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ABSTRACT Cell-phone use while driving results in potentially severe safety hazards. In this paper, a scheme
for detecting cell-phone use that is based on deep learning is proposed, which can eliminate the potential risk
by detecting the driver behavior and issuing an early warning. The proposed scheme consists of two stages:
model training and practical testing. In the former, a multi-angle arrangement of cameras is first designed.
Then, based on self-established data set, two independent convolutional neural networks (CNNs) are trained
by optimizing the size and number of the convolution kernels, which can efficiently recognize cell-phones
and hands in real time. In the testing stage, dynamic region extraction and skin color detection are employed
as preprocessing to improve the accuracy of target recognition. Then, with the trained CNNs, the detection
of cell-phone and hand targets is carried out, and the corresponding early warning is issued based on the
distance of the interaction between the cell-phone and the hand. Numerous experiments are conducted and
the results demonstrate that the proposed scheme can accurately detect cell-phone use during driving in real
time, with a running time of 144 fps and an accuracy of 95.7%.

INDEX TERMS Cell-phone use, deep learning, dynamic region extraction.

I. INTRODUCTION
With the development of technology and the accelera-
tion of the rhythm of life, cell-phones have brought great
convenience and have gradually become people’s new
‘‘appendages’’. However, cell-phone use while driving poses
potentially substantial hazards to traffic safety. Studies show
that the rate of traffic accidents while drivers are using cell-
phones is approximately four times higher than that during
normal driving [1], [2]. Thus, most countries have issued
regulations that limit drivers’ cell-phone use [3]. To imple-
ment these regulations, the current practice is to dispatch
law enforcement officers on the roadside to visually inspect
incoming cars, or to use surveillance cameras to detect the
targets, and, subsequently, to impose administrative punish-
ment, which not only consumes a substantial amount of
resources but also cannot eradicate this type of behavior
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fundamentally [4]. Therefore, dynamically detecting cell-
phone use while driving and issuing warnings against
this behavior via intelligent technology is of substantial
importance.

For the behavior of cell-phone use, the first problem to be
solved is cell-phone and hand detection and identification.
Target detection is an important research area in the mod-
ern image processing field and has a broad research foun-
dation and application prospects [5], [6]. Currently, target
detection methods can be roughly divided into two cate-
gories: artificial-feature-based methods and deep-learning-
based methods. In the former, various artificial features
are designed according to the target characteristics. Then,
target detection and recognition are conducted via regres-
sion. Viola et al. proposed a rapid object detection method
that uses a boosted cascade of simple Haar features [7].
Dalal et al. selected the histogram of oriented gradients
(HOG) feature and used support vector machine as the clas-
sifier to detect targets [8], [9]. Felzenszwalb et al. proposed
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the deformable parts model for further improving the accu-
racy of target detection [10]. However, these methods focus
mostly on single object and relatively intuitive feature. Thus,
the robustness and generalization performance of these meth-
ods must be further improved in view of the diversity of
objectives and characteristics.

Deep-learning-based methods are the mainstream devel-
opment direction of target detection. Sermanent et al. intro-
duced convolutional networks to improve the detection
performance [11]. He et al. proposed SPP-Net by adding
spatial pyramid pooling between the convolutional layer and
the fully connected layer to avoid the influence of scaling
candidate regions [12]. Girshick et al. proposed a target detec-
tion model that was based on regional convolutional neural
networks (R-CNNs) [13]. Later, Girshick et al. proposed the
Fast R-CNN detection algorithm, which realized multi-task
learning and substantially increased the detection speed [14].
Ren et al. designed the candidate region generation network
with the Faster R-CNN, and realized end-to-end deep learn-
ing with higher speed and accuracy [15]. Lin et al. proposed
the feature pyramid networks detection algorithm, which is
based on Faster R-CNN [16]. In addition, algorithms such
as YOLO [17], SSD [18], and Retina-Net [19] also show
excellent detection performance.

Behavior detection of cell-phone use has stricter require-
ments than traditional target detection. After the detection
and recognition of the cell-phone and hand, it is necessary to
distinguish the interaction between them, namely, whether the
driver is using the cell-phone or not. Considering the real-time
performance and accuracy of data acquisition, the current
research in this field focuses mainly on the hardware design
of sensors and the algorithm design of target detection, which
will be roughly introduced as follows.

For the hardware design of sensors, signal sensors for
detecting audio/network signals from cell-phones are typi-
cally installed, which are used to determine whether the cell-
phone in the cab is active [20]–[23]. Rodríguez-Ascariz et al.
proposed an automatic electronic system for capturing the
cell-phone voice signal and identifying the time of drivers
cell-phone use, which can effectively detect all cell-phone
voice signals but cannot distinguish between the signals of
pedestrian and passengers [4]. Li et al. invented a cell-phone
signal shielding device that shields cell-phone signals in
a prescribed area of approximately half of a square meter
around the driver, which could fundamentally eliminate the
possibility of the driver using a cell-phone. However, it also
prevented drivers from using cell-phones to seek help in an
emergency [24], [25]. Liu et al. used embedded sensors to
detect whether the driver was using cell-phones by analyz-
ing the associated information, such as data from touch-
ing screens [26], [27]. Wang et al. developed a cell-phone
integrated sensor for detecting the use of cell-phones from
changes in cell-phone location information that is obtained
by embedded sensors [28]–[30]. Leem et al. proposed an
impulse radio ultrawideband radar for monitoring driver
anomalies, including vital signs and cell phone signals, and

detect the use by setting the area between the steering wheel
and the operating lever as the region of telephone detec-
tion [31]. These hardware designs have yielded satisfactory
results by detecting various types of physical information for
behavior detection and recognition; however, factors such as
cell-phone model, personal habits, and installation methods
typically lead to false recognition, privacy disclosure and
other problems.

For the algorithm design of target detection, available
methods mainly acquire image information through cam-
eras to recognize targets and determine behaviors [32]. The
research in this field remains in its infancy for practical appli-
cations. Artan et al. acquired images through a near-infrared
camera and designed an elastic deformation model to locate
the facial area of the driver. Subsequently, they usedmachine-
learning-based image classifier technology to detect the use
of cell-phone [33]. Based on the machine learning, Xu et al.
designed a deformable part model to locate the frontal wind-
shield region and utilized the Fisher vector representation
in one side of windshield to classify the violation behavior
of cell-phone use [34]. All these methods typically acquired
drivers’ photos bymounting the camera on road poles tomake
law enforcement officers obtain evidence easier. However,
due to factors like the camera angle, occlusion between
objects and body postures, the accuracy of these methods
must be improved further. Therefore, Wang et al. utilized a
vehicle camera to capture driver’s pictures and determined
driver’s irregular behavior based on the skin color around face
indirectly [35]. The accuracy of this method is also affected
by above factors inevitably.

As discussed above, the existing techniques of driving
behavior detection of cell-phone use are not satisfactory,
the development of more efficient techniques are expected.
Hence, in this paper, a new deep-learning based scheme
is proposed. In our scheme, A multi-angle arrangement of
cameras is used to improve the integrity of image acquisition
and ensure the detection accuracy of target recognition. Two
independent CNNs are trained by optimizing the size and
number of convolution kernels, which can recognize cell-
phones and hands efficiently in real time. With the trained
CNNs, the target relationship between cell-phones and hands
are carried out. Then, the corresponding early warning and
recording are issued according to the distance of the interac-
tion between the cell-phone and hand. Themain contributions
of this paper are as follows:

1. Multi-angle arrangement of cameras. Due to weather
variation, object occlusion, human posture and other factors,
the camera mounting position has a substantial influence
on the detection accuracywhen the camera is installed outside
the vehicle for image acquisition. In this paper, multi-angle
arrangements of cameras are installed in the vehicle, which
can not only more clearly capture the complete internal area
to effectively improve the accuracy of the follow-up target
detection but also provide a large amount of photographic evi-
dence for law enforcement departments as a new technology
in the vehicle assistant system.
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2. Optimization of image acquisition. Vehicle driving is a
continuous behavior, which will produce many interrelated
image sequences for image acquisition. Based on the regular-
ity of human behavior and the characteristics of the human
visual system, we consider the interaction of the multi-angle
camera system and design a reasonable frame rate for image
acquisition to ensure the efficiency of target detection and the
real-time performance of the scheme.

3. Design of parallel processing of dual networks and
interactive algorithms. For the training of the neural network,
we adopt the structure of parallel processing of dual net-
works, namely, two independent CNNs are trained with the
database to recognize cell-phones and hands efficiently and
in real time. Meanwhile, we calculate the Euclidean distance
between the cell-phone and the hand to distinguish their
interaction and realize the recognition and early warning of
cell-phone use behavior.

The remainder of the paper is organized as follows:
In Section II, the proposed scheme, which includes the estab-
lishment of the database, the training stage and the testing
stage are described in detail. The experimental results and
analysis are presented in Section III. Finally, we present the
conclusions of our work in Section IV.

FIGURE 1. Diagram of the proposed scheme.

II. PROPOSED SCHEME
The proposed scheme consists of two parts, camera setting
and network design. First, multi-angle cameras are installed
around the driver for sample collection to improve the robust-
ness of behavior detection of cell-phone use. Then, collected
images are labeled manually and two CNNs are optimized
and trained for object detection. Finally, the two networks
are integrated together for testing the accuracy and real-time
performance of target detection. In order to more in line with
actual traffic condition, we used videos as the input during
testing stage and preprocessed videos to reduce the interfer-
ence of background. The preprocessed video frames are input
into trained CNNs for testing, and abnormality detection
is performed on targets to obtain the ultimate experimental
results. A diagram of the proposed scheme is shown in Fig. 1.

A. ESTABLISHMENT OF THE DATABASE
1) NUMBER AND LOCATIONS OF VEHICLE CAMERAS
In the traditional camera arrangement for target detection,
some cameras are mounted on road poles outside the vehicle

FIGURE 2. (A) Traditional arrangement of cameras. (B) Multi-angle
arrangement of cameras in this paper.

to photograph the windshield area then detect driver’s face
further, the others are installed inside the vehicle in front
of the driver to detect face area directly, as illustrated
in Fig. 2(A). All captured images are the front face of the
driver [33], [34], and the behaviors that are occurring in
steering wheel area and joystick area cannot be captured.

To solve the occlusion problem, four vehicle cameras are
installed at the front, top, left and right sides of the driver,
as illustrated in Fig. 2(B). Multi-angle cameras capture the
posture of holding cell-phone at various angles to increase
the diversity of samples and reduce body position occlu-
sion of targets which can ensure the robustness of proposed
algorithm.

2) TARGET TYPES IN THE SAMPLES
In this paper, two forms of data, images and videos, are
obtained for training and testing, respectively. The regions
of hands are labeled as hand positive samples and both the
regions of hands and the hand-backgrounds constitute the
hand-training database. Similarly, the phone positive sam-
ples and the phone-backgrounds constitute the phone-training
database. Videos are used for testing and can be divided into
three types to simulate different relationships between the
hand and the cell-phone. The first type has only the hand.
Obviously, the phone is not used at the moment; In the second
type, both the hand and the phone exist but do not overlap,
which is used to simulate the presence of the cell-phone in
the cab but the driver does not touch it; In the third type, both
the hand and the phone exist and overlap, which is used to
simulate the behavior of cell-phone use while driving.

3) LABELING
To improve the accuracy of target detection, we label hands
and cell-phones separately. During labeling, the backgrounds
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FIGURE 3. Labeling of target and background.

are carefully selected to enhance detection robustness. For
example, due to its color similarity to hand, the arm area
is easily mis-detected as a hand. Thus, when labeling the
background of the hand, we select more areas similar to the
hand to improve the flexibility of samples, as shown in Fig. 3.
Meanwhile, when labeling the hand and the cell-phone, we
require that the labeling frame of positive samples does not
contain their overlapping areas.

FIGURE 4. Diagram of the training stage.

B. TRAINING STAGE
The strategies of CNN training for hands and cell-phones
are similar. Here, we take the CNN training of cell-phone as
example to demonstrate the optimization process. The flow
chart of training stage is presented in Fig. 4. When cell-phone
images are input into the initial CNN for training, the sizes
of the convolution kernels and the number of convolution
kernels per layer must be continuously optimized to improve
detection accuracy and the real-time performance.

1) INITIAL NETWORK MODEL SELECTION
CNN structures are widely used in target detection. In 2012,
Hinton et al. [36] proposed the Alex-Net model, which is

mainly used in the field of image classification, and the
error rate of results on the ImageNet data set is reduced to
15.3%. Later, VGGNet [37], which was proposed by Oxford
University, became the mainstream CNN structure due to its
narrow and deep convolution structure. Experiments demon-
strated that its migration learning performance is very strong
and is used by many models. There are also two main-
stream CNNs, namely, GoogLeNet [38] and ResNet [39], for
the target detection model. The GoogLeNet complex incep-
tion structure utilizes multi convolution kernels. the results
demonstrate that it can effectively improve the utilization
of computing resources. ResNet has a higher level of preci-
sion due to its deep hierarchy and its use of residual nodes.
To improve the performance of the model on special scenes,
other cnn structures such as densenet [40] have emerged.

With the continuous development of neural networks, var-
ious networks are constantly improving in terms of accuracy.
However, CNN-based devices have not been effectively pop-
ularized in view of the real-time performance. Hence, con-
sidering accuracy, real-time and copyright issues, we draw on
the classic Alexnet model and set up a target detection scheme
with dual channel network, which can share training data on
two GPU computers, and finally combine the results of two
GPUs to take advantage of limited hardware resources.

FIGURE 5. Feature map.

2) NETWORK STRUCTURE OPTIMIZATION
The initial model has 5 convolutional layers and 3 fully con-
nected layers [36], and the average time for the convolutional
layers occupies 87% of the total network time. Therefore,
the time of image detectionmostly depends on the complexity
of the convolutional layers, and the complexity of the convo-
lutional layers depends on the sizes of the convolution kernels
and the number of convolution kernels in each layer. These
two factors are determined via training to reduce the time of
detection and realize real-time detection while maintaining
the detection accuracy.

The parameter of each layer is computed as follows:

resolutions =
(
m− n
s
+ 1

)
×

(
m− n
s
+ 1

)
× k (1)
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where m is the side length of the normalized square image,
n is the side length of the square convolution kernels, s is
the step length that the convolution kernels traveled in the
whole normalized picture, and k is the number of convolution
kernels per layer.

The smaller the convolution kernels are, the fewer param-
eters and lower computational complexity. The resolution of
the normalized image is 227× 227× 3, the resolution of the
convolution kernels is 11× 11, the step length is 4 and there
are 96 convolution kernels initially. Hence, the resolution
after the first convolution operation is [(227− 11)÷ 4+ 1]×
[(227− 11)÷ 4+ 1] × 96 = 55 × 55 × 96. The reso-
lution of the pooling layer is 3 × 3, thus, the resolution
after the first pooling operation is [(55− 3)÷ 2+ 1] ×
[(55− 3)÷ 2+ 1]×96 = 27×27×96. We reset the size of
the first-layer convolution kernels to 3 × 3, 7 × 7, 11 × 11,
and 15 × 15 (n=3, 7, 11, and 15, respectively) and keep the
step length s and the number of kernels k unchanged. m − n
should be divided by the step length and we fine tune the size
of the pooling kernels to ensure that the results after pooling
are unchanged. For example, we set the resolutions of the
convolution kernels from 11 × 11 to 7 × 7 in the first layer;
Therefore, the resolution after the first convolution operation
is [(227− 7)÷ 4+ 1] × [(227− 7)÷ 4+ 1] × 96 = 56 ×
56 × 96. To divide by the pooling kernels, we will fine-tune
the resolution of the first pooling layer from 3 × 3 to 4 × 4,
hence, the resolution after the pooling operation remains
[(56− 4)÷ 2+ 1]×[(56− 4)÷ 2+ 1]×96 = 27×27×96.
In addition, we optimize the number of convolution ker-

nels per layer. For the CNN, many feature maps are gen-
erated through each convolutional layer, and each feature
map reflects the quality of the target feature extraction by
each convolution kernel. Therefore, we propose a method of
using feature maps to optimize the convolution kernels in
each layer. Considering the detection of cell-phones as an
example. The first layer of the convolutional layer contains
96 convolution kernels, which will produce 96 feature maps,
as shown in Fig. 5. The entropy of each feature graph is
calculated:

H =
255∑
i=0

pi log pi (2)

where pi is the probability of a specified gray level.
The calculated entropy values are normalized, and the

96 values are sorted, as plotted in Fig. 6. A visual map of the
target quality of the convolution kernel detection is obtained.

We set a threshold for deleting the convolution kernels:

DE

NE
< Threshold (3)

where DE is the number of convolution kernels that must be
deleted and NE is the number of convolution kernels that the
current layer contains.

We set the threshold in percentage format. If the threshold
is set as 10%, the convolution kernels with the lowest entropy
values that are sorted from 1 to 9 are deleted.When setting the

FIGURE 6. Sorted normalized entropy values.

threshold for deleting the convolution kernels, the detection
accuracy and the real time calculation results are inversely
proportional. Thus, setting a suitable threshold for the targets
is critical.

C. TESTING STAGE
The testing flow chart is shown in Fig. 7. The test database
that must be detected is initially preprocessed. A prepro-
cessed image is input into the trained CNN to locate the target.
The threshold of the Euclidean distance between the hand and
the cell-phone is set for detecting anomalies between targets.

FIGURE 7. Diagram of the network testing phase.

1) PREPROCESSING
Traditionally, target detection involves capturing an image
and inputting the entire image into the trained CNN [13].
This method is computationally intensive and has a high
false-positive rate. Our experiments must issue the warning
before the driver uses the cell-phone and must capture the
photographic forensic evidence while the driver is using the
cell-phone. Therefore, the algorithm must have the ability to
detect in real time. Hence, we propose using the video as
the sample and preprocessing the sample before it enters the
trained CNN.

In our scheme, dynamic region detection [41] is conducted
to reduce the number of possible candidate regions. The
classic three-frame difference method is employed, and its
basic steps can be described as follows:

a) Let It−1(x, y), It (x, y), and It+1(x, y) be three consecu-
tive frames of a video. Two difference images are calculated:

Dt−1,t (x, y) = |It−1(x, y)− It (x, y)| (4)

Dt,t+1(x, y) = |It (x, y)− It+1(x, y)| (5)
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b) Binarize the difference images by choosing an appropri-
ate threshold:

Bt−1,t (x, y) =
{
1 Dt−1,t (x, y) ≥ threshold
0 Dt−1,t (x, y) < threshold

(6)

Bt,t+1(x, y) =
{
1 Dt,t+1(x, y) ≥ threshold
0 Dt,t+1(x, y) < threshold

(7)

where the threshold is determined by considering driving
environment to distinguish background dither and moving
amplitude of targets. Based on experiments, we find that the
threshold can be set between 45 and 60.

c) The logic operation with the ‘‘and’’ operator is applied
to the two binary images to obtain the initial dynamic area:

Rt (x, y) =
{
1 Bt−1,t (x, y)&&Bt,t+1(x, y) = 1
0 Bt−1,t (x, y)&&Bt,t+1(x, y) = 0

(8)

d) Eliminate the noise via median filtering with a window
size of 3× 3.

In order to eliminate other moving interference, we added
a skin color model to exclude non-skin dynamic regions.
Firstly, a Gaussian function is used to establish a similar
function. Then, binarization is conducted via the optimal
threshold method. At the end, the skin region that is identified
via morphological processing must occupy 1/4 of the total
area of the pixels.

Finally, the obtained skin-moving region by projecting
horizontally and vertically to obtain the bounding box and
extended double distance of the bounding box to surround the
cell-phone. The screened dynamic skin region is normalized
to a fixed size to facilitate the subsequent CNN-based target
segmentation. The normalization does not affect the accuracy
of the subsequent object classification. In this paper, each
dynamic region is normalized to a resolution of 227× 227.

2) SETTING THE EUCLIDEAN DISTANCE THRESHOLD
In the case of the simultaneous presence of the hand and
the cell-phone, it is necessary to determine whether the two
regions overlap or are far away from each other. Due to the
variability of hand postures and cell-phone sizes, the size
of the area that is obtained by the bounding box is not
fixed. Therefore, we use the method of setting the distance
threshold of two regions to determine whether there is any
overlap between the hand area and the cell-phone area to
judge whether the driver is using his or her cell-phone or not.
The main steps are as follows:

First, the four vertex coordinates of the hand bounding
box are a1, a2, a3, a4; the four vertex coordinates of the cell-
phone bounding box are b1, b2, b3, b4; and a diagram of the
target models is shown in Fig. 8.

Second, the coordinates of the central points of the two
regions are calculated as follows:

c1 = (
a1+ a2

2
,
a1+ a3

2
), c2 = (

b1+ b2
2

,
b1+ b3

2
) (9)

FIGURE 8. Model map of the target area.

Third, we calculate the distance between the two regions
as follows:

d =
√
(yc2 − yc1)2 + (xc2 − xc1)2 (10)

Finally, the radii of the two rectangular bounding boxes are
calculated as follows:

r1 =
a2− a1

2
, r2 =

b2− b1
2

(11)

If d ≤ r1+ r2, there is an overlap between the regions of
the hand and the cell-phone. We can prove that the driver has
violated the law regarding cell-phone use, and we can use the
picture as evidence. In contrast, if d > r1 + r2, the driver
is not using his cell-phone; however, since the hand and the
cell-phone are in the picture at the same time, we can issue
early warnings to the driver.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In the simulation experiment, two PCs are used, which have
a 3.20 GHZ CPU, 16 GB of memory and a GTX 1060 6 G
GPU, and the test software is MATLAB R2017b.

A. TYPE AND QUANTITY OF THE DATABASE
the original data samples are collected by four mini-adhesive
cameras with Huawei HiSilie chip, the charging method is
USB, camera size is 3.5 × 3.5 × 4 cm, memory card is
64 G, the photo resolution is 4032 × 3024, video resolution
is 1920× 1080, and video frame is 35 FPS.

TABLE 1. Type and quantity of the database.

Asmentioned above, the database captured by cameras has
two forms: images and videos, which are shown in Table 1.
All testing videos took five seconds and can be classified into
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FIGURE 9. Results of preprocessing.

three categories: only-hand (8 videos), both hand and phone
existed and overlapped (15 videos), both hand and phone
existed but no-overlapped (15 videos).

B. TEST RESULTS AND ANALYSIS
1) PREPROCESSING RESULTS AND COMPARISON
The preprocessing results are shown in Fig. 9. Fig. 9(A)
shows sample frames of cell-phone behavior, Fig. 9(B) shows
the binary results of dynamic targets, Fig. 9(C) shows the
bounding boxes that are generated via the projection of
dynamic targets and the skin color model, and Fig. 9(D)
shows the normalized results.

FIGURE 10. Results of candidate area optimization.

We compare the preprocessing results with those of the
traditional candidate region extraction method. The tradi-
tional candidate region extraction method typically traverses
the whole picture and sets a confidence score threshold to
reduce the effects of invalid bounding boxes [42]. However,
due to the interference from background colors and textures,
the candidate regions will have high false detection rates. The
experimental results of detecting the cell-phone are shown
in Fig. 10(A). After the dynamic target extraction method and
the skin color model are improved, the background interfer-
ence of the candidate regions is reduced, the bounding boxes
are more precise and the efficiency of extracting the can-
didate regions is substantially improved. The experimental
results are shown in Fig. 10(B). Moreover, the dynamic target

detection and skin color model do not take much time in the
entire CNN model.

2) RESULTS OF OPTIMIZING THE SIZE AND NUMBER
OF CONVOLUTION KERNELS
First, we vary the convolution kernel size in the first convolu-
tional layer among 3×3, 5×5, 7×7, 11×11 and the training
times are all approximately 20 hours. However, the training
error rates differ substantially. The error rate is the lowest
when the 7× 7 convolution kernel is used. Hence, we set the
size of the convolution kernel to 7×7. The results are plotted
in Fig. 11.

FIGURE 11. Results of optimizing the size of the convolution kernels.

Second, we set the threshold for removing weak convolu-
tion kernels from each layer, the data are presented in Table 2.
From the experimental results, we conclude that when 0%
of the convolution kernels are deleted, the accuracy is the
highest, but real-time detection of frames cannot be realized.
When 30% of the convolution kernels are deleted, the model
has high real-time performance and the number of convolu-
tion kernels in the model parameters can be reduced from
4 million to 720,000, which reduces the calculation time
by approximately five times compared to the 0% model.
However, the accuracy is low.

Therefore, to balance the accuracy and real-time perfor-
mance in the experiment, we set the threshold to 10%. After
removing 10% of the convolution kernels, the accuracy of the
experiment is still 95.7%. Compared with the original model,
the accuracy decreases by 2%, but the real-time performance
is improved by approximately four times. When we removed
12% of the convolution kernels, the accuracy began to drop
dramatically. Hence, it is not effective to continue to remove
convolution kernels.

In cell-phone detection experiments, deleting 10% of the
convolution kernels is an appropriate threshold. It guarantees
an accuracy of 95.7%, and the average test time of each
frame is 144 ms. Hence, approximately 6-7 frames can be
detected in one second, which ensures that all four cameras
can detect at least one frame per second. It maintains a
satisfactory balance between accuracy and real-time perfor-
mance, which is of important social significance in practical
applications.
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TABLE 2. Quantity and parameters of convolution kernels.

3) RESULT COMPARISON BETWEEN SINGLE
CNN AND DUAL CNN
In order to evaluate the two CNNs in terms of classification
accuracy, the confusion matrix is used which is an error
matrix that is often used to visually evaluate the performance
of supervised learning algorithms. In this paper the size of the
confusion matrix is n_classes × n_classes, where n_classes
represents the number of classes. We compare the confusion
matrices of the hand, cell-phone and background classifica-
tion, and visualize the main issues of the three categories.

FIGURE 12. Classification results of single CNN and dual CNN.

The numbers of optimal classifications in the CNN are
compared in Fig. 12. We randomly select 200 pictures as test
samples, and we compare the accuracies of single network
training and two networks training, where ‘‘1’’ represents
background, ‘‘2’’ represents hands and ‘‘3’’ represents cell-
phones. Among the four colors in the graph, green represents
the correct number of classifications, pink represents the
number of incorrect classifications for one target, gray repre-
sents the recognition accuracy for each part, and gray-purple
represents the overall accuracy. For example, entry (2, 2) of
the single network matrix indicates that there are 171 hand
pictures that are correctly classified, and entry (2, 1) indicates
that 24 hand pictures are incorrectly classified as background.

According to the experimental data, the main reason for the
low accuracy of a single network is that hands and cell-phones
are misclassified as background. In practice, there is typically
an overlap between a hand and cell-phone. To improve this
classification, we train and test the target networks separately, FIGURE 13. Example results of image detection.
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and the experimental results that are obtained are shown
in Fig. 12, which have been modified. After the targets are
trained on their own networks, the numbers of hands and
cell-phones that are misclassified as background are sub-
stantially reduced. For example, as specified in entry (1, 2),
the number of hands that are classified as background is 5,
compared with 24 in the single network, hence, the error
rate is reduced by approximately 5 times. The problem of
targets overlapping is substantially reduced, and the overall
recognition rate is increased by approximately 7%, which
substantially increases the applicability of the algorithm.

4) VISUALIZATION OF THE EXPERIMENTAL RESULTS
The final classification results are divided into three cate-
gories. If the classification result is only hand exist, there is
no cell-phone use. If the hand and cell-phone both exist but
no-overlap, we alarm the driver. If both the hand and cell-
phone exist and overlap, we confirm that there exists cell-
phone use behavior. A sample of the experimental results for
cell-phone use is shown in Fig. 13.

IV. CONCLUSION
This paper proposed a cell-phone-use behavior detection
scheme that is based on deep learning, which can eliminate
the potential risk by detecting the driver behavior and issuing
an early warning efficiently and in real time. A multi-angle
arrangement of cameras is used to improve the integrity of
image acquisition and to ensure the detection accuracy of
target recognition for the scheme design. Two independent
CNNs are trained by optimizing the size and number of the
convolution kernels, which can efficiently recognize cell-
phones and hands in real time. Then, with the trained CNNs,
the corresponding early warning or forensics is issued based
on the distance of the interaction between the cell-phone
and the hand. Numerous experiments are conducted, and the
results demonstrate that the proposed scheme can accurately
detect cell-phone use behavior while driving in real time, with
running time of 144 fps and the accuracy of 95.7%.

Although this scheme has yielded satisfactory test results
and is efficient and practicable, as a preliminary attempt at
behavior detection,many aspects, such as the camera arrange-
ment, video data acquisition and network structure opti-
mization, must be further studied. The design of end-to-end
network structure will be the main direction of future
research.
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