGF can effectively track
the theoretical covariances of both process and measurement
noises.

For further evaluation, the noise covariances estimated by
RWGF were compared with those by MAP [4, 7] under the
same conditions. As shown in Fig. 7, even after the significant
oscillations within the initial time period of ∼30s, there are
still obvious oscillations remained in the MAP estimation
curves. As illustrated in Table 3, the mean errors of the pro-
cess andmeasurement noise covariances estimated by RWGF
are 0.0703 and 0.0612, and are almost twice smaller than
those by MAP, which are 0.1631 and 0.1140.

Given its ability to effectively track the system noise statis-
tics, as shown in Fig. 8, RWGF has a smaller state estima-
tion error than CKF. As illustrated in Table 4, the resultant
mean error and RMSE of the state estimation are 0.6138 and

FIGURE 6. System noise covariances estimated by RWGF.

FIGURE 7. System noise covariances estimated by MAP.

0.7402 for RWAGF, while they are 1.6003 and 1.2478
for CKF.

The above simulations and analyses exhibit that the
presented RWGF effectively estimates both process and mea-
surement noise statistics, resulting in the increased accuracy
for system state estimation comparing to CKF.
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FIGURE 8. State estimation errors by both CKF and RWGF under biased
system noise statistics.

TABLE 4. Statistical errors of state estimation by CKF and RWGF under
biased system noise statistics.

B. EXPERIMENTS AND ANALYSIS
Experiments of vehicle flight were also performed for the
performance evaluation. The vehicle was an ASN 206 recon-
naissance UAV (Unmanned Aerial Vehicle). The BDS (Bei
Dou System) / MEMS IMU (Micro-Electro-Mechanical Sys-
tem Inertial Measurement Unit) integrated navigation system
was mounted on the UAV for positioning and navigation (see
Fig. 9). This navigation system includes a self-made MEMS
IMU and an AGRMIN GNS430 BDS receiver. Table 5 lists
the parameters of the BDS / MEMS IMU integrated naviga-
tion system. One additional AGRMINGNS430 BDS receiver
was installed at the local reference station, which was located
at a distance of approximate 500m from the initial position
of the UAV, to provide the reference data via pseudo-range
differential for error analysis.

1) MATHEMATICAL MODEL OF BDS / MEMS IMU
INTEGRATED NAVIGATION SYSTEM
a: SYSTEM STATE EQUATION
The BDS / MEMS IMU integrated navigation system adopts
the E-N-U (East-North-Up) geography frame as the navi-
gation frame. The state vector of this navigation system is

TABLE 5. The parameters of the BDS / MEMS IMU integrated navigation
system.

FIGURE 9. The UAV and its BDS / MEMS IMU integrated navigation
system.

defined as

X (t) = [δvE δvN δvU δL δλ δh φE φN φU

εx εy εz ∇bx ∇by ∇bz
]T
15×1 (60)

where (δvE , δvN , δvU ), (δL, δλ, δh) and (φE , φN , φU ) are
the velocity error, position error, and attitude error of the
UAV; L, λ and h are the latitude, longitude and altitude
of the UAV;

(
εx , εy, εz

)
is the constant drift of the gyros;(

∇bx ,∇by,∇bz
)
is the zero bias of the accelerometers; and

δL̇δλ̇
δḣ

=


δvy
R+ h

+
vyδh

(R+ h)2
δvx
R+ h

secL +
vxδL
R+ h

secLtanL −
vxδh

(R+ h)2
secL

δvz


(61)

where R is the radius of the Earth.
The system state equation of the BDS / MEMS IMU

integrated navigation can be represented as

Ẋ (t) = f (X (t))+ G(t)w(t) (62)

where f (·) denotes the system nonlinear function, and w(t)
the system noise consisting of gyro’s Gaussian white noise
(wgx ,wgy,wgz) and accelerometer’s Gaussian white noise
(wax ,way,waz).

w(t) = [wgx ,wgy,wgz,wax ,way,waz]T6×1 (63)
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G(t) is the coefficient matrix of the system noise and is
expressed as

G(t) =

 Cn
b 03×3

03×3 Cn
b

09×3 09×3


15×6

(64)

where Cn
b is the conversion matrix from the body coordinate

system to the navigation coordinate system.

b: MEASUREMENT EQUATION
The measurement equation of the BDS / MEMS IMU
integrated navigation system is established using velocity
error and position error as measurement information.

The measurement equation of position error is described
by

Zp (t) = Hp (t)X (t)+ Vp (t) =

R cosLδλ+ nERδL + nN
δh+ nU

 (65)

where Hp (t) is the position measurement matrix, which is
expressed as

Hp =

[
03×3

... diag [R R cosL 1]
... 03×9

]
9×15

(66)

Vp (t) is the position measurement noise, which is expressed
as

Vp (t) =
[
nE nN nU

]T (67)

where nE , nN and nU are the position errors of the BDS
receiver in the three axes, respectively.

The velocity error measurement equation can be written as

Zv (t) = Hv (t)X (t)+ V v (t) =

 δvE + nvEδvN + nvN
δvU + nvU

 (68)

where Hv (t) is the velocity measurement matrix, which is
expressed as

Hv (t) =
[
diag [1 1 1]

... 03×12

]
9×15

(69)

V v (t) =
[
nvE nvN nvU

]T (70)

where V v (t) is the velocity measurement noise, and nvE , nvN
and nvU are the velocity measurement errors of BDS.
According to (65) and (68), the measurement equation of

the BDS / MEMS IMU integrated navigation system can be
obtained as

Z (t) =
[
Hp (t)
Hv (t)

]
X (t)+

[
Vp (t)
V v (t)

]
= H (t)X (t)+ V (t)

(71)

2) EXPERIMENTAL RESULTS AND ANALYSIS
The flight test was carried out in the City of Xi’an, Shaanxi,
China. The UAV lifted off after the ten-minute initialization.
The initial position variancewas 0.2m2 and the initial velocity
variance 9.0×10−5m2s−2. The total time of flight was 90min.
Fig. 10 illustrates the UAV flight path. The navigation data
were selected from a smooth flight of 1800s.

FIGURE 10. UAV flight trajectory.

FIGURE 11. Position error by CKF.

FIGURE 12. Position error by RWGF.

For the purpose of comparison analysis, trials were con-
ducted to process the C/A code observations by both CKF
and RWGF. The experimental results show the similar trend
as those in the simulation case. As shown in Fig. 11, CKF has
significant oscillations in the filtering curve, and its position
errors in longitude, latitude and altitude are within (−12m,
+12m), (−12m, +12m) and (−10m, +10m), respectively.
In contrast, as shown in Fig. 12, the position errors in longi-
tude, latitude and altitude obtained by the proposed RWGF
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FIGURE 13. Velocity error by CKF.

FIGURE 14. Velocity error by RWGF.

TABLE 6. Mean position error and mean velocity error of CKF and RWGF.

are within (−3m, +3m), (−3m, +3m) and (−5m, +5m),
which are much smaller than those of CKF. Similar to the
case of position error, the velocity error by the proposed
RWGF is also much smaller than that of CKF. The velocity
errors in East, North and Up are within (−0.9m/s, +0.9m/s),
(−0.9m/s, +0.9m/s) and (−1m/s, +1m/s) respectively for
CKF (see Fig. 13), while (−0.3m/s, +0.3m/s), (−0.3m/s,
+0.3m/s) and (−0.4m/s, +0.4m/s) for the proposed RWGF
(see Fig. 14). This is because the proposed RWGF has the
capability of noise statistics estimation, while CKF does not.
As shown in Table 6, the mean errors of position and velocity
by RWGF are also much smaller than those of CKF.

VII. CONCLUSION
This paper proposes a new RWGF for estimation of nonlinear
system state. This method improves the traditional Gaussian
filtering by adopting the random weighting concept to online
estimate the statistical characteristics of both process and
measurement noises. The theories of random weighting are
established on the basis of the MAP theory to online estimate

noise statistical characteristics. Upon the random weight-
ing estimations of noise statistical characteristics, the pre-
sented RWGF dynamically alters the random factors of noise
statistics to restrain system noise interferences on system
state estimation, resulting in enhanced estimation accuracy.
Simulations, experiments and comparison analysis demon-
strate that the presented RWGF has higher accuracy than the
traditional Gaussian filtering under unknown or biased noise
statistical characteristics.

Future work will focus on improvement of the proposed
RWGF. Currently, the proposed RWGF is under the
assumption that the system noises are subject to the Gaussian
distribution. It is expected to extend the random weighting
estimations of Gaussian system noises to non-Gaussian sys-
tem noises, and thus establishing a new random weighting-
based non-Gaussian filter for estimation of nonlinear system
state.

APPENDIXES
APPENDIX A
SOLVING (25) FOR âk+1
By (25),

∂ ln h
∂a
=

1
2

k∑
j=0

[
A−1 +

(
A−1

)T] (
xj+1 − fj

(
xj
)
− a

)
(72)

Let
∂ ln h
∂a

∣∣∣a=ak+1
=

1
2

[
A−1+

(
A−1

)T] k∑
j=0

(
xj+1−fj

(
xj
)
− a

) ∣∣∣a=ak+1 =0
(73)

As 1
2

[
A−1 +

(
A−1

)T ]
6= 0, we have

k∑
j=0

(
xj+1 − fj

(
xj
)
− a

) ∣∣a=ak+1 = 0 (74)

Thus

âk+1 =
1

k + 1

k∑
j=0

{
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1

}
(75)

To simplify the calculation process, substituting state smooth
x̂j|k+1 with estimated state x̂j yields

âk+1 =
1

k + 1

k∑
j=0

{
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j

}
(76)

APPENDIX B
SOLVING (25) FOR Âk+1
Consider the conditions as follows:

(i) AT = A and BT = B
(ii) ∂ ln|C|

∂C =
1
|C| · C

∗
= C−1

(
∂|C|
∂C = C∗

)
(iii) ∂C

−1

∂C = −C
−T
× C−1

where |C| is the determinant of matrix C.
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By (25),

∂ ln h
∂A

∣∣A=Ak+1
=

[
−
k + 1
2
·
∂ ln |A|
∂A

−
1
2

k∑
j=0

∥∥xj+1 − fj (xj)− a∥∥2 ∂A−1
∂A

 ∣∣A=Ak+1
=

−k + 1
2

A−1 −
1
2

k∑
j=0

[
xj+1 − fj

(
xj
)
− a

] ∣∣a=ak+1
×
[
xj+1 − fj

(
xj
)
− a

]T
×

(
−C−T × C−1

)} ∣∣A=Ak+1
= 0 (77)

Equation (74) can be rewritten as

k + 1
2

Â
−1
k+1 =

1
2

k∑
j=0

[
xj+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1 − a

]
×

[
xj+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1 − a

]T
a=ak+1

·

(
Â
−T
k+1 · Â

−1
k+1

)
(78)

Multiplying both sides of (75) by Âk+1 yields

k + 1
2

I =
1
2

k∑
j=0

[
xj+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1 − ak+1

]
×

[
xj+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1 − ak+1

]T
· Â
−T
k+1

(79)

where I is an unit matrix.
Substituting Â

-T
k+1 = Â

-1
k+1 into (76) yields

Âk+1 =
1

k + 1

k∑
j=0

{[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1 − ak+1

]
×

[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j|k+1 − ak+1

]T}
(80)

Substituting state smooth x̂j|k+1 with state estimate x̂j yields

Âk+1 =
1

k + 1

k∑
j=0

{[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]
×

[
x̂j+1 − fj

(
xj
) ∣∣∣xj←x̂j − ak+1

]T}
(81)

APPENDIX C
SOLVING (26) FOR b̂k+1
By (26),

∂ ln h
∂b
=

k∑
j=0

[
B−1 +

(
B−1

)T] (
yj+1 − gj+1

(
xj+1

)
− b

)
(82)

Let

∂ ln h
∂b

∣∣b=bk+1 = [B−1 + (B−1)T]
×

k∑
j=0

(
yj+1 − gj+1

(
xj+1

)
− b

) ∣∣b=bk+1 = 0 (83)

Since B−1 +
(
B−1

)T
6= 0, we have

k∑
j=0

(
yj+1 − gj+1

(
xj+1

)
− b

) ∣∣b=bk+1 = 0 (84)

i.e.,

k∑
j=0

[
yj+1−gj+1

(
xj+1

)]∣∣∣xj+1←x̂j+1|k+1−(k + 1) b
∣∣b=bk+1 =0

(85)

Thus

b̂k+1 =
1

k + 1

k∑
j=0

{
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1|k+1

}
(86)

Substituting state smooth x̂j+1|k+1 with state estimate x̂j+1
yields

b̂k+1 =
1

k + 1

k∑
j=0

{
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1

}
(87)

APPENDIX D
SOLVING (26) FOR B̂k+1
Suppose that the conditions described in Appendix 2 hold.
From (26), we readily have

∂ ln h
∂B

∣∣B=Bk+1
=

[
−
k + 1
2
·
∂ ln |B|
∂B

−

k∑
j=0

∥∥yj+1 − gj+1 (xj+1)− b∥∥2 ∂B−1
∂B

 ∣∣B=Bk+1
=

−k + 1
2

B−1 −
1
2

k∑
j=0

[
yj+1 − gj+1

(
xj+1

)
− b

] ∣∣b=bk+1
×
[
yj+1 − gj+1

(
xj+1

)
− b

] ∣∣∣Tb=bk+1
×

(
−B−T × B−1

) ∣∣B=Bk+1
= 0 (88)
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Thus
k + 1
2

B̂
−1
k+1

=
1
2

k∑
j=0

{[
yj+1 − gj+1

(
xj+1

) ∣∣∣x̂j+1←x̂j+1|k+1 − b
]

[
yj+1 − gj+1

(
xj+1

) ∣∣∣x̂j+1←x̂j+1|k+1 − b
]T} ∣∣b=bk+1

×

(
B̂
−T
k+1 · B̂

−1
k+1

)
(89)

Multiplying both sides of (86) by B̂k+1 yields

k + 1
2

I

=
1
2

k∑
j=0

[[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1|k+1 − b
]] ∣∣b=bk+1

×

[[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1|k+1 − b
]]T

b=bk+1
·B̂
−T
k+1

(90)

Substituting B̂
-T
k+1 = B̂

-1
k+1 into (87) yields

B̂k+1=
1

k+1

k∑
j=0

{[
yj+1−gj+1

(
xj+1

)∣∣∣xj+1←x̂j+1|k+1−bk+1
]

×

[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1|k+1 − bk+1
]T}
(91)

Substituting state smooth x̂j+1|k+1 with state estimate x̂j+1
yields

B̂k+1 =
1

k + 1

k∑
j=0

{[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1 − bk+1
]

[
yj+1 − gj+1

(
xj+1

) ∣∣∣xj+1←x̂j+1 − bk+1
]T}

(92)
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