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ABSTRACT Light therapies can be used to treat fungal infections. A general mechanism is attributed to the
generation of cytotoxic reactive oxygen species (ROS) due to light stimulation. The effectiveness of these
therapies has been widely studied in the literature via conducting biological experiments, where fungi are
exposed to light with various wavelengths and power. However, despite the large amount of work reporting
the experimental results, few efforts have been given to build a mathematical model that describes the amount
of generated ROS as a function of the photon energy and power of the stimulating light. The lack of such a
model still hinders the optimization of the light doses. In this work, we propose a novel modeling method
based on experimental data, so as to establish a mathematical relationship between the ROS concentration
and the stimulating photon energy and light fluence (energy density). The anti-fungal experiments were
performed on Candida albicans (C. albicans) using four LED light sources with different wavelengths
ranging from 385nm to 450nm. Both the viability of the fungi and the ROS concentration therein were
measured during the experiments. High fitting accuracy has been achieved by the model, which therefore
demonstrates the effectiveness of the proposed modeling techniques.

INDEX TERMS Biomedical engineering, data driven modeling, light-emitting diodes, light therapy,

parameter estimation.

I. INTRODUCTION

Light therapies can kill fungi and hence treat fungal
infections. One of the major infectious types of fungi is
C. albicans [1], which is widely found in nature, and com-
monly occurs as a superficial infection on mucous mem-
branes, e.g. in mouths [2], vaginas [3] and intestines [4].
The treatment of fungal infections by light is a non-antibiotic
approach, and can avoid many side effects of antibiotic
treatments, e.g. drug resistance [5].

Various blue light within the range of 400—470nm has been
studied for anti-fungal therapies. The range with the most
effective anti-fungal effect has been found in various studies
to be 402—420nm [6]. For instance, 405nm light was proven
to be highly effective against the pre-germinated spores of
eight different types of fungi [7]. Besides, 415nm blue light
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was successfully applied to eliminate C. albicans in both in
vitro and in vivo experiments [8].

The underlying mechanism of the anti-fungal effect of
light has not yet been fully understood. A widely accepted
hypothesis is that the photons from blue light can excite
endogenous intracellular photosensitizers (PS), which in turn
produces highly toxic ROS to cells [6], such as singlet oxygen
('0y), hydroxyl radials (HO®) and etc. Modeling the amount
of generated ROS is hence an important issue in order to
design the doses, e.g. the photon energy and light power,
for an optimal effect in these therapies. However, developing
such a mathematical model is a challenging task. The reason
can be attributed to the complexities in the photosensitized
oxidation reactions, in which the exact types of reactions that
take place in the fungi and the exact types of ROS that are
generated are actually uncertain [9].

ROS modeling has also been reported as an important prob-
lem, and studied in other therapies. For instance, modeling the
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ROS density in the plasma generated by dielectric barrier dis-
charge has recently been reported in [10], which can be used
in wound healing and dermatological therapies. Moreover,
in photodynamic therapies (PDTs), i.e. the light therapies
that apply exogenous PS, modeling the dynamic changes in
ROS concentration has been well studied, e.g. [11]-[13]. For
instance, a set of coupled differential equations are used to
describe a PDT process, including seven Michaelis-Menten
type equations [14] describing the dynamic changes in the
concentrations of respectively the ground, singlet and triplet
state of PS, the singlet and triplet state of oxygen, super-
oxide anions (O, "), and finally the ROS acceptors exclud-
ing the photosensitizer molecules [13]. Moreover, Monte
Carlo simulations have been combined with these kinds of
kinetic models, and proven to be an effective method for
simulating light transport in biological tissues [15], [16].
Nevertheless, the aforementioned kinetic models demon-
strate high nonlinearity, and moreover contain many dif-
ferent unknown parameters related to the PS characteristics
that shall be determined from dedicated experiments. For
instance, up to 21 parameters are required to describe the
process of using some FDA or EMA approved PS [13].

Although anti-fungal light therapies are also believed to be
caused by the PS that naturally exist in fungal cells, due to
the aforementioned uncertain mechanisms of these processes
(i.e. what types of reactions and produced ROS), model-
ing by the first principles becomes even more challenging
than modeling a PDT process. To deal with these modeling
challenges, a data-driven modeling approach is proposed in
this work, which builds the functional relationship between
the ROS concentration and two important parameters of the
stimulating light, i.e. its photon energy and fluence, by fitting
a parameterized model from experimental data. The model
structure is motivated from the trend of the time sequence of
10, concentrations at a time scale longer than one minute
as shown in [12], which is monotonically increasing in a
fashion similar to the step response of a first order linear
dynamic system [17]. Then, the reaction rate constant in
this model is fitted to the photon energy of four different
light wavelengths of 385nm, 405nm, 415nm and 450nm. It is
also worth mentioning here that the complicated nonlinear
dynamics of the first-principle PDT models mainly occur at
a tiny time scale, i.e. below one second [12]. Fortunately, this
transient behaviour is not of key importance for quantifying
the long-term ROS accumulation in light therapies. In fact,
many other studies have reported similar gradually increasing
ROS accumulations in cells by light stimulation in a time
duration of up to hundreds of minutes, e.g. [18], [19].

The contributions of this work are four folds.
Firstly, the anti-fungal experiments on C. albicans were
conducted using four LED light sources with four different
wavelengths, including 385nm, 405nm, 415nm and 450nm.
Both the viability of the fungi and the ROS concentrations
were measured during the experiments. Secondly, a first
order linear dynamic model is parameterized for the ROS
variations, whose parameters were then estimated from
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TABLE 1. Main parameters used in the model.

Quantity Unit Symbol
irradiance mW/ cm?  Ee
fluence J/ cm? H,
photon energy eV Ep
wavelength nm A

ROS concentration M Y
reaction rate none k

TABLE 2. Applied LEDs and their main parameters, where “W.L." stands
for wavelength.

Specified Type Measured ~ Photon

Peak W.L. Peak W.L. Energy

(nm) (nm) (eV)

385nm Vishay 386.2 3.21
VLMU3500-385-120

405nm Kingbright 400.9 3.09
ATDS3534UV405B

415nm LUMILEDS LUXEON  416.5 2.98
LHUV-0415-A070

450nm Cree XLampXPE2 447.6 2.77

the experimental data. Thirdly, the functional relationship
between the reaction rate constants in the four fitted mod-
els respectively of 385nm, 405nm, 415nm and 450nm and
their corresponding photon energy were constructed. Finally,
a complete mathematical model of the ROS concentration
induced by light irradiation is established, taking as variables
the photon energy and fluence of the light. To the best of our
knowledge, it is the first attempt to build such a mathematical
model to mathematically describe the induced ROS in vitro
without utilizing any exogenous PS. The main symbols used
throughout the paper are defined in Table 1.

Il. MATERIALS AND METHODS

A. LED LIGHT SOURCE DESIGN

Four different types of LEDs with the specified peak
wavelengths respectively at 385nm, 405nm, 415nm and
450nm were applied in this work. The types of these LEDs
and their main parameters are listed in Table 2. Their spectral
power density (SPD) curves, as measured by a Maya2000Pro
spectrometer (Ocean Optics, US), are depicted in Fig. 1(a).
In this figure, every SPD curve is normalized with respect
to its integral over the range of the measured wavelength,
i.e. with each normalized SPD curve integrating to 1.

The LED light sources were designed following the proce-
dures in [20], and were driven by a constant current source
with PWM current level control to stabilize the output irra-
diance [21], [22]. The LED chips are arranged in either a
1.5cm-by-1.5cm square as a 4-by-4 array (385nm, 405nm
and 415nm) or a lcm-by-lcm square as a 3-by-3 array
(450nm). The four LED light sources can deliver an irra-
diance of 50mW /cm? uniformly within a 60cm-diameter
circle. Fig. 1(c) shows the simulated irradiance distribution,
where the average irradiance in the 6cm-diameter circle is
49.39mW /cmz, with a relative variation of only 6.56%. The
irradiance was measured and confirmed by a PM 100D power
meter with a S120VC probe (Thorlabs, Newton, NJ, US).
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FIGURE 1. LED light source design: (a) normalized SPD of the four types
of LEDs, (b) electrical scheme, (c) simulated irradiance distribution,
(d) photo of the experimental setup.

The schematic diagram of the electrical drive and con-
trol system and the experimental setup are illustrated in
Figs. 1(b) and 1(d).

B. EXPERIMENTAL METHODS

1) ANTI-FUNGAL ASSAY

The C. albicans strain used in this work is the 3147
(IFO 1594) strain (ATCC, US). The fungal viability was
estimated by colony counting in terms of colony-forming
units (CFU). After the concentration of the fungi reached
107 cells/ml, the fungal suspension was diluted by 10*-fold
with sterilized water. The diluted suspension was then spread
on tryptic soy agar (TSA), and divided into a control group
and a treatment group. The treatment group was respectively
irradiated by one of the four LED light sources; while the
control group was kept in the dark. The distances from the
light sources to the fungi were around 10cm in all the cases
to achieve the target irradiance of S0mW /cm?.

More specifically, the light irradiation experiments were
performed at each sampling instant of respectively 0, 5, 10,
15, 20, 25 and 30 minutes under the 385nm, 405nm and
415nm light exposure; and at 0, 15, 30, 45, 60, 75, 90, 105 and
120 minutes under the 450nm light irradiation, because it
takes longer time for this wavelength to achieve a significant
fungal inhibition at the same irradiance. At each of these
sampling instants, one agar plate spread with the fungal sus-
pension was exposed to the light; and another plate spread
with the same suspension was kept in the dark. Moreover,
only one plate was exposed to the light at each light irradiation
experiment. Therefore, three plates were separately irradi-
ated by the light at different time for each sampling instant.
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Afterwards, all the six plates were cultured for 24-48 hours
at 26°C, before the colony counting. These steps resulted in
triplicate experiments for each treatment time interval, whose
raw CFU data were then processed to produce the mean and
standard deviation of the viability rates at each sampling
instant. The significance of the growth inhibition of the fungi
before and after the light treatment was tested by the Student’s
t-test.

2) ROS ASSAY

For the homogeneity of the ROS measurements, the con-
centrations of the fungi used in all the ROS assays were
controlled within the same range by measuring its absorption
of 450nm light with a U-3900H spectrophotometer (Hitachi,
Japan). More specifically, the absorption levels measured by
this equipment were always controlled in the range of 6.5-7.
Then, the fungi were centrifuged and separated from the
medium, and were dissolved in a 500-fold dilution of the
ROS fluorescent probe (DCFH-DA assay kit, Beyotime Insti-
tute of Biotechnology, China) by phosphate buffer saline
(PBS). After incubated at 37°C in a shaker for half an hour,
the suspension was centrifuged for three times to remove
the redundant probe. Then, the suspension was seeded into
a 96-well plate, and divided into a treatment group and a
control group. The treatment group was irradiated respec-
tively by the four LED light sources; while the control group
was kept in the dark. Immediately after the light treatment,
the intracellular ROS levels were measured as the fluorescent
levels in a VLOLOTDO Varioskan LUX microplate reader
(Thermo Fisher, US), with the exciting and emitting wave-
length respectively set at 488nm and 525nm. For each treat-
ment interval, the plates were continuously exposed to the
light, and were then discarded after the measurement by the
microplate reader.

Triplicate experiments were performed in a similar fashion
as described in the anti-fungal assays; i.e. respectively at the
sampling instant of 0, 5, 10, 15, 20, 25 and 30 minutes under
the 385nm, 405nm and 415nm light exposure; and at 0, 15,
30, 45, 60, 75, 90, 105 and 120 minutes under the 450nm light
irradiation. The raw data were processed to produce the mean
and standard deviation of the ROS fluorescent levels for each
treatment time interval.

C. DYNAMIC MODEL OF ROS CONCENTRATIONS
INDUCED BY PHOTON ENERGY

As introduced in Sec. I, although comprehensive models of
the photosensitized oxidation reactions in PDTs have already
been established in the literature, models of the induced
ROS in vitro without utilizing any exogenous PS are not
yet available. The difficulties can be attributed firstly to the
many unknown parameters that must be determined from
dedicated experiments, and secondly to the lack of knowledge
about what types of reactions, endogenous PS and oxidants
are exactly involved in anti-fungal therapies. To avoid these
difficulties and reduce the experimental burdens, we propose
to use a reduced model structure and estimate its parameters
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from the ROS concentration data observed from experi-
ments. The reduction from the highly coupled nonlinear
Michaelis-Menten type models [13] does not take the short-
time transient behaviour into account, and is only valid for
modeling the ROS accumulations at a time scale larger than
one minute. This is motivated by the fact that at a macroscopic
time scale, the increasing trend of the singlet oxygen concen-
tration [12] is similar to the step response of a first order linear
dynamic system [17].

Denote the ROS concentration by y. The first order linear
system description of its dynamics can be expressed by the
following differential equation.

) _
d

where ¢t > 0 is the time instant; & > O is the reaction rate
constant; and ¥ > 0 represents an unknown input, and is
constant in the case of a step response. This model is actually
an integrator, and is thus suitable to describe the accumulation
of ROS over time. The solution of Eq. (1) takes an analytic
form [17] as

—k - y(t) +u, ey

t
y(t) = e - yg +/ u-e =gz,
0

where yo denotes the initial value of y at time instant 0. When
u > 0 is constant for + > 0, this equation defines the
step response of the dynamic system defined by Eq. (1). For
brevity, the time variable will be omitted in what follows.

Equivalently, one can parameterize u as u = k - (yo + u),
with «/ > 0 arbitrary. Then, the above equation is further
simplified to

y:yo—l—u"(l—e_k’).

Bringing yy to the left of the equal sign and dividing both sides
by yo, one can obtain the following equation of the relative
change of the ROS concentration with respect to its initial
value.

y —)’0 — I/l_ . (1 _ e—kl‘) . (2)
Yo Yo

—— ~——
X r

For brevity, denote y;% by x and ;‘—(; by r in what follows.

Note that since the ROS concentrations are actually mea-
sured with fluorescent probes, by e.g. a microplate reader,
it is more meaningful to take the relative value x in Eq. (2).
Besides, it is well known that ROS naturally exists in cells
and regulates a great number of biochemical reactions, which
generally accounts for 2% of the total oxygen consumed by
mitochondria under a “normal” condition [23]. Therefore,
an initial ROS concentration in the fungi always exists, and
contributes to a nontrivial initial fluorescent level, i.e. yo > 0,
before being irradiated by light.

Obviously, Eq. (2) is a monotonically increasing function
of t. The only parameters of this model to be estimated are
k and r. The formulation of Eq. (2) indicates that r can be
interpreted as the ratio of the initial total concentration of
the other molecules involved in the reactions (e.g. the triplet
oxygen and all the three states of the endogenous PS) to the
initial concentration of the ROS.

D. FUNCTIONAL RELATIONSHIP BETWEEN REACTION
RATES AND PHOTON ENERGY

In classical PDT models, the PDT dose is defined as the
number of photons absorbed by the PS, and is related to the
irradiance and the photon energy [12], [24]. The kinetic PDT
equations are henceforth parameterized by the irradiance and
photon energy of the stimulating light.

The energy of a photon is inversely proportional to the
wavelength of the light, which is usually given in the unit of
electron-volt (eV, and leV = 1.602 x 10719)), i.e.

E h-c 1.24 3
oA A ©
where & and c are respectively the Planck’s constant and the
speed of light. Here, the unit of A shall be converted from
nanometers to microns. Photon energy will also be used to
quantify a specific light source in what follows.

For in vitro anti-fungal experiments, the photon energy is
directly absorbed by fungal cells instead of tissues. On the
other hand, according to the experimental results to be pre-
sented later in Sec. III, the reaction rate constants in Eq. (2)
estimated from the experimental data using the four light
spectra are all different, when keeping the light irradiance at
the same level. More specifically, the rate constants at 415nm
and 450nm are respectively the largest and the smallest; while
those at 385nm and 405nm first show a “‘roll-off”” after the
rate peak near 415nm, and are then followed by an increasing

P — a+b-sin(d - E, + ¢), E,<E @
B a+b-exp{—[a -(Ep —/,L)]C} -sin(d - Ep + @), Ep > E
1 . -
r-{1 —exp —E—~[a+b-sm(d-Ep+<p)]~He}}, E, <E
X(Ep, Hy) = 5 ) ©)

r-11—exp 5 {a +b-eleE=WF gind - E,+ (p)} 'He}} ,

e

VOLUME 8, 2020

18199



IEEE Access

J. Dong, T. Wang: Data Driven Modeling of the ROS Stimulated by Photon Energy in Light Therapies

trend again (see Table 3 and Fig. 6). This pattern actually
corresponds well to the more reported practices of using
400-420nm light in the anti-fungal experiments. Motivated
by this observation, one can describe this dependence of the
reaction rate constant on the photon energy by Eq. (4), as
shown at the bottom of the previous page.

Here, a, b, c, d, o, |1, ¢ are the parameters to be estimated;
and E is the point at which the reaction rate starts to roll
off. In the model (4), the sinusoidal function describes the
peak near 415nm and the decreasing trend for longer wave-
lengths up to 460nm; while the exponentially decaying term,
exp {—[o - (E, — w)]°}, is to account for the roll-off after the
rate peak.

E. MODELING ROS CONCENTRATION AS A FUNCTION OF
PHOTON ENERGY AND FLUENCE

Now, by substituting Eq. (4) into Eq. (2) and noting that t =
H,/E,, the model of the relative ROS concentration x as a
function of the photon energy and fluence of the stimulating
light can be finally derived, which takes a, b, c,d, r,a, i, ¢
and the light irradiance E, as parameters. The model takes the
form of Eq. (5), as shown at the bottom of the previous page.

F. MODELING FUNGAL VIABILITY AS A FUNCTION OF
PHOTON ENERGY AND FLUENCE

Although a viability model is not required in the aforemen-
tioned ROS model, it is also relevant to further understand
the effect of the photon energy and fluence on the efficiency
of eliminating the fungi by the light. Such a mathematical
relationship can be built in a similar fashion as in building
the ROS model.

To this end, one first needs to fit a time-varying viability
model of the fungi when being exposed to the light of each
wavelength. Since it takes some time for the ROS concentra-
tion to reach a sufficient level to kill the fungi, a piecewise
function including a “‘shoulder” [25] is suitable to describe
such a process, i.e.

<
olt) = i’_kv(,_f)’ r=T ©)
where p(¢) is the survival rate at time ¢; k,, is the decaying rate
coefficient; and 7 is the time constant when the inactivation
starts.

The next step is also to fit the parameters k, and t to the
photon energy, because they vary among the four different
light wavelengths. Also according to the experimental results
to be presented later in Sec. III, the models of k, and 7 are

respectively parameterized as follows.

k, =exp(p1-E;,‘+p2-E,§ +p3-E§+p4), %
t=q1-E +q E +q3Ep+ qu. ®)

Here, p;, qi, i = 1, 2, 3, 4 are the coefficients to be estimated.
The exponential function in Eq. (7) is to enforce k, > 0,
since a pure polynomial function cannot ensure this, when
k, is close to zero.

Similarly, by substituting Egs. (7, 8) into Eq. (6) and taking
t = H,/E,, the model can be finally written as Eq. (9) as
shown at the bottom of this page.

Ill. RESULTS

A. VIABILITY MEASUREMENTS OF C. ALBICANS

In the experiments with the 385nm, 405nm and 415nm light
sources, no significant growth inhibition of C. albicans was
observed until being irradiated for ten minutes (p < 0.05).
After being exposed to the light for 25 or 30 minutes, the sur-
vival rates of the fungi all dropped below 20%. On the other
hand, in the experiment with the 450nm light source, sig-
nificant elimination of C. albicans was observed after being
irradiated for 100 minutes (p < 0.05); while after two hours,
about 80% of the fungi were inhibited. The viability rates of
the four experiments are depicted in Fig. 2. As an illustrative
example, the fungal growth on the agar plates after being
irradiated by the 385nm light for different durations from O to
30 minutes is shown in Fig. 2(e). The decreasing trend of the
CFU can be clearly observed.

B. ROS MEASUREMENTS

The time sequences of the measured ROS concentrations in
the C. albicans were measured from the experiments using
all the four different light sources. The measured fluorescent
levels y were processed according to the definition of Eq. (2)
asx = y;% , where yy is the initial level. The relative changes
in the ROS concentrations due to the light stimulation are
plotted in Fig. 3.

To visualize the gradual accumulations of the ROS in the
fungi as the light exposure continues, the time-lapse images
of the fungal cells after being irradiated by the 405nm light
for different durations from 0 to 30 minutes were taken by an
Axio Observer Al inverted fluorescence microscope (ZEISS,
Germany), and are illustrated in Fig. 3(e). The exciting and
emitting wavelength were set respectively at 488nm and
525nm. The increasing trend of the ROS concentrations can
be clearly observed.

11
:O(Epy H,) =

i=1

18200

3 4
. H, .
exp [— exp ( E Di- Esfl +p4> . (E—e - E qi - E;’) } , otherwise.
¢ izl

4
He = Ee : Z%’ 'E;;ii
=l ©)
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FIGURE 2. Measured viability rates of the C. albicans irradiated
respectively by (a) 385nm, (b) 405nm, (c) 415nm, (d) 450nm LED light
source, and (e) the pictures of the fungal growth on the agar plates after

being irradiated by the 385nm light for different durations from 0 to
30 minutes.

C. ESTIMATION OF THE PARAMETERS OF EQ. (2)
Eq. (2) contains two parameters to be estimated, i.e. r and
k. By definition, this estimation problem is nonlinear, and
can be solved by a standard nonlinear least-squares (NLS)
algorithm [26], e.g. the Levenberg-Marquardt method. The
dependence of the RMSE fitting errors on the values of r
and k is shown in Fig. 4. It can be seen that in all the four
cases, the optimum of the parameter pair (r, k) lies on the
flat bottom of a narrow valley roughly within the range of
30 < r < 3000 and 107* < k < 107°. The gradients of
the fitting errors with respect to this pair are approximately
zero within this valley. In other words, the NLS optimization
is likely to terminate at any point in this valley depending
on the specified initial values and stopping conditions, which
can also been seen from Fig. 4. Based on this observation, it is
better to fix » to a value in the range of 30 < r < 3000, and
estimate k by linear least-squares (LS), which is guaranteed
to result in a unique global optimal solution. Moreover, it is
also necessary to set r to a same value, in order to compare
the effects of the four wavelengths on the reaction rates k.
On the other hand, note that the fungi used in this work are
of the same type, and were cultivated and processed following
exactly the same protocols. It is hence also reasonable to
assume that the parameter r in all the experiments is of the
same value. According to the interpretation of r in Eq. (2),
this physically means that the ratios of the initial total con-
centration of the other molecules involved in the reactions
(e.g. the triplet oxygen and all the three states of the
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FIGURE 3. Measured relative changes in the ROS fluorescent levels in the
C. albicans irradiated respectively by (a) 385nm, (b) 405nm, (c) 415nm,
(d) 450nm LED light source, and (e) the time-lapse ROS fluorescent
images of the fungal cells taken from 0 to 30 minutes with a 5min time
difference.
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FIGURE 4. Dependence of the RMSE fitting errors on the values of r and
k: (a) 385nm, (b) 405nm, (c) 415nm, (d) 450nm. Contours: log;o(RMSE);
Stars: the NLS estimates.

endogenous PS) to the initial ROS concentration can be
assumed to be at the same level in all the experiments. When
there is an ample amount of oxygen molecules in the cells,
i.e. when r is dominated by the ratio between the concen-
tration of the initial triplet oxygen and the initial ROS, one
can take r = 50, since in the normal condition of mitochon-
drial respiration, ROS takes about 2% of the total oxygen
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TABLE 3. Estimated reaction rate constants and RMSE fitting errors.

k RMSE
385nm  2.65E-5  0.240
405nm  2.50E-5  0.056
415nm  3.68E-5 0.216
450nm 2.22E-5 1.233

4 T T T T T
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c
8
»25F
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[
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o
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£ 1t
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©
©05F
0 L L L L L
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time [s]

FIGURE 5. Fitted curve to the measured relative ROS concentration data
from the 415nm light irradiation experiment.

consumption [23]. More specifically, by fixing r, k can be
estimated by solving the following LS problem.

k-t:—ln(l—;). (10)

The LS estimates and the RMSE fitting errors are listed
in Table 3. As an illustrative example, the model fitted to the
data from the 415nm light irradiation experiment is depicted
in Fig. 5.

D. ESTIMATION OF THE PARAMETERS OF EQ. (4)

The estimated reaction rate constants in Table 3 and their
corresponding photon energy in Table 2 are plotted in Fig. 6.
Note that in Eq. (4), there are totally seven unknown parame-
ters to be estimated, i.e. a, b, ¢, d, «, u, ¢. However, there are
only four data points, which can at most uniquely determine
four parameters. To solve them, d was first determined by
estimating the period of the sinusoidal function from the four
target points, by noting that the range of the photon energy
shall be within one complete period of the sinusoidal function
(otherwise, there will be multiple peaks). On the other hand,
E that determines the roll-off point shall be between 2.98 and
3.09; and «, pu are intended to shift and normalize the photo
energy into the range between O and 1. This then reduces
the number of unknown parameters to three, which can be
solved by a standard NLS algorithm. The finally estimated
parameters are listed in Table 4, which perfectly fits to the
four target points with an RMSE fitting error of 7.86E-7.

E. SIMULATING THE ROS MODEL WITH VARIOUS
PHOTON ENERGY AND FLUENCE

With the parameters in Table 4 and taking r = 50 and
E., = 50mW /cm?, the model of the ROS concentration
as a function of the stimulating photon energy and fluence,
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FIGURE 6. Fitted model of the reaction rate constants as a function of the
photon energy. The arrows indicate the experimenting light sources. The
simulated range of the photon energy 2.7 ~ 3.3eV corresponds to the
wavelength range of 375 ~ 460nm.

TABLE 4. Estimated parameters of Eq. (4).

a b c d o m [ E
2.66E-5 190E-5 3.025 1357 3.100 2.667 -31.55 3.012

i.e. Eq. (5), was finally simulated. The results are plotted
in Fig. 7.

F. SUMMARY OF THE PROCEDURES TO

BUILD THE ROS MODEL

Although a single strain of C. albicans was tested in this work,
the proposed modeling method can actually be applied to
other fungal species, as well. The experimental and modeling
procedures follow the steps shown in Fig. 8.

G. FITTING AND SIMULATION OF THE VIABILITY MODEL
Since the main purpose of this work is to build the ROS
model, and also for brevity, the detailed parameter estimation
procedures for the viability model will be omitted; and only
the fitting results are presented here.

The parameters k, and t were first fitted to the viability
data as shown in Fig. 2, whose estimated values for all the four
wavelengths are listed in Table 5. The estimated coefficients
of the polynomials in Egs. (7, 8) are listed in Table 6, which
resulted in the fitted curves as illustrated in Fig. 9. With
these estimated parameters, the viability model was finally
simulated. The results are plotted in Fig. 10.

IV. DISCUSSION

In this study, anti-fungal light irradiation experiments were
conducted using four different wavelengths, in which both
the viability of the fungi and the generated ROS therein were
measured. The main objectives are to compare the effects of
four different wavelengths in terms of their effect in inducing
ROS, and to build a mathematical model that relates the ROS
generation with the photon energy and the fluence of the
stimulating light.

VOLUME 8, 2020



J. Dong, T. Wang: Data Driven Modeling of the ROS Stimulated by Photon Energy in Light Therapies

IEEE Access

c
o
[
=
Q
2 2
Q
ol
0
Q
T
o 15
2 4
5
o 1
e —
®
I
gos
[
2
® 0
Q0
fluence [Jiem?] 28
3.3 T
1.8
32r
< \ \ 1.6
\ e
_.31F - 14
s ¢
= x ° p 1.2
o o - .
> 3r T
c - A& : 1
@ / »’ q
s [
S 29F (. 0.8
<
aQ .
o : 06
28} © . éi
. . 0.4
27}t 04— 1 02
n n 07' n n 0.4 0
0 10 20 30 40 50
fluence [J/cm?]
(b)
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various photon energy and fluence: (a) 3D plot, (b) contour plot.

four different wavelengths

[ Select the fungal strain and light sources with at leastj

Conduct light irradiation experiments on the fungi with
all the light sources, at different sampling instants

Measure the ROS concentrations in the fungi at each
sampling instant, and collect the data

Solve Eq. (10) and obtain the parameter k for each light
wavelength

Fit the different k values to the corresponding photon
energy, and plug the estimated parameters into Eq. (5)

FIGURE 8. Procedures of implementing the data-driven modeling method.

TABLE 5. Estimated parameters of Eq. (6).

ko T (in sec.) RMSE
385nm  1E-3 226.80 0.235
405nm  7.06E-3  770.70 0.056
415nm  3.85E-3  447.30 0.211
450nm  2.89E-4  2232.72 1.176

The viability data in Fig. 2 show that the 415nm light
performed best in eliminating C. albicans in terms of the

VOLUME 8, 2020

TABLE 6. Estimated coefficients of the polynomials in Egs. (7, 8).

P1Orqi  p20rqa  p3orqs psorqs RMSE
Eq.(7) 3723 287.19 -620.59  841.56 9.20E-16
Eq.(8) -1.53E5  1.39E6 -4.19E6  4.22E6 2.38E-9

8 X1073 T T T T T T T T T
¢
8| ,ome [-2-mm
/, “
<~ 6F 3 \‘ 4
.S I, \
QO 5¢ 4
kS ) ‘\
3 P ’ \
Q I \ b
© l’ \
2,0 ’ ' ]
B ) '
8 p \
o 2t R \ 1
’ Ay
ir s ‘ ‘ 1
e

275 28 285 29 295 3 305 31 315 32 325
photon energy [eV]

(@)
2500 1 T T T T T T T T T
1 targets
¢ fitted
1
2000 v b
\
—_ \
4 \
9, L \ 4
= 1500 \
‘g \
@ Y
S
© 1000 [ A} 1
‘é’ \
= \\ e ==
. -7 A
~ -
L . ]
500 S~ Vs .
\
¢

275 28 28 29 295 3 305 31 315 32 325
photon energy [eV]

()
FIGURE 9. Fitted model of ky and 7 as a function of the photon energy:
(a) ky as in Eq. (7), (b) = as in Eq. (8).

lowest survival rate of the fungi after having been irradiated
for 25 minutes. The longest wavelength 450nm turned out
to be the worst in this aspect, because of the much longer
time it took to significantly kill the fungi. On the other hand,
a “shoulder” in the viability curve of the fungi can be clearly
seen in most cases. The shoulders indicate that the fungi were
not immediately killed right after being exposed to the light.
This can be attributed to the fact that the main hypothesized
mechanism of anti-fungal light therapies is the cytotoxicity
due to the induced ROS from the interaction between the
light and the endogenous PS. To generate enough toxicity to
kill the fungi, the ROS in the cells needs to accumulate to a
sufficient level. The turning point appeared when all the four
wavelengths led to more than 40% fungal elimination. These
points were respectively at 900sec for 385nm and 405nm,
at 600sec for 415nm, and at 3600sec for 450nm. At these
points, the relative ROS increases were of similar values
around 1,i.e. 1.1140.02, 0.93+0.09, 0.824+0.11, 1.44+0.78
respectively for the 385nm, 405nm, 415nm and 450nm light.

18203



IEEE Access

J. Dong, T. Wang: Data Driven Modeling of the ROS Stimulated by Photon Energy in Light Therapies

viability rates of C. albicans

photon energy [eV]
n w w
Moo o » L
© (5] w (5] - (5, n

n
©
@

N
©

50 100 150 200
fluence [J/cm?]

(b)

FIGURE 10. Variation of the fungal viability rates in response to various
photon energy and fluence: (a) 3D plot, (b) contour plot.

=}

On the other hand, in the case of the 385nm-light irradia-
tion, the fungi appeared to start degenerating sooner than the
cases of using the 405nm and 415nm light. This indicates
that the UVA light of 385nm may cause other more dra-
matic inhibiting effects to the fungi besides inducing ROS,
e.g. causing tryptophan photodegradation within the cells
[27]. Moreover, as can be observed from the simulated fun-
gal viability rates in response to various photon energy and
fluence as in Fig. 10, the most effective anti-fungal photon
energy is in the range of 2.85~3.2eV, corresponding to wave-
length range of 387.5~435nm.

Due to the aforementioned challenges to parameterize the
model of the induced ROS concentrations in vitro without
utilizing any exogenous PS, a data-driven modeling approach
was proposed. This modeling approach mainly takes into
account the long time scale ROS accumulating effect during
light irradiation. The analysis of the dependence of the RMSE
fitting errors on the values of the two model parameters,
i.e. r and k, show that their optimal values are actually trapped
within a flat and narrow valley. In this valley, the gradients
of the cost function with respect to these two parameters are
almost trivial. Therefore, instead of leaving the optimization
to stop at a random point in this valley (depending on the
randomly given initial value and stopping criteria), the value
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of r was fixed to 50. Consequently, the reaction rate constant
k can be estimated as a linear LS problem, which ensures
that the unique global optimal value of k can be found. Here,
a mild assumption is made that r is dominated by the ratio
between the concentrations of the initial triplet oxygen and
the initial ROS. Therefore, its value can be taken as 50, due
to the aforementioned fact that in the normal condition of
mitochondrial respiration, ROS takes about 2% of the total
oxygen consumption. Good agreement of the fitted functions
with the experimental data was achieved for the four data sets,
as shown in Table 3 and Fig. 5. This demonstrates the validity
of the proposed model structure and the assumption.

The estimated reaction rate constants show a dependence
on the wavelengths or their corresponding photon energy,
which peak near 415nm and decline to the minimum as
the wavelength increases to 460nm. According to Eq. (2),
the reaction rate constant determines the speed of generating
ROS in the photochemical reaction. The larger the value,
the faster the accumulation of the cytotoxic ROS, and thus the
faster the elimination of the fungi. On the other hand, the roll-
off effect of the reaction rate at even shorter wavelengths,
i.e. 385nm and 405nm, indicates that the sensitivity of the
endogenous PS to UVA light is lower than that to the light in
the range of 415~426nm. However, the similar anti-fungal
effect of 385nm and 405nm with that of 415nm indicate that
other inhibiting effects to the fungi besides inducing ROS
might have also been induced by these wavelengths, e.g.
causing tryptophan photodegradation [27].

It is known in the literature that there are several types of
endogenous PS responsible for anti-fungal effects, including
various kinds of porphyrins and flavins, depending on the
fungal species. The Soret bands of porphyrins are generally
in the range of 400~410nm [28]; while some types can
reach 413~416nm [29]. On the other hand, the Soret bands
of flavins are usually at longer wavelengths. For instance,
the peak absorption of acriflavin neutral (or euflavine) is
at 436nm [30]; and that of cytochrome-flavin complex is
at 427nm [31]. In fact, the fitted model of Eq. (4) reveals
that in the experiments the peak absorption wavelength is at
426.6nm or 2.907eV in photon energy. This indicates that
there may be more than one type of endogenous PS in the
C. albicans studied in this work, which all contribute to the
generation of ROS.

By simulating the model of the ROS concentration as a
function of the photon energy and fluence, the following
observations can be further made. First, when the fluence is
small, i.e. H, < 5J/ cm?, the induced ROS concentration is
not much for any photon energy in the range of 2.7~3.3eV.
This indicates that the radiometric energy of the stimulating
light needs to be higher than a threshold to trigger sufficient
ROS generation, no matter how large the photon energy
is. Second, as the fluence accumulates to a certain level,
ie. H. > 10J/cm?, the effects of the photon energy
start to manifest. For this studied fungal strain, the range
of photon energy 2.85~2.95eV (or 420~435nm in wave-
length) demonstrated a higher efficiency in generating ROS.
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These observations can be helpful to design the therapeutic
devices and the doses used in treating the infections caused
by this type of fungi.

On the other hand, the proposed model in this work also
has some limitations. First, the proposed model structure is
simplified, and cannot describe the transient dynamics of the
PS and ROS. As another limitation, the proposed model does
not distinguish different types of ROS. As being fitted to
the general oxidative stress measured by the standard ROS
assay kit, the output of the model is the changing rate of the
total ROS accumulation, and hence contains the contributions
from all the existing PS in the fungi.

V. CONCLUSION

In this work, a modeling approach has been developed to
mathematically describe the induced ROS in fungi, as a
function of the photon energy and fluence of the stimulating
light. The method of estimating the model parameters from
experimental data has also been proposed and verified. The
fitting results agree well with the main trends of the experi-
mental data at long time scales, e.g. from tens of minutes to a
few hours. This indicates that the proposed model structures
and the parameter estimation methods are effective to cal-
culate the amount of accumulating ROS in the C. albicans,
when being stimulated by the photon energy in the range
of 2.7 ~ 3.3¢V.

As another main conclusion, the photon energy within the
range of 2.85~2.95eV (or 420~435nm in wavelength) is
more effective in generating ROS in the fungi studied in this
work, and is hence more effective in treating the infections
caused by this type of fungi.

As a potential future extension, the data-driven modeling
approach can be further extended to account for the individual
contributions of the main types of endogenous PS in the
fungi to the generation of ROS. Another extension will be
to develop a data-driven approach to model the in vivo ROS
generation.
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