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ABSTRACT Nonlinear system modeling using Deep Belief Network (DBN) is currently a research hotspot.
However, the training process of DBN needs large amount of data to guarantee accuracy, and the traditional
DBN may not meet the requirement of high-precision modeling. In this paper, we first improve the original
DBN and Variational Mode Decomposition (VMD) algorithms, and on this basis, we then proposed a parallel
Momentum Deep Belief Networks (MDBN) with Adaptive Variational Mode Decomposition (AVMD).
Parallel AVMD-MDBN is an improved modeling method based on the deep learning model DBN. Firstly,
a single raw dataset is decomposed into a specific number of sub-datasets using AVMD. Then these sub-
datasets are distributed among a number of improved MDBNSs. A single raw dataset learning model and
algorithm is extended to multiple feature extraction nodes to learn the characteristics of multiple sub-
datasets in parallel. Finally, the results of the multiple nodes are transmitted to the main feature extraction
node to complete the regression calculation. In order to verify the effectiveness of the model, the proposed
parallel AVMD-MDBN model is tested on a nonlinear dynamic system modeling, a Mackey-Glass time-
series prediction and a financial stock prediction. Our experimental results show that the proposed parallel
AVMD-MDBN has better performances in terms of improving feature learning ability than that of other
methods.

INDEX TERMS Parallel momentum deep belief networks, adaptive variational mode decomposition,

contrast divergence algorithm, nonlinear system modeling, financial stock prediction.

I. INTRODUCTION

In the field of process control, the research of control theory
is relatively perfect [1], [2]. However, most control theories
require highly accurate model of practical processes that are
complex and nonlinear, which brings a great challenge to
system modeling [3]. What’s more, in financial field, non-
linear systems are hard to be modeled due to their unknown
structures and parameters [4]. Therefore, nonlinear system
modeling is an important and challenging task, which has
attracted extensive attention in many fields.

It has been proved that neural networks can approximate
any nonlinear systems with high precision [5]. The study of
artificial neural networks is extensively ranged [6]. Wu et al.
proposed a novel learning algorithm for dynamic fuzzy neural
network (D-FNN) based on extended radial basis function
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neural networks. The algorithm adopts the hierarchical online
self-organizing learning paradigm, which is superior in terms
of modeling complexity and modeling efficiency [7]. In order
to improve the modeling ability of neural network for non-
linear systems, Li et al. proposed a self-organizing cascade
neural network (SCNN) with random weights to construct the
optimal network [8]. Han et al. investigated an automatic axon
neural network (AANN) that can perform self-organizing
architectures and weights while improving the network per-
formance of nonlinear system modeling [9]. For the modeling
of nonlinear systems in financial field, Zhang et al. pro-
posed a quantile regression-radial basis function (QR-RBF)
neural network model to predict soybean prices [10]. These
above-mentioned algorithms only considered the single hid-
den layer architecture. To significantly improve the modeling
accuracy, there should be enough (even equal to the number
of training samples) hidden units. However, a neural network
with that number of hidden units is impractical, especially
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under the condition of numerous training samples. As aresult,
we cannot implement a neural network with unlimited hidden
units to increase the modeling accuracy. Therefore, it is still
a tough issue to break through the limitation of the accuracy
of nonlinear system modeling.

In recent years, the deep belief network (DBN) based on
restricted Boltzmann machine (RBM) can achieve desired
modeling accuracy with less hidden neurons [11]. DBN is the
superposition of successive restricted Boltzmann machines,
which is commonly recognized as a deep neural network
with multiple hidden layers, and the depth of DBN is
reflected in its number of hidden layers. When the net-
work is forward-operated, the output of the pre-RBM is
treated as the input of the post-RBM. The DBN learning
process consists of two parts: unsupervised learning and
supervised learning. The unsupervised learning is imple-
mented by Contrast Divergence (CD) algorithm to initialize
the weights of DBN with a goal of minimizing the net-
work energy of the RBM [12], which is superior to the
random weight initialization in ANNSs [13]. The supervised
learning uses the error-propagation algorithm to fine-tune
the initial weights produced by unsupervised learning. Due
to the efficient ability of extracting features from sample
data, DBN is applied to nonlinear system modeling [14].
Based on the strong forecasting ability of ARIMA model
and the powerful expression ability of DBN on nonlinear
relationships, Qin et al. proposed a hybrid model combining
ARIMA and DBN for red tide forecasting, which shows
good results [15]. However, the unsupervised learning of
DBN starts from the bottom layer (input layer) to the top
layer (target output), which is always time-consuming and
easily causes local minimum or even training failure [16].
It should be pointed out that the local minimum poses a huge
threat to the learning ability, which causes not only low effi-
ciency but also low accuracy for nonlinear system modeling.
Zhao et al. proposed a master-slave parallel computing
method for the DBN learning process, to reduce the time
consumption of pre-training and fine-tuning [17]. Ahn et al.
proposed a virtual shared memory framework for the DNN
learning process, called Soft Memory Box (SMB), which
can share the memory of remote node among distributed
processes in the nodes, thereby improving communication
efficiency by parameter sharing [18]. Wei et al. proposed a
medium-term load forecasting model for power supply units
based on DBN and Apache Spark parallel processing plat-
form, which improves the prediction speed [19]. However,
the above algorithms mainly focused on the modification
of structures and improvement of efficiency, but not the
improvement of modeling accuracy. Zhou et al. designed a
new generator and discriminator of Generative Adversarial
Network (GAN) to generate more discriminant fault samples
using a scheme of global optimization. The effectiveness of
the algorithm is proved in rolling bearing experiments [20].
Because the accuracy of the prediction is not only related
to data size and the architecture of the model, but also
closely related to the quality of the data to be analyzed, data
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preprocessing before establishing a new model is also an
important research direction [21].

In order to improve the quality and efficiency of DBN
nonlinear system modeling, this paper proposes a parallelized
structure DBN with variational mode decomposition (VMD).
The procedure of data parallel computing studied in this
paper is to firstly use VMD to decompose the raw dataset
into several sub-datasets and then assign these sub-datasets
to several computing nodes. The computing nodes execute
their respective algorithms to process the corresponding sub-
datasets. We use ‘“‘coarse-grained” parallelization for data
parallel computing, which can mine the deep features of the
data and improve the effectiveness of the algorithm. In order
to further optimize the proposed model, the DBN and VMD
algorithms are improved respectively. Finally, a parallel com-
puting model with adaptive variational mode decomposi-
tion (AVMD) and momentum deep belief network (MDBN),
which can be summarized as AVMD-MDBN, is proposed
for nonlinear system modeling. The AVMD-MDBN paral-
lel computing model proposed in this paper is established
as follows: First, the VMD based on the conservation law
of frequency energy can determine the optimal number of
decompositions and adaptively decompose the raw dataset
into multiple sub-datasets with different characteristics. Then
feature extraction is performed separately by distributing
each sub-dataset to a DBN with an energy factor. Finally,
the distributed features extracted by multiple parallel MDBNs
are mapped to the sample mark space, thus constructing a
nonlinear system model with higher precision. In this paper,
anonlinear dynamic system modeling, a Mackey-Glass time-
series prediction and a financial stock prediction are car-
ried out by the proposed AVMD-MDBN parallel computing
model, and the superiority is verified.

The rest of this paper is organized as follows: The sec-
ond part briefly introduces the DBN. The third part presents
the details of the structure, learning process and complexity
analysis of the proposed AVMD-MDBN parallel computing
model. The fourth part presents the experimental results and
discussions, demonstrating the performance of the proposed
AVMD-MDBN compared with other existing similar meth-
ods. Finally, the fifth part is devoted to some conclusions and
future work.

Il. DBN

The deep belief network is a probability generation model that
is composed of multiple RBMs [22]. The bottom layer of the
deep belief network receives the input data vector and maps
the input data to the hidden layer through RBM. Overall,
the input of the higher layer RBM is from the output of the
lower layer RBM. Below we will introduce the structure and
principle of RBM, and then give the structure and training
process of the deep belief network.

A. RESTRICTED BOLTZMANN MACHINE
Statistics show that any probability distribution can be trans-
formed into an energy-based model, so RBM can provide
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FIGURE 1. The basic structure of the RBM model.

a learning model for data that does not know the internal
distribution [23], [24]. Each RBM contains a visible layer
and a hidden layer. Only the connections between the visible
layer and the hidden layer have bidirectional weights. There
are no connections between the same layer units. Fig. 1 shows
the basic structure of the RBM model [25]. Given the visible
layer unit vector v = {vy, v2, 13, ... vy} € (0, 1), the hidden
layer unit vector h = {hy, ha, h3, ... h,} € (0, 1), the weight
matrix w, the threshold of the visible layer unit a, and the
threshold of the hidden layer unit b, we can describe the
energy function of the joint states E (v, h) of all visible and
hidden units as:
m n n m

E(V, /’l) = — Z a;v; — Z bjhj — Z Z Wjiv,-hj (1)
i=1 j=1

j=1 i=1

where m is the number of visible units and # is the number
of hidden units. According to Eq. (1), the joint probability
distribution between the hidden layer and the visible layer can
be described as follows:
—E(v,h)
P(v,h) = ~ 2)

Z=Y ) el 3)
v h

where Z is a normalized constant that simulates a physi-
cal system, which is obtained by adding the energy values
between all visible and hidden layer units [26]. Through
the joint probability distribution of Eq. (2), the independent
distribution of the visible layer vector v can be obtained as:

3, o—EW,h)
X, e

Since there is no connection between any two units of a
same layer in RBM, when a random input visible layer vector
vis given, all hidden layer units are independent of each other.
Therefore, according to the joint probability distribution of
Eq. (2), the probability of the hidden layer vector 4 is given
by Eq. (5) under the condition that a visible layer vector v is
given. Similarly, given a random input hidden layer vector A,
the probability of the visible layer vector v is shown in Eq. (6):

Py, =[rwi =1/ ©)
J

P(v) =Y P(v.h)= )
h
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PO = [[Poi=Yp (6)

Considering that the structural unit of RBM is a binary
state, under the premise of defining the logical sigmoid func-
tion (x) = 1 / (1 + ™), the activation probability can be
obtained as follows:

P (hj =1 Iv) = sig (bj + Z WjiVi) (N

i=1

n
P(vi = 1|h) = sig | ai+ Y _ wiihy 8)
j=1

According to Eq. (7) and Eq. (8), the state of the hid-
den layer unit can be calculated by P (hj = 1/v) after the
visible layer vector 4 is given. The state of reconstructing
the visible layer unit vgefacroring is calculated by P (v; = 1/h).
By a certain rule, the difference between the visible layer unit
and the reconstructed visible layer unit is minimized, and the
hidden layer unit is considered to be another expression of
the visible layer unit. Therefore, the hidden layer unit can be
used as the feature extraction result of the visual layer input
unit, thereby achieving the purpose of feature extraction [27].

The essence of RBM is that the learned RBM model has
the highest probability of coincident with the input sample
distribution. That is, given the training data, the value of the
probability P (v) of Eq. (4) can be maximized by adjusting the
corresponding parameters [28]. It can be known from Eq. (4)
that in order to maximize the value of the probability P (v),
we can reduce the energy function value by adjusting the
weight matrix w the threshold a of the visible layer unit, and
the threshold b of the hidden layer unit, thereby indirectly
increasing the probability value of P (v) [29]. By using the
maximum likelihood estimation, we can learn the parameter
0 = {a,-, b;, Wj,-} of the RBM model from the training samples
to maximize the value of probability P (v) [30]. As shown in
the following Eq. (9).

dlogP (v)
00

Z —E(v,h)
0log (o)

a0
B 1/ \OE (v, 1) 3E (v, h)
== 2r(h) g e T

©))

In the above Eq. (9), % can be calculated directly.
However, if P(h/v) and P(v/h) are directly calculated, it will
take a lot of time [31], [32]. This is obviously not advisable.
According to Alternating Gibbs Sampling (AGS), also known
as Markov Chain Monte Carlo (MCMC), we can extract
samples that match the probability distributions of P(h / V)
and P(v, h) from the training data. Perform an unbiased log-
likelihood estimation for Eq. (9). In each iteration of alternate
Gibbs sampling, all hidden layer units are updated by Eq. (7).
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FIGURE 2. Alternating Gibbs sampling of the RBM.

All visual units are updated by Eq. (8) based on the updated
hidden layer units. The detailed process is shown in Fig. 2.

According to the process described in Fig. 2, Eq. (9) can
be updated as follows:

dlogP
OgT(V) = —FEjua (Vihj) + E mod el (Vihj) (10)

In Eq. (10), Egaa(vihj) represents the expectation of the
data distribution, and Ej,,qe;(vih;) represents the expectation
of the model distribution. By using the contrast divergence
algorithm, the infinity in Ejyoqe1(vihj) can be replaced by n
times. The algorithm(CD) shows good results when &k = 1
(CD-1) [33].

Awjj =

B. DBN STRUCTURE

As mentioned above, the deep belief network can be seen as
the superposition of multiple RBMs. By stacking multiple
RBMs, deep features can be extracted from complex data.
However, stacking RBM can only obtain some high-level
features from complex raw data, and it is not able to directly
classify the data. To get a complete DBN model, we also
need to add a traditional supervised classifier to the top of
the stacked RBM [34]. The number of nodes in the input
layer is determined by the dimension of the input data, and
the number of nodes in the output layer is determined by the
number of categories of input data.

C. DBN TRAINING

The training of the deep belief network [35] consists of
two processes: unsupervised layer-by-layer pre-training and
supervised fine-tuning. The main difference between the deep
belief network model and other models is that deep belief
network consists an unsupervised layer-by-layer pre-training,
which can learn nonlinear complex functions by directly
mapping data from input to output. This is also the key to
its powerful feature extraction capabilities. First, a vector is
generated in the visible layer of the first RBM, and then the
value is passed to the hidden layer through the RBM network,
after which the visible layer is used to reconstruct the visible
layer. The weight between the hidden layer and the visible
layer is updated according to the difference between the
reconstructed layer and the visible layer, until the maximum
number of iterations is reached [36]. After the unsupervised
training is completed, the deep belief network is supervised
by adding tag data at the top of the deep belief network.
That is, the back propagation (BP) is used to fine-tuning the
relevant parameters of the deep belief network. Supervised
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training of the deep belief network will further reduce training
errors and improve the accuracy of the deep belief network
model. Compared to the one layer of training in unsupervised
training, the inverse fine-tuning of supervised training is to
update the parameters of all layers simultaneously. The pro-
cess of unsupervised learning and supervised learning in the
deep belief network is shown in Fig. 3.

Initialize the number of input
nodes, the maximum number of
layers(Maxlayer), the number of

nodes for each layer, the maximum
number of iterations(Maxepoch)

v

Set the starting layer
numberi =1

| 3
RBM unsupervised
pre-training

i <= Maxlayer

Use back propagation (BP) to
fine tune the parameters

End

FIGURE 3. The process of unsupervised learning and supervised learning.

lil. AVMD-MDBN

In our work, we first introduce the DBN with momentum
factor and the adaptive VMD with frequency energy conser-
vation. Then, the AVMD-MDBN and its learning algorithm
are introduced in detail.

A. MOMENTUM DBN

It is not difficult to see from Section 2.1 that the core of the
CD-k algorithm for the DBN unsupervised learning process
is Gibbs sampling, and Gibbs sampling is a Markov chain
Monte Carlo (MCMC) algorithm. In the case of direct sam-
pling difficulties, it can be used to generate a Gibbs chain to
approximate a given multivariate distribution of samples [37].
The process of Gibbs sampling mainly includes the following
two steps.

(1) Initialize the Gibbs chain with the data v of the observed
sample to obtain the original input vector v() of the visible
layer.

(2) According to Eq. (7) and Eq. (8), 1) is sequentially
sampled from P (K" /v() by iteration, and v is sampled
from v+ ¢ is the number of sampling steps, and the larger
t + 1, the better the effect.
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Since a one-step Gibbs sampling can be used to get a
good enough approximation, we make k = 1 in the CD-k
algorithm.(v(Y, n1) is sampled from the model and is a
rough estimate of Ey;oqe1(vihj). Using D, h(l)) to estimate
Enodei(vihy), we can get the CD-1 algorithm. In the CD-1
algorithm, since each RBM requires multiple iterations, and
the parameter update direction after each iteration is not the
same, the fixed learning rate may cause the algorithm to be
“premature” or difficult to converge. Therefore, it is critical
to make the algorithm adaptively control the learning speed
according to the way the parameters are updated [38]. This
section gives a method for updating the learning rate based on
the amount of change in the parameters of the two iterations
during the RBM training. The improved step strategy is to
add momentum factors p and & based on the relationship
between the two variations described above, which is used
to accelerate the RBM training process and avoid falling
into local optimum. The learning rate update mechanism for
adding the momentum factor is given by:

When (le?jf“)‘ > ‘VWE/.T) :

; p X erijr'H) X AWE;) >0 (11
r =
e X ernger) X Awl(.jr) <0
When ‘ngjrﬂ)‘ < ‘le(;) :
/ o xIr Awl{jﬁl) X Angr) <0 (12)
r =
e xIr AWE/?H) x AWE;) >0
0]
(Ang) = D0 —HD D (13)
(i+1)
(Awff) _ vlgt+1)hlgt+l) _ v§t+2)h§t+2) (14)

where t is the number of iterations, p and & are the momen-
tum factors and 0 <e< 1 <p. The last learning rate is
adjusted by multiplying a momentum factor. If the momen-
tum factor is larger than 1, the convergence speed can be
accelerated. If the momentum factor is less than 1, the con-
vergence speed can be stabilized. Whether to accelerate or
stabilize is determined by the step size of the previous step
and the model update amount of two adjacent iterations.
Unlike the original step strategy, the step size in the improved
step strategy is the product of the previous step size and
the momentum factor determined by the model variation of
two successive iterations. The principle of adaptive learning
rate with momentum factor added is shown in Eq. (11-14).
Next, we illustrate the role of the introduction of the momen-
tum term. After the training samples are sequentially added,
the parameter update amount Aw;; of two consecutive iter-
ations is calculated. If the Awj; of the current and the next
iterations are both positive or negative and the amount of
change becomes larger, the step size multiplies the amount p,
thereby accelerating the convergence speed. If the Aw;; of the
current and the next iterations are both positive or negative
and the amount of change becomes smaller, the step size
multiplies the amount ¢, thereby stabilizing the convergence
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state and improving the convergence accuracy. It can be
known from the CD algorithm that the weight is updated
once in a Gibbs sampling period, the binary sampling in
the intermediate state is performed twice and the weight of
each update is proportional to the state sampling. Therefore
p is approximately equal to twice the €. The RBM with the
improved step strategy of the momentum factor can effec-
tively avoid the risk of falling into local optimum and speeds
up the training. In particular, the DBN is stacked by a plurality
of RBMs, so the DBN superimposes the above-described
improved effects.

B. ADAPTIVE VMD

The variational mode decomposition (VMD) algorithm
searches for the optimal solution of the variational mode
model by iteratively calculating the center frequency and
bandwidth of each eigenmode component, and then adap-
tively splitting the frequency of the signal and effectively
separates the components [39].

In theory, each eigenmode component of the VMD decom-
position is a finite bandwidth with a center frequency. Under
this precondition, when we use VMD to decompose the signal
into P eigenmode functions u, (), two conditions need to
be satisfied: First, the decomposition should minimize the
sum of the estimated bandwidths of the modal components;
Second, the decomposition is such that the sum of the modal
components is equal to the input signal. The specific process
is as follows:

(1) The eigenmode functions u, () can be regarded as a
modulated signal, and Hilbert transformation is performed on
up (t) to obtain an analytical signal. The analytical signal is
multiplied by e /*»' to modulate the spectrum of each u,, ()
to the corresponding baseband.

[(3 (1) + #) 1y (t)] e ot (15)

(2) By calculating the norm of the square L? of the demod-
ulated signal gradient after translation, the bandwidth of each
modal signal is estimated, and the constrained variational
problem is obtained as follows:

‘a (1) [(3 1) + %) up (1)} eJent

where {u,} is the modal component of the VMD decom-
position, and {a)p} is the center frequency of each modal
component. In the variational problem, the quadratic penalty
factor o and the Lagrangian penalty factor are introduced to
obtain the optimal solution [40].

L(fup} . {wp} . 2)
= Z a () |:<5 @) + %) 1y (1)} o—Jeopt
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The Alternating Direction Method of Multipliers (ADMM)
is used to obtain the saddle point of the extended Lagrange.
The above non-binding variational problem is solved, and the
signal is decomposed into p eigenmode components [41].

When the VMD decomposes the signal, it is necessary to
set the decomposed number p value in advance. However,
due to the complexity of the actual signal and the high noise
in general, it is difficult to determine the optimal number
of decompositions when we use VMD to decompose the
signal [42]-[44]. This paper proposes an adaptive VMD
(AVMD) based on frequency energy conservation. It deter-
mines the optimal number of decompositions based on the
energy difference between the original signal and the eigen-
modes. The frequency energy formula is E, = | ]up (t)| dt.
In order to ensure the integrity of the signal decomposition,
the value with the smallest energy difference is taken as
the optimal decomposition number p. The specific steps and
frequency energy formula are shown in Fig. 4.

Set the maximum number of
decomposition layers P

’

4% Initialization {ﬁj,},{w,‘,},{i’},p and n }47

¥ i
(0)-Fi ()"

According to )" (@)= - update u,
l+2a(w—w,,)'
v
“oli (o) do
According to ”’;:”:M update o,
[ li, (@) a
v

According to i""(w)<—i”(m)w{f(m)—zlig"(w)] update 2

: [ror ]

Y

Decomposed into p eigemodes

¥

Calculate the energy of p

eigenmodes using £, :ﬂu,,(r)[zdt

Y

Output p eigenmodes

FIGURE 4. The AVMD algorithm steps.
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FIGURE 5. The parallel computing structure of AVMD-MDBN model.

C. AVYMD-MDBN LEARNING PROCESS

The first two sections describe the AVMD and MDBN,
respectively. This section presents the AVMD-MDBN paral-
lel computing model to build a more accurate and efficient
nonlinear system model. The AVMD-MDBN parallel com-
puting model is shown in Fig. 5. The algorithm execution
steps are detailed as follows:

Step 1: Decompose the original dataset using the AVMD
method. The improved variational mode decomposition can
divide each data item of the original dataset into several
different sub-data items according to the frequency energy
conservation formula, each of which contains partial infor-
mation of the original data.

Step 2: Build a parallel data structure. In order to main-
tain the effectiveness of variational modal decomposition
to reduce or eliminate uncertainties in the data sequence,
we use parallel structures to perform feature extraction on the
data. Each data item decomposed by AVMD has a different
decomposition layer value. The decomposed sub-data items
are divided into three sub-datasets according to the amplitude
value, and the three sub-datasets are distributed to different
feature extractors, each of which is an MDBN. The main task
of this step is to complete the assignment of sub-datasets to
the AVMD-MDBN parallel computing model.

Step 3: Parallel feature extraction. After feeding the sub-
dataset decomposed by the AVMD to the MDBN, multiple
parallel MDBNSs begin data feature extraction.

Step 4: Regression prediction. A master node is added
after three parallel MDBNs, the master node broadcasts the
structure and parameters of a network and distributes the
training datasets to all computing nodes. Each computing
node reads its own local data, calculates the weight and
bias variations, and transmits the calculation results to the
master node. The master node synthetically processes the
results transmitted from the respective computing nodes, and
subsequently broadcasts the structure and updated parameters
to each computing node. Such procedure is repeated until the
supervised learning is to minimize the error functions, such
that for any input x(#—1) at any instant 7—1, an appropriate
output y(7) can be predicted.

D. TIME COMPLEXITY ANALYSIS

The AVMD-MDBN model first uses the variational mode
decomposition to decompose the nonlinear data. The time
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complexity is O (NlogN), and the decomposition results in
p different components.q (g < p) subsequences are obtained
by integrating the components of the same amplitude, and the
integration process time complexity is a constant order O (1).
The time complexity of the DBN training process is #gp, =
O (N * (I xb+ E x D)). Where N represents the size of the
training sample, g represents the number of recombinant
subsequences. I represents the number of RBM pre-trainings,
b represents the number of network nodes, E represents the
number of RBM supervision trainings, and D represents the
dimension of the weights. Therefore, the time complexity of
the AVMD-MDBN model can be expressed as:

T(N)=O0(N1logN)+ O % (I *b+E xD)) (I8)

IV. EXPERIMENT

In this section, we will conduct three experimental studies to
demonstrate the effectiveness and superiority of the proposed
AVMD-MDBN in modeling nonlinear systems, including
nonlinear dynamic system modeling, Mackey-Glass time-
series prediction and financial stock prediction. All simu-
lations were performed on a hardware configuration with a
2.4GHz quad-core Intel Core i5 processor, and the program-
ming environment was Python. Further, 4 nodes can be used
in the parallel computing platform. This experiment requires
3 nodes, and one of these nodes is selected as the master
node. The proposed parallel method uses 3 computing nodes
and 3 data sets in the pre-training and fine-tuning stages,
and each computing node corresponds to a data set. The
master node also acts as a slave node and is responsible for
the same computing tasks as the slave nodes, in addition to
the tasks of broadcasting, synchronization, and synthesis. The
performance of the proposed AVMD-MDBN is measured
by Mean Absolute Percentage Error (MAPE), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
R-Squared, which are defined as follows:

it (v ?)2
n i — 1]

RMSE = (19)
n
gl
MAPE = — LS 20
n; 7 (20)
ZZ:I‘Y:'—?II
MAE = — 1 (1)
n
. A2
, L nt ()
R =1-— P — (22)
o (Yi-7Y)

Among them, the value range of R? is [0,1], and the
larger R?, the higher the accuracy of prediction.

A. NONLINEAR DYNAMIC SYSTEM MODELING

When evaluating the performance of a neural network,
we typically use nonlinear dynamic system modeling. In par-
ticular, the nonlinear dynamic system described in Eq. (23)
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is a classical benchmark problem used to evaluate neural
networks [45], [46].

y@®)y@—1)[y()+2.5]
L+y2 (@) +y>(t—1)

where y(1) = 0,y(2) = 0,u(t) = sin(2wt/25). The
prediction model is given by

yit+1) = + u(t) (23)

Y+ 1) =fly( = 1), y(@), u(®)] (24)

The structure of AVMD-MDBN is selected as 3-32-32-1.
That is, there are 3 neurons in the input layer, 32 neurons
in each of the two hidden layers and 1 neuron in the output
layer. Data samples are generated using Eq. (23), with the
first 1000 data points used to train the AVMD-MDBN model
and the last 200 data points used to test the model. In the
unsupervised pre-training phase, the number of training ses-
sions per RBM is 50. We chose to iterate 500 times during
the supervisory training phase of the AVMD-MDBN model.

layer 1 layer 2

80 —— With adaptive momentum factor
Original algorithm

—— With adaptive momentum factor
Original algorithm

MSE
8

0 20 40 60 80 100 o 20 40 60 80 100
Epoch

FIGURE 6. Unsupervised training error curve.

As shown in Fig. 6, the deep belief network based on
the momentum adaptive factor can effectively improve the
training effect and training efficiency of the pre-training pro-
cess. The momentum adaptive factors p and ¢ are set to
1.4 and 0.7. The variational mode decomposition algorithm
can decompose the original complex signal into p sub-signals
with different characteristics. As shown in Fig. 7, the variable
energy mode decomposition (AVMD) based on frequency
energy adaptive can adaptively decompose the original com-
plex signal into p sub-signals with different characteristics,
so that the decomposed sub-signals can fully express the
characteristics of the original signal. In the experiment of
classical nonlinear system modeling, py;—1) = 9, py) = 1,
Puiry = 1.

In order to effectively prove the superiority of AVMD-
MDBN modeling, 50 independent comparison experiments
are conducted. The comparison models include AVMD-
DBN, MDBN, DBN, CDBN, DFNN, AANN and SCNN.
As can be seen from Table 1, Fig. 8 and Fig. 9, the AVMD-
MDBN model has the minimum RMSE, MAE and MAPE,
which is mainly due to the addition of momentum factor to
the optimization of unsupervised learning, the improvement

VOLUME 8, 2020



Q. Jin et al.: Improved Parallel MDBN With AVMD for Nonlinear System Modeling

IEEE Access

| |
k: L ANANAANANAANANAANAAANAANANAANANA. ]
I

200 00 600 800 1000 1200 1400

B |

200 a 600 800 1000 1200

o 00 1400
mﬂmm’wMrwmlNmMM'WmmmmmwmNmmmmm'wm’WmNwll"wmmmmmmwmmmmmmwmmmmmmmmmmx-
- AL 000 A0 0 0 0G0
[ 200 400 600 800 1000 1200 1400
-wr""wrwwr'mw"w'ww TR O T ol

Af(m-s7%)
IMF7 IMF6 IMF5 IMF4 IMF3 IMF2 IMF1

o 200 800 1000 1200

T —
So02s

: 2 560 1000 1200

@ oos T
)

S0

1400
1400

|
200 400 500 00 1000 1200 1400

tx 10’2/5

FIGURE 7. AVMD decomposition results.

TABLE 1. Comparison of experimental results of different methods.

Method ~ Theurons MAE  MAPE  RMSE R
number
OBy 132321 0000512 0.15% 0000612 0.999
e 1132321 0001744 048% 0002017  0.999
MDBN*  3-32-32-1 0007015  2.09%  0.008853  0.999
DBN*  3-32-32-1 0009497 2.85% 0011305  0.999
CDBN*  3-32-32-1  0.004761  123%  0.005891  0.999
DENN® — _ — 005962 —
AANNP _ _ — 004426  —
SCNN® . — — 0003111  —

The best experimental data is shown in bold.

a

This method is a traditional DBN and variants proposed herein,
where CDBN is a variant proposed in the cited literature. Experimental
data was calculated by the author of this paper.

b

The experimental data is the same as the reference paper.

— Target
~—— AVMD-MDBN
—— MDBN

— DBN

—— AVMD-DBN

0 25 50 75 100 125 150 175 200

FIGURE 8. Modeling effects of different models.

of AVMD in feature decomposition and the AVMD-MDBN
parallel computing structure proposed in this paper.

It can be observed from Table 1 that the MAE of
the AVMD-MDBN model is reduced by 70.6%, 92.7%,
94.6%, and 89.2%, respectively, compared with AVMD-
DBN, MDBN, DBN, and CDBN. The MAPE of the
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FIGURE 10. Unsupervised training error curve.

AVMD-MDBN model is reduced by 68.8%, 92.8%, 94.7%
and 87.8%, respectively. The RMSE of the AVMD-MDBN
model decreases by 69.7%, 93.1%, 94.6%, 89.6%, 97.6%,
98.6% and 80.3%, compared with AVMD-DBN, MDBN,
DBN, CDBN, DFNN, AANN and SCNN, respectively. At the
same time, the proposed algorithm has the highest R-Squared
and the prediction accuracy is improved. In general, the
AVMD-MDBN algorithm can better find the inherent trends
and laws of nonlinear systems.

B. MACKEY-GLASS TIME-SERIES PREDICTION
In this example, the proposed AVMD-MDBN is applied to
predict the Mackey-Glass time series.

bx (t — 1)
14+x100—1)
where a = 0.1, b = 0.2, T = 17 and the initial state is
x(0)= 1.2. The prediction model is given by

xt+D=0—a)x @)+ 25)

x(t + 1) = fx(0), x(t — 7), x(t — 27), x(t —37)] (26)

In this example, 600 patterns between ¢ = 1 and 600 are
chosen as the training samples, other 400 patterns between
t = 601 and 1000 are used as testing samples. The structure
of AVMD-MDBN is selected as 4-32-32-1. That is, there are
4 neurons in the input layer, 32 neurons in each of the two
hidden layers and 1 neuron in the output layer. In the unsu-
pervised pre-training phase, the number of training sessions
per RBM is 50. We chose to iterate 500 times during the
supervisory training phase of the AVMD-MDBN model.

As shown in Fig. 10, the deep belief network based on the
momentum adaptive factor can effectively improve the train-
ing effect and training efficiency of the pre-training process.
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The momentum adaptive factors p and ¢ are setto 1.3 and 0.8.
The variational mode decomposition algorithm can decom-
pose the original complex signal into p sub-signals with
different characteristics. As shown in Fig. 11, the variable
energy mode decomposition (AVMD) based on frequency
energy adaptive can adaptively decompose the original com-
plex signal into p sub-signals with different characteristics,
so that the decomposed sub-signals can fully express the
characteristics of the original signal. In the experiment of
classical nonlinear system modeling, px) = 1, px¢—r) = 1,
Px@—21) = T, Px—37) = L.
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FIGURE 11. AVMD decomposition results.

In order to effectively prove the superiority of AVMD-
MDBN modeling, 50 independent comparison experiments
are conducted. The comparison models include AVMD-
DBN, MDBN, DBN, CDBN, DFNN and AANN. As can
be seen from Table 2, Fig. 12 and Fig. 13, the AVMD-
MDBN model has the minimum RMSE, MAE and MAPE,
which is mainly owing to the addition of momentum factor to
the optimization of unsupervised learning, the improvement
of AVMD in feature decomposition and the AVMD-MDBN
parallel computing structure proposed in this paper.

TABLE 2. Comparison of experimental results of different methods.

Method ~ \eurons MAE  MAPE  RMSE R
number

?}’3’]';1)\1‘ 10-32-32-1  0.004833  0.59%  0.006165  0.999

AVMD- 16 3301 0006794 0.79% 0008440  0.998
DBN

MDBN  4-32-32-1 0010145  1.16% 0011528  0.997
DBN 4-32-32-1 0017759 2.10%  0.019053  0.992
CDBN  4-32-32-1 0019743  2.32%  0.020757  0.991
DFNN 4-40-1 0.010918  140% 0012061  0.996

AANN 4-40-1 0.013871  1.58%  0.014069  0.994

It can be calculated from Table 2 that the MAE of
the AVMD-MDBN model is reduced by 28.9%, 52.4%,
72.8%, 75.5%, 55.7% and 65.2%, respectively, com-
pared with AVMD-DBN, MDBN, DBN, CDBN, DFNN
and AANN. The MAPE of the AVMD-MDBN model
is reduced by 25.4%, 49.4%, 72.0%, 74.7%, 58.0% and
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FIGURE 13. Comparison of modeling accuracy of different models.

62.8%, respectively. The RMSE of the AVMD-MDBN model
decreases by 27.0%, 46.5%, 67.6%, 70.3%, 48.9% and
56.2%, respectively. At the same time, the proposed algo-
rithm has the highest R-Squared and the prediction accuracy
is improved. In general, the AVMD-MDBN algorithm can
better find the inherent trends and laws of nonlinear systems.

C. FINANCIAL STOCK PREDICTION
There are often some complex nonlinear systems in the anal-
ysis of financial time series data. It is difficult to accurately
describe these complex system state equations by analytical
mathematical equation. Aiming at the complexity and uncer-
tainty of data analysis of current financial time series, the sim-
ulation of complex nonlinear systems is transformed into the
pattern recognition of financial time series data curves, thus
verifying the effectiveness of the proposed modeling method.
In this section, the main purpose is to use the proposed
AVMD-MDBN model to predict the closing price in stock
financial data. The data used for verification in this exper-
iment comes from the CSI 300 Index. The CSI 300 Index
is an index jointly published by the Shanghai and Shenzhen
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FIGURE 14. Unsupervised training error curve.

Stock Exchanges on April 8, 2005. The sample covers about
60% of the market value of the Shanghai and Shenzhen
markets, and has a good market representation, so it can
basically represent the high-quality stocks in the A-share
market. We downloaded the data of the CSI 300 Index
from the WIND database, which is a widely used financial
database in mainland China. Then we extracted data from the
downloaded dataset for 3,000 trading days from October 25,
2005 to February 23, 2018. The dataset includes 7 dimen-
sions of ‘“‘date, lowest price, highest price, opening price,
volume, transaction amount and closing price”. In particular,
2000 samples are randomly selected from 3000 samples as
training samples, and the remaining 1000 samples are used
as test samples. Prior to the experiment, the input samples of
the AVMD-MDBN model are normalized to a closed interval
(0, 1). The architecture of AVMD-MDBN is 6-64-64-1, with
no supervised pre-training process, and the number of train-
ing sessions per RBM is 10. We chose to iterate 500 times
during the supervisory training phase of the AVMD-MDBN
model. The prediction result of AVMD-MDBN is better than
DBN. Therefore, the AVMD-MDBN model can fully under-
stand the nonlinear dynamic characteristics of the closing
price in stock financial data.

As shown in Fig. 14, the deep belief network based on
the momentum adaptive factor can effectively improve the
training effect and training efficiency of the pre-training
process. The momentum adaptive factors p and & are
set to 1.3 and 0.8. The variational mode decompo-
sition algorithm can decompose the original complex
signal into p sub-signals with different characteristics.
As shown in Fig. 15, the variable energy mode decom-
position (AVMD) based on frequency energy adaptive can
adaptively decompose the original complex signal into p
sub-signals with different characteristics, so that the decom-
posed sub-signals can fully express the characteristics of
the original signal. In the experiment of classical nonlin-
ear system modeling, PLowestprice = 3, POpeningprice = 3,
PHighestprice = 4, PVolume = 4, PTransactionamount = 1L,
PData = 1.

In order to fully demonstrate the superiority of the pro-
posed AVMD-MDBN model for financial data prediction,
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FIGURE 15. AVMD decomposition results.

TABLE 3. Comparison of experimental results of different methods.

Neurons

Method MAE MAPE RMSE R’
number
AVMD- o
MDBN 16-64-64-1 27.06485  0.80%  42.94552 0.996
AVMD- 16-64-64-1 31.97048 091%  60.78569 0.992
DBN
MDBN 6-64-64-1 38.6817 1.15%  62.97621 0.992
DBN 6-64-64-1 41.16745 1.21%  69.30449 0.990
CDBN 6-64-64-1 44.5652 1.29%  75.21432 0.988
DFNN 6-80-1 30.21455 0.90%  59.75362 0.994
AANN 6-80-1 32.47421 0.93%  61.69421 0.993
- —— Target
AVMD-MDBN
5000, —— AVMD-DBN
—— MDBN
4500 —— DBN
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-E 3500
o
ﬁ 3000
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FIGURE 16. Modeling effects of different models.

50 independent comparison experiments are conducted. The
comparison models include AVMD-DBN, MDBN, DBN,
CDBN, DFNN, AANN and the corresponding results are
shown in Table 3, Fig. 16 and Fig. 17. It can be seen from
Table 3 that the AVMD-MDBN model has the best per-
formance in the four evaluation indexes of RMSE, MAE,
MAPE and R-Squared. Table 3, Fig. 16 and Fig. 17 detail
the superiority of the AVMD-MDBN model and can be used
to predict the closing price in stock financial data.

It can be observed from Fig. 16 and Fig. 17 that the dif-
ference between the prediction result of the AVMD-MDBN
method and the actual result is small, and the accuracy
between the prediction result and the actual result on the
horizontal time axis is higher than other methods, that is,
the proposed method improves the lag of stock forecasting.
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FIGURE 17. Comparison of modeling accuracy of different models.

It can be observed from Table 3 that the MAE of the AVMD-
MDBN model is reduced by 15.3%, 30.0%, 34.3%, 39.3%,
10.4% and 16.7%, respectively, compared with AVMD-DBN,
MDBN, DBN, CDBN, DFNN and AANN. The MAPE of
the AVMD-MDBN model was reduced by 12.1%, 30.4%,
33.9%, 38.0%, 11.1% and 14.0%, respectively. The RMSE
of the AVMD-MDBN model is reduced by 29.3%, 31.8%,
38.0%, 43.0%, 28.1% and 30.4% compared with other algo-
rithms. The algorithm proposed in this paper has the highest
R-Squared, and the prediction accuracy is greatly improved.
In general, the AVMD-MDBN algorithm can better identify
the inherent trends and patterns of data.

In addition, the experimental results of the comparative
modeling methods listed in Table 1, Table 2 and Table 3 are
based on the optimal parameters and structure of the respec-
tive methods (the optimal parameters of the modeling method
are generated by trial and error). It should be noted that in
order to make a fairer comparison, the proposed modeling
method and the comparative modeling method must use the
best comparison model.

V. CONCLUSION

This paper proposes a deep neural network model based on
improved VMD and improved DBN (AVMD-MDBN) par-
allel structure. This model is suitable for nonlinear system
modeling. The proposed AVMD-MDBN introduces the adap-
tive momentum factor into the unsupervised learning process,
which effectively improves the modeling speed and accuracy
to a certain extent. In order to improve the modeling accuracy,
the nonlinear data based on frequency energy conservation
is adaptively decomposed into multiple subsequences with
different components. Each subsequence is then distributed
into different MDBNs with adaptive momentum factors for
efficient feature extraction. Finally, the characteristics of dif-
ferent DBN outputs are deeply integrated, and the nonlin-
ear system model is constructed. The experimental results
show that the proposed AVMD-MDBN parallel computing
model has excellent nonlinear system modeling performance.
At the same time, it is confirmed that selecting a suitable
AVMD-MDBN structure is very important, especially when
processing large samples. However, in the existing literature,
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little research has been done on the method of designing
a suitable DBN architecture. For future work, our goal is
to design a self-organizing architecture for AVMD-MDBN
to improve the efficiency of deep neural networks from a
compact architectural perspective.
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