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ABSTRACT The decomposition number K and penalty factor « in the variational mode decomposi-
tion (VMD) algorithm have a great influence on the decomposition effect and the accuracy of sub-
sequent fault diagnosis. Therefore, a gear fault diagnosis method based on genetic mutation particle
swarm optimization VMD and probabilistic neural network (GMPSO-VMD-PNN) algorithm is proposed
in this paper. Firstly, the GMPSO algorithm is used to optimize the [K, o] parameter combination in the
VMD algorithm, and the optimal [K, o] parameter combination of each gear fault vibration signal to be
decomposed is selected. Then, the gear fault vibration signal is decomposed into several intrinsic mode
functions (IMFs) by VMD, and the sample entropy value of each IMFs is extracted to form the feature
vector of subsequent fault diagnosis. Finally, the characteristic vector of gear fault vibration signal is input
into PNN model, and gear fault is accurately classified. By comparing with fixed parameter VMD algorithm,
empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition adaptive
noise (CEEMDAN) algorithm, the superiority of this method in gear fault diagnosis is verified. Therefore, the
GMPSO-VMD-PNN algorithm proposed in this paper has certain application value for gear fault diagnosis.

INDEX TERMS Genetic mutation particle swarm optimization, variational mode decomposition, proba-

bilistic neural network, gear fault diagnosis, parameter optimization.

I. INTRODUCTION

Gearbox play a very important role in the mechanical trans-
mission system [1] and are widely used in wind turbines,
power transmission machinery and other equipment [2]-[5].
The gear often suffers from such defects as wear, cracks and
broken teeth [6]-[8]. When these faults occur to the gear parts
in the gearbox, they will cause serious harm to the operating
mechanical system [9]. Therefore, fault diagnosis of gear
parts in gearbox is beneficial to prevent excessive damage
of mechanical system, and has a certain positive impact on
preventing mechanical system safety.

Time-frequency analysis based on vibration signals has
been successfully applied to gear fault diagnosis [10]-[16],
whose gear fault vibration signals contain problem informa-
tion generated during the operation of the gearbox. There-
fore, the analysis of gear fault vibration signal is the premise
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of gear fault diagnosis. Gear fault diagnosis uses not only
vibration signals, but also new technologies such as acous-
tic signals and acoustic emission signals [17]-[19], and the
combination of these new technologies can improve the
accuracy of gear fault diagnosis [20]. In the field of gear
vibration signal fault diagnosis, there are several commonly
used methods. For example, continuous wavelet transform
(CWT) [21], [22], Hilbert-Huang transform (HHT) [23], [24],
empirical mode decomposition (EMD) [25], [26], ensem-
ble empirical mode decomposition (EEMD) [27], [28] and
local mode decomposition (LMD) [29], [30], etc. However,
the effect of continuous wavelet transform is based on the
selection of wavelet basis function. Once the wavelet basis
function is determined, the decomposition mode is also deter-
mined. We need to select different wavelet basis functions to
analyze different gear vibration signals, which will increase
the artificial efficiency of the decomposition process. In the
decomposition process of EMD, EEMD and LMD, there are
some adverse effects such as mode mixing and endpoint
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effect [31]-[34]. Therefore, Dragomiretskiy [35] proposed
an adaptive signal decomposition algorithm called varia-
tional mode decomposition (VMD), which can overcome the
adverse effects such as mode confusion and endpoint effect of
EMD, EEMD and LMD. Li et al. [36] proposed a data-driven
time-frequency analysis (DDTFA) method. Firstly, VMD was
used to carry out adaptive decomposition of signals, which
resulted in high frequency accuracy and good noise resistance
of each intrinsic mode functions (IMFs). The conclusion is
that the VMD algorithm can also decompose the required
signal in the environment of strong noise and has strong
adaptability. Hu et al. [37] proposed an algorithm based on
VMD and detrended fluctuation analysis (DFA) to diagnose
gear faults in heavy duty gearboxes. The original signal
was adaptively decomposed into several IMFs by VMD, and
then the peak value and correlation coefficient of each IMFs
were extracted to describe the characteristics of the signal.
Finally, experiments show that this method can effectively
improve the accuracy of gear fault diagnosis. Li et al. [38]
also used the VMD algorithm to carry out adaptive decom-
position of signals, and used the improved kernel extreme
learning machine (KELM) to diagnose rolling bearing faults.
At the same time, they also compared with BP neural net-
work (BPNN), support vector machine (SVM) and traditional
ELM, and the results showed that this method was better than
other methods in fault diagnosis accuracy. Li et al. [39] pro-
posed to combine VMD with coupled underdamped stochas-
tic resonance (CUSR) to extract shock fault characteristics
of gearbox. The results show that this method can effectively
extract the characteristics of gearbox impact fault.

However, the decomposition effect of VMD algorithm
depends on the selection of decomposition parameters, such
as the decomposition number K and penalty factor o [40].
The parameter optimization of VMD algorithm is mainly
aimed at the two parameters of the decomposition number
and penalty factor. The method is to optimize the decom-
position number or the combination of these two parame-
ters by using the intelligent optimization algorithm to obtain
the optimal parameter value [6], [41], [42]. Xiao et al. [6]
proposed an instantaneous frequency mean value as the
basis for selecting the decomposition number K in the
VMD algorithm, and used the unsupervised learning algo-
rithm self-organizing map (SOM) neural network to classify
gear faults and compare with EMD. The accuracy of gear
fault diagnosis is much higher than that of EMD algorithm.
Wang et al. [43] proposed an adaptive parameter optimized
VMD (APOVMD) algorithm, which can self-adaptively and
non-recursively decompose planetary gearbox vibration sig-
nals into several IMFs. Finally, compared with VMD and
EEMD algorithms, the ability to extract early weak fault
characteristics of planetary gearbox is compared. Yan and
Jia [44] proposed an cuckoo search algorithm-based varia-
tional mode decomposition (CSA-VMD) considering that the
internal parameters in the VMD algorithm need to be set in
advance, in which the CSA algorithm can search the optimal
value of the internal parameters of the VMD according to the
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objective function. Zhang et al. [45] used grasshopper opti-
mization algorithm (GOA) to optimize the combination of
the decomposition number K and penalty factor « parameters
in the VMD algorithm, and selected the maximum weighted
kurtosis index as the optimization target to select the optimal
parameter combination. An example is given to prove that the
method can effectively analyze mechanical vibration signals
and be used for fault diagnosis. Yi et al. [46] proposed a
fault feature extraction method based on particle swarm opti-
mization (PSO) to optimize VMD. Compared with traditional
envelope spectrum analysis, this method is superior to EMD
algorithm in complex signal decomposition. However, PSO
algorithm is prone to local minima, so PSO algorithm has to
be improved to achieve the best results.

In recent years, researchers have done a lot of research on
fault diagnosis algorithms. In terms of gear fault diagnosis,
its fault diagnosis algorithms mainly include SVM [47], [48],
neural network (NN) [6], [49], [50] and the emerging deep
neural network (DNN) technology [51], [52]. Liu [53]
pointed out in the paper that the SVM algorithm also needs
to select the internal parameters well when performing fault
diagnosis. Different parameters have different effects and
uncertainties. Xiao et al. [6] proposed a gear fault diagnosis
method based on the combination of VMD and SOM neural
network. The SOM neural network is an unsupervised learn-
ing algorithm, which can adaptively classify the extracted
feature vectors until the gear fault category is separated. Com-
pared with SVM algorithm, the accuracy of neural network
is higher than that of SVM algorithm, and there is no need
to select internal parameters in advance. It can self-adapt to
classify feature vectors. Specht [54] proposed a probabilistic
neural network (PNN), which is a parallel algorithm based on
Bayes classification rules and the probability density function
estimation method of Parzen window. PNN is a supervised
learning neural network and is widely used in pattern recog-
nition and fault diagnosis. Liu et al. [55] proposed a VMD
and PNN based on the Electromechanical actuators (EMASs)
fault diagnosis method, the experimental results show that
the method can work under weak conditions of realization of
EMAs fault diagnosis effectively. Marugén et al. [56] pointed
out in the paper that PNN has been widely used in the field of
fault diagnosis and has a very promising application prospect.

Based on the studies in the above literatures, the problems
such as mode mixing and endpoint effect of EMD and LMD
algorithms, local minima of PSO algorithms, and the need
to set internal parameters of SVM in advance are addressed.
A gear fault diagnosis algorithm based on genetic mutation
particle swarm optimization VMD and probabilistic neural
network (GMPSO-VMD-PNN) algorithm is proposed in this
paper. Among them, the GMPSO algorithm can effectively
avoid the local minimum value of PSO algorithm, and then
apply GMPSO to the [K, «] combination parameter opti-
mization problem of VMD algorithm. The optimal value of
[K, o] combined parameters can be effectively obtained to
perform VMD decomposition of gear fault vibration signal,
which can effectively avoid the occurrence of mode mixing
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FIGURE 1. Experimental system: (1) laptop, (2) B&K data acquisition
analyzer, (3) coupling, (4) acceleration sensor, (5) reducer, (6) coupling,
(7) three-phase induction motor, and (8) electromagnetic speed control
motor controller.

and endpoint effect. Finally, PNN is used for fault diagnosis
to effectively improve the accuracy of gear fault diagnosis.

Il. EXPERIMENT AND THE PROCEDURE

A. EXPERIMENTAL SYSTEM AND DATA ACQUISITION

In order to verify the effectiveness of the proposed GMPSO-
VMD-PNN algorithm in gear fault diagnosis, a spiral bevel
gear test rig was established and tested. The experimental
system is shown in Figure 1. The test rig includes lap-
top (1), data acquisition analyzer (B&K, Type 3053-b120,
B&K company, Denmark) (2), coupling (3), accelera-
tion sensor (4), reducer (5) (Shanghai Nini reducer Co.,
Ltd, Shanghai, China), coupling (6), three-phase asyn-
chronous motor (7), electromagnetic speed-regulating motor
controller (8) (Shanghai Shanchuang instrument & meter
Co., Ltd, Shanghai, China). The three-phase asynchronous
motor (7) for driving. The reducer (5) is connected to the
output shaft by a coupling (3), and the speed of the three-
phase asynchronous motor (7) is controlled by a speed con-
troller, which can operate the reducer (5) to be tested at
various speeds. The reducer (5) is driven by three-phase asyn-
chronous motor (7) through coupling (6). The rated power
output of three-phase asynchronous motor (7) is 1.1kW.
Among them, the electromagnetic speed-regulating motor
controller (8) allows manual adjustment of load torque.
The vibration signal of the reducer (5) is collected by the
acceleration sensor (4), which adopts 4514b-001 accelera-
tion sensor (4) produced by B&K company in Denmark.
Among them, the acceleration sensor (4) output is sent to
laptop (1) through data acquisition analyzer (2). The accel-
eration sensor (4) layout position is at the output shaft of gear
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gear with tooth wear

FIGURE 2. (a) Normal gear, (b) gear with tooth wear, (c) gear with tooth
crack, and (d) gear with tooth break.

reducer (5). The B&K data acquisition analyzer (2) is used
to collect the vibration signals of the gears when it is, so as
to simulate the deterioration process of gear fault. The failure
parts of normal gear, gear with tooth wear, gear with tooth
crack and gear with tooth break in the spiral bevel gear test
rig is shown in Figure 2.

In this paper, normal gear, gear with tooth wear, gear with
tooth crack and gear with tooth break under four conditions
were analyzed. Among them, the sampling frequency of
gear vibration signal is 8192Hz, the acquisition duration of
each signal is 0.25s, and a total of 16 segments of data are
collected.

B. FAULT DIAGNOSIS BASED ON

GMPSO-VMD-PNN ALGORITHM

The vibration signal of gearbox provides a lot of information
for the fault diagnosis of gear. When the gear fails, the vibra-
tion signal generated during the operation of gearbox will
change greatly. Therefore, it is necessary to build a detection
platform to monitor and record the vibration signal of gearbox
under different working conditions. However, in the moni-
toring process, there are a lot of noise signals in the original
monitoring data. In order to effectively extract the vibration
signal characteristics of gear fault, a gear fault diagnosis
method based on GMPSO-VMD-PNN is proposed in this
paper, and its flow chart is shown in Figure 3.

The specific steps are as follows:

Step 1. According to a certain sampling frequency f;, vibra-
tion signals of gear under four working conditions of normal
gear, gear with tooth wear, gear with tooth crack and gear
with tooth break for N times were collected, with a total of 4N
samples;

Step 2. The parameter combination [K, «] of VMD was
optimized with GMPSO;
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FIGURE 3. Gear fault diagnosis flow chart based on genetic mutation particle swarm optimization
variational mode decomposition and probabilistic neural network (GMPSO-VMD-PNN).

Step 3. VMD decomposition was carried out for each
vibration signal, and a total of K IMFs were decomposed;

Step 4. Extract the sample entropy value of each IMFs to
form the feature vectors;

Step S. Input the feature vectors to PNN for fault diagnosis;

Step 6. Output fault diagnosis results and make
comparative analysis.

1Il. BASED ON THE SAMPLE ENTROPY GMPSO-VMD
GEAR FAULT FEATURE EXTRACTION METHOD

The VMD algorithm was proposed by Dragomiretskiy and
Zosso in 2014 [35]. The VMD algorithm decomposes the col-
lected gear vibration signal x(¢) by constructing a variational
model, and adaptively decomposes the gear vibration signal
x(t) by searching for the constrained variational optimal solu-
tion. The signal is adaptively decomposed into K IMFs xg (¢):
Finally, the decomposed IMFs xx (¢) is used to construct the
squared L2 norm of the VMD algorithm is expressed as:

7 . 2
. J i
min 9 | (8() + -—) x xk(¢) | e /PK!
o min KZ:] t[< (5 + =) x x( )} i
7
s.t. Z ug = x(t) (D
=1

where: 0; is the partial derivative of ¢, x(¢) is the original
signal, wg is the bandwidth center frequency, and §; is the
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pulse signal. According to the GMPSO algorithm proposed
in this paper, the parameter combination [K, «] in the VMD
decomposition algorithm is optimized, and the parameter
combination [K, «] obtained by optimizing the vibration sig-
nals of normal gear, gear with tooth wear, gear with tooth
crack and gear with tooth break are [7,2570], [7, 4140],
[7,4929] and [7, 4322] respectively.

The constrained variational problem in the formula is fur-
ther solved, and the quadratic penalty factor o and Lagrange
multiplication operator A(¢) are introduced in consideration
of the fact that the constraint becomes non-constraint. The
quadratic penalty factor « guarantees the signal reconstruc-
tion accuracy in the noise environment, and the Lagrange
multiplication operator A(t) keeps the constraint condition
strict. The extended Lagrange is defined as Equation (2):

L ({xx}, {wk}, (A

7 . 2
=a )| [(60) +Lyx xK(r)} eIkt
=1 e 2
7 2 7
+ X0 = Y xk@| + (A0, x(0) =D xk@)) ()
K=1 2 K=1

To solve the optimal solution of Equation (5), the alternat-
ing direction multiplication operator algorithm is used. The
specific implementation steps of the algorithm are as follows:

18459



IEEE Access

J. Ding et al.: Gear Fault Diagnosis Based on GMPSO-VMD-PNN Algorithm

20

Acceleration(a/ms'z)
o

-20
0 0.05 0.1 0.15 0.2 0.25
Time(t/s)

0.8
0.6

0.4 Il
e | |

02 it 1 W
([ | Lo P il
It AT Rt L A [
I il | | I { bt LI P T
1000 1500 2000 2500 3000 3500 4000 4500
Frequency(f/Hz)

(a)

Spectrum magnitude(a/ms‘z)

0 500

Acceleration(a/ms'z)
o

0.05 0.1 0.15 0.2 0.25
Time(t/s)

JhA g ““‘ 0 Y
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency(f/Hz)

(c)

Spectrum magnitude(a/ms'z)

20
«
£
s 10
c
o | | |
[} il | | 1 |
o [ | i "
o
<
-10
0.05 0.1 0.15 0.2 0.25
Time(t/s)
<
E
©
Koy |
o
2
c
) 0.5 ‘
£ Ji
= | I |
2 N AL T
kst oG T PN hlid Wy b
g o — . - —
2] 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency(flHz)
(b)
40
&
R |
< |
S 0} v | !
E ‘ | ‘ |
K}
g -20
<
-40
0 0.05 0.1 0.15 0.2 0.25
Time(t/s)
%, 0.8
5
> 06
°
= | |
5 04 ‘
< | Il l
£ | Lhl | | I Il
£ 0.2 i 1l ! m e A0 1 [l
S AT 0 LA ! AT A
% L I “‘”‘“‘_“ v‘“‘\\‘\“\“w‘
n 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency(f/Hz)
(d)

FIGURE 4. Time-domain and frequency-domain diagram of gear vibration signal: (a) Normal gear vibration signal, (b) gear with tooth
wear vibration signal, (c) gear with tooth crack vibration signal, and (d) gear with tooth break vibration signal.

Firstly, initialize the parameters, including: {)Ac[](}, {@}(},
{A}<}, mode function is 7, error ¢, output {xx}, {wx}, A.

Step 1. Execution loopn =n + 1;

Step 2. Update {%x } for all > 0;

o) — Y &) + ii(“’)/z

an+l1 i#K
_ 3
k(@) 1+ 2a(@ — wg )2 )
K € [1,10]
« € [0, 5000]

Step 3. Update the modal center frequency {&x };

ol = fooo“) Ju(w)Pdw
5 luk () Pdo

“

Step 4. Update A;

7
W (@) =)+ 1@ @) - Y xgw) 6
K=1

18460

Step 5. Repeat steps 1-4 until the iteration stop condition

is satisfied;
2
> (Z/ch}é I <e ©)
K

Step 6. At the end of iteration, seven IMFs are obtained;

where: x(1), Xj(w), )A\(a)) represents the Fourier transform of
X(w), xi(w), Mw) respectively, and ¢ represents the discrimi-
nant accuracy.

The time-domain and frequency-domain diagrams of
vibration signals collected under four working conditions of
normal gear, gear with tooth wear, gear with tooth crack and
gear with tooth break are shown in Figure 4.

From the above theoretical description, it can be seen
that four parameters need to be determined in the VMD
algorithm. They are the decomposition number K, penalty
factor «, noise tolerance t and the tolerance & of the con-
vergence criterion. Compared with parameters K and «,
parameters T and € have less influence on the decomposition
effect of VMD algorithm. In the actual VMD decomposition
process, noise tolerance 7 is usually 0, and the tolerance

an+1 an
Xk Tk
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& of the convergence criterion is usually 10~7. When the
decomposition number K is small, the VMD algorithm will
not be able to fully decompose the main frequency signal
contained in the signal, that is, the under-decomposed state.
When the decomposition number K is large, the VMD algo-
rithm will decompose false components, that is, the over-
decomposition state. Only when the decomposition number
K is selected properly can the VMD algorithm decompose
the signal into the main frequency components well. When
the penalty factor « is too small, the VMD algorithm will
also appear under-decomposed state. When the penalty fac-
tor « is too large, mode mixing will occur in the VMD
algorithm.

To sum up, it can be seen that the choice of o and K will
have a great impact on the decomposition effect of VMD
algorithm, and the independent change of « and K will
also affect the decomposition effect of VMD. Therefore, this
paper adopts the parameter combination of [K, «] for overall
optimization.

IV. PARAMETER ADAPTIVE OPTIMIZATION OF

VMD METHOD BASED ON GMPSO

The previous section analyzed that different combinations of
o and K would lead to different decomposition effects of
VMD, that is, choosing combinations of « and K based
on experience often fails to achieve the optimal decomposi-
tion effect of VMD. Therefore, swarm intelligence optimiza-
tion algorithm is used to optimize the parameters of VMD.
In this paper, GMPSO is used to optimize the parameter
combination of o and K in the VMD algorithm until the
optimal parameter combination of « and K is obtained.

A. GMPSO

Particle swarm optimization (PSO) as a swarm intelligence
optimization algorithm, which has fast convergence speed
and good global optimization ability. PSO algorithm is a
swarm intelligence optimization algorithm proposed by Eber-
hart and Kennedy et al in 1995 [57], which is a global opti-
mization algorithm. The PSO algorithm first generates and
initializes a swarm of particles in a solution space. Each par-
ticle represents a potential optimal solution in the extremum
optimization problem, and the three parameters of position,
velocity and fitness value represent the characteristics of the
particles. Among them, the fitness value is calculated by the
fitness function, and its value represents the good or bad of
the particle. PSO algorithm has the advantages of less input
parameters and easy adjustment. However, it is also easy to
fall into the local optimal and cannot obtain the global optimal
approximate solution. Therefore, this paper utilize the idea
of genetic algorithm mutation to construct genetic mutation
particle swarm optimization (GMPSO) algorithm.

Define GMPSO algorithm: In a D-dimensional search
space, the population of labeled particles is X, and the particle
population X is composed of n particles, that is, the par-
ticle population X = [x1,x2, - -, X,], where the position
of the i — rh particle in the search space is represented by
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a D-dimensional vector, that is, x; = [xj1,x2, -, XiDl,
and the moving speed of the i — th particle in the search space
can also be represented by a D-dimensional vector, that is,
vi = [vit, vi2, - - -, vip]; Where, the local extreme value of the
particle is p; = [pi1, pi2, - - - , Pip], the global extremum of
the particle populationis G| = [g1, &2, - - - , &€p], and the sub-
global optimal value is G = [g], &), - - - , &p]. Among them,
the maximum optimal iteration number of the particle indi-
vidual is max /fa, and the mutation probability is g. In order
to prevent individual particles trapped in local optimum, it is
necessary to record the number of iterations in the process
of particles in the iteration at any time, when the individual
particles reach the optimal number of iterations wasn’t up
to the max Ifa, each particle by updating the individual local
extremum and particle population movement and the position
of the global extremum to qualify for the next generation of
particle population, update the Equation is:

VI = oV i (pi —xi') + c2n (G1 — x])

n+l _ _n n+1
X = 4 x] )

where, w is the inertia weight, n is the random number
between [0, 1], ¢; and ¢y are the learning factors, which
represent the local search ability and global search ability
of the particle population respectively, and the number of
iterations is n. Where, v;, p;, G1, x; are D dimensional vectors.
The method to determine the inertia weight w of the current
iteration times is the linear decreasing weight method pro-
posed by SHI, and the Equation is as follows:

® = Wmax — (Wmax — ®Omin) 7/Mmax (8)

where, wmax and wpi, are the maximum and minimum inertia
weights, n is the current iteration number, and npy.x is the
defined maximum iteration number. When the maximum
optimal iteration number of the individual particle is max Ifa,
genetic mutation operation is used to update the particle
position and moving speed to make it jump out of the local
optimal.

B. ENVELOPE ENTROPY

As for the selection of fitness function in the GMPSO algo-
rithm, Sun et al. [58] proposed the concept of envelope
entropy E,, which can be used as the standard for the opti-
mization effect of PSO when optimizing VMD parameters.
The basic concept is: the envelope entropy of time signal x(j)
with length N is defined as:

N
pi==a()/ Y _ a) ©)
j=1
N
E,=—) pjlgp; (10)
j=1

where, j = 1,2,---,N, a(j) is the enveloping signal
obtained by time signal x(j) after Hilbert demodulation, and
p;j is the result of normalization of enveloping signal af(j).
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FIGURE 5. The flow chart of genetic mutation particle swarm optimization (GMPSO).

Among them, normalization can avoid the influence of dif-
ferent envelope amplitudes of IMFs components and reduce
the interference of weak noises.

The early fault signal of the gear was decomposed by
the VMD algorithm to obtain a number of IMFs, and then
the envelope entropy value of each IMFs component was
calculated separately. The larger the envelope entropy value,
the more noise the IMFs component contained, and the less
sparse the signal of the component. If the obtained IMFs
component contains more fault-related periodic impact char-
acteristic signals, the higher the sparsity of the obtained com-
ponent signals, the lower the envelope entropy value.

When the i — th particle is at a certain position x; and
moves at a certain velocity v; (corresponding to a set of
influence parameter combinations « and K), the calculation
of the position under the condition of the gear fault signal
after decomposition of VMD to get all of the IMFs envelope
entropy weight, called envelope entropy value in a minimum
of minimum entropy, expressed with min E IfMF §, and minimal
entropy value corresponding to the IMFs component is after
decomposition of VMD to get all of the IMFs component
contains rich fault feature information of the best component,
however, the weight is only local optimal weight. In order to
search for the global optimal component, that is, to separate
the IMFs component with the richest feature information
from the gear fault signal, the minimum entropy value is taken
as the fitness function in the optimization process, and the
minimum entropy value is taken as the ultimate optimization
objective. The optimization steps of « and K in the VMD
algorithm are as follows:
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(1) The parameters of the GMPSO algorithm are initialized
and the fitness function is determined;

(2) The particle population is initialized, the parameter
combination [K, o] in the VMD algorithm is taken as the
position of the particle, a certain number of influencing
parameter combinations are randomly generated as the initial
position of the particle, and the moving velocity of each
particle is randomly initialized;

(3) VMD was performed on the signal at different particle
positions to calculate the fitness value min E[¥ correspond-
ing to each particle position;

(4) The fitness values were compared and the local
extremum of the individual and the global extremum of the
population were updated.

(5) When the number of iterations when the particle gets
the local extreme value does not reach max /fa, the mutation
probability g causes the particle to generate new position and
moving speed;

(6) Update the velocity and position of the particle using
step (4);

(7) Loop iteration, turn to step (3), and output the optimal
fitness value and particle position after the iteration times
reach the maximum set value.

C. PROPOSED METHOD
The GMPSO-VMD algorithm proposed in this paper takes
the minimum envelope entropy value as the objective func-

tion, and achieves the optimization of the parameter com-
bination [K, «] in the VMD algorithm through GMPSO.
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FIGURE 6. Time-domain and frequency-domain diagram of the
simulation signal.

The optimal combination is shown in formula 11. Since
the original PSO algorithm is an optimization algorithm to
obtain the minimum value, here the GMPSO algorithm makes
the particle break away from the local minimum value with
the variation probability g to achieve the global minimum
envelop entropy value.

itness = min iE’MFS}
f p=IK.a1 UP

s.t. K = [1,10] (1)
a = [0, 5000]

where, fitness represents the objective function, EZM' is the
envelope entropy of IMFs, § = [K, «] is the parameter set
of the VMD to be optimized. In this study, K takes an integer
in the intrval of [1, 10], and « is assigned in the intrval of
[0, 5000].

In order to verify the effectiveness of the algorithm pro-
posed in this paper, firstlyy, GMPSO-VMD algorithm is
decomposed by using the simulation signal, and the simula-
tion signal [35] is shown as follows:

x1(t) = cosRmwit)

olt) = cos(2m wot)
() = %’;w“) (12)

n(t) = Gaussian white noise
x(t) = x1(2) + x2(t) + x3(t) + n(t)

where, w1, wz, w3 are the frequencies of each component
signal, and their values are w; = 3, wp = 25, w3 = 289,
t is time, x1(t), x2(t), x3(¢) is fault signal, and n(z) is
Gaussian white noise. Figure 6 is the time-domain and
frequency-domain diagram of the simulation signal x(#).
Firstly, GMPSO is used to optimize the parameter combi-
nation [K, o] in the VMD algorithm. In the GMPSO algo-
rithm, the fitness function is the minimum envelope entropy
value of the simulation signal, and Figure 7 is the change
curve of the minimum envelope entropy value of the simula-
tion signal, which is a convergence curve and stable when the
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FIGURE 7. The GMPSO convergence curve of the simulation signal for
VMD parameter optimization.
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FIGURE 8. GMPSO-VMD decomposes the simulation signal.

number of iterations increases. After GMPSO optimization,
the optimal parameter combination of [K, «] is obtained as
[4,4179].

After the VMD is optimized by GMPSO algorithm,
the optimal combination of [K, o] obtained for the simulation
signal is [4,4179]. The optimal combination [4,4179] of
[K, ] is put into the VMD algorithm, and then the optimized
VMD algorithm is used to decompose the simulation sig-
nal into GMPSO-VMD. The GMPSO-VMD decomposition
result is shown in Figure 8. Then EMD algorithm is used
to decompose the simulation signal, so that the advantages
of GMPSO-VMD algorithm and EMD algorithm can be
compared. The simulation signal is decomposed by EMD
algorithm, as shown in Figure 9.

As shown in Figure 8, the simulation signal is decomposed
by GMPSO-VMD algorithm. It can be seen from the decom-
position effect that the main frequency components such as
w; = 3, wy = 25 and w3 = 289 are all decomposed
accurately. Therefore, the effectiveness of GMPSO-VMD
algorithm can be obtained. As shown in Figure 9, its IMFI,
IMF4 and IMF5 decomposed the main frequency components
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FIGURE 9. EMD decomposes the simulation signal.
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FIGURE 10. The GMPSO convergence curve of normal gear vibration
signal for VMD parameter optimization.

such as w; = 3, w» = 25 and w3 = 289, but IMF3 and
IMF4 had mode mixing, and IMF4 frequency components
existed in IMF3. It can be concluded that the GMPSO-VMD
algorithm proposed in this paper can effectively overcome the
mode mixing phenomenon in EMD algorithm.

Verify the validity of the proposed GMPSO-VMD algo-
rithm, then the normal gear, gear with tooth wear, gear with
tooth crack and gear with tooth break four types of gear
fault signal GMPSO-VMD decomposition. Figure 10 shows
the GMPSO convergence curve of normal gear vibration
signal for VMD parameter optimization, Figure 11 shows the
GMPSO convergence curve of gear with tooth wear vibration
signal for VMD parameter optimization, Figure 12 shows the
GMPSO convergence curve of gear with tooth crack vibration
signal for VMD parameter optimization, Figure 13 shows the
GMPSO convergence curve of gear with tooth break vibration
signal for VMD parameter optimization.

After GMPSO optimization, the optimal combinations
of [K,«] in the VMD algorithm are [7,2570], [7, 4140],
[7,4929] and [7, 4322]. Then, the optimized [K, o] optimal
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FIGURE 11. The GMPSO convergence curve of gear with tooth wear
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FIGURE 12. The GMPSO convergence curve of gear with tooth crack
vibration signal for VMD parameter optimization.
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FIGURE 13. The GMPSO convergence curve of gear with tooth break
vibration signal for YMD parameter optimization.

parameter combination was put into GMPSO-VMD algo-
rithm, and then the GMPSO-VMD algorithm was used to
decompose the vibration signals of normal gear, gear with
tooth wear, gear with tooth crack and gear with tooth break.
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waveform and spectrum.
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FIGURE 15. Gear with tooth wear vibration signal GMPSO-VMD decomposition
time-domain waveform and spectrum.

Figure 14 shows the time-domain waveform and spectrum of algorithm. Figure 15 shows the time-domain waveform
normal gear vibration signal decomposed by GMPSO-VMD and spectrum of gear with tooth wear vibration signal
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time-domain waveform and spectrum.
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FIGURE 17. Gear with tooth break vibration signal GMPSO-VMD decomposition

time-domain waveform and spectrum.

decomposed by GMPSO-VMD algorithm. Figure 16 shows crack vibration signal decomposed by GMPSO-VMD algo-
the time-domain waveform and spectrum of gear with tooth rithm. Figure 17 shows the time-domain waveform and
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TABLE 1. Sample entropy values of each intrinsic mode functions (IMFs).

Gear Fault Type Sample Number SE1 SE2 SE3 SE4 SE5 SE6 SE7

1 066 063 069 074 107 079 075

Normal goar 2 0.66 066 066 069 099 072 067

3 067 071 068 073 093 073 071

4 066 064 064 070 099 067 067

1 059 063 063 054 068 0.78 072

Gear with tooth wear 2 060 065 065 053 067 082 072
3 062 065 065 054 065 070 0.69

4 061 063 065 054 057 088 0.68

1 062 065 054 057 060 066 060

Gear with tooth crack 2 066 064 057 056 066 073 0.64
3 062 065 064 059 067 061 058

4 069 065 064 053 062 060 065

1 061 062 064 067 068 065 063

. 2 065 063 067 073 067 065 0.69

Gear with tooth break 3 065 062 061 066 083 068 065
4 064 058 059 064 072 066 0.63

spectrum of gear with tooth break vibration signal decom-
posed by GMPSO-VMD algorithm.

D. SAMPLE ENTROPY
Sample Entropy is a new measure of time series complexity
proposed by Richman and Moornan [59]. From the per-
spective of time series complexity, sample entropy measures
the probability of the system generating new patterns, and
quantitatively describes the complexity and regularity of the
system. Sample entropy is calculated as the logarithm of sum,
aiming to reduce the error of approximate entropy, which is
more closely consistent with the known random part. Sample
entropy is a better method similar to the current approxi-
mate entropy with single precision. The calculation steps of
sample entropy are as follows:

Step 1. The decomposed IMFs {xx (¢) |1 <t < N }is given
the mode dimension, and the original sequence is used to form
{xx(¢)|1 <t < N} group of m-dimension vectors xx (¢):

xg () = (g (O, xg (¢ + 1), -+, xg(t +m— 1) (13)

where: t = 1,2,--- ,N — m + 1, xg(¢) is the IMFs of the
original gear vibration signal decomposed by GMPSO-VMD.

Step 2. The maximum distance between two m-dimensional
vectors x(7T') and x(t) is defined as formula 8:

d(T,H)= max |[(T+K)—x(t+K)| (14
K=0,1,- —1

Leee M

Step 3. For a given threshold r, the number H of distances
d(i, j) less than r is counted and divided by the total number
of distances N — m + 1, denoted B;"(r).

m H
B O= Nt 1
where: 1 < T <N-m+1,1 <t<N-m+1,i#j
The average value is defined as:
. 1 N—m+1 .
B =g > B0 (16)

i=1

Step 4. For m + 1, repeat steps 1-3 to get B"+1(r).
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Step 5. For a given threshold r, the sample entropy of the
subsequence is defined as:
SampEn(m, r) = 1i n 2@ (17)
,r)= lim [—In———
AmpEITL 1) = e B"(r)
When N is a finite value of the sequence length, the esti-
mated value of sample entropy of the time series is:

Bm+l(,,)

SampEn(m, r, N) =—1In Bm—(r)

(18)

Compared with the approximate entropy, the sample
entropy has the following characteristics: First, the sample
entropy does not include the comparison of its own data
segment, which is the exact value of the negative mean natural
logarithm of the conditional probability, so the calculation
of the sample entropy does not depend on the data length.
Second, sample entropy has better consistency.

In this paper, GMPSO optimization algorithm is used to
optimize the VMD algorithm, and gear fault vibration signal
is decomposed by GMPSO-VMD algorithm, and the decom-
position number is 7. The original gear fault vibration signal
is decomposed into 7 IMFs. The feature information of each
gear fault is included in IMFs. In this paper, the sample
entropy value of each IMFs is extracted as its feature vector
and input into the subsequent fault diagnosis model for fault
identification.

The 16 groups of gear vibration signal collected under
4 states were decomposed into GMPSO-VMD, the 7 IMFs
components decomposed by GMPSO-VMD were selected
to extract sample entropy value. SE1 represent the sample
entropy value of IMFI1, SE2 represent the sample entropy
value of IMF2, SE3 represent the sample entropy value of
IMF3, SE4 represent the sample entropy value of IMF4, SES
represent the sample entropy value of IMF5, SE6 represent
the sample entropy value of IMF6, and SE7 represent the
sample entropy value of IMF7. The sample entropy value
matrix of each component is shown in Tablel.
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FIGURE 18. Probabilistic neural network (PNN) structure in this paper.

V. PROBABILISTIC NEURAL NETWORK
FAULT DIAGNOSIS MODEL
A. PNN STRUCTURE
Probabilistic neural network (PNN) was first proposed by
D. F. Spaiht in 1989 [54]. It is a parallel algorithm devel-
oped based on Bayes classification rules and Parzen win-
dow’s probability density function estimation method. PNN
is a supervised learning neural network and is widely used
in pattern recognition and fault diagnosis. In the practical
application, especially in the application of fault diagnosis,
the advantage of PNN lies in the use of linear learning algo-
rithm to complete the work done by the nonlinear learning
algorithm, at the same time, it also maintains the high preci-
sion of the nonlinear algorithm and other characteristics.
PNN is a feedforward neural network developed from
radial basis function network. Its theoretical basis is Bayesian
minimum risk criterion (namely Bayesian decision theory).
PNN as a kind of radial basis network, is widely used in
pattern classification. The basic structure of PNN is shown
in Figure 18. It is composed of four layers: input layer, pattern
layer, summation layer and output layer. The corresponding
weight of PNN is the distribution of sample data, and the
network can satisfy the real-time data processing in training
without training.

B. PNN ALGORITHM
(1) The input layer receives the feature vectors from the
training samples, and then transmits the feature vectors to
PNN. The number of neurons in the input layer is equal
to the dimension of the training sample feature vectors X.
Each neuron constitutes the feature vectors X and the weight
vectors W;, where Z; = X - W; is the input to the pattern
layer.

(2) The pattern layer calculates the matching relation-
ship between the input feature vector and each mode in
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the training samples. The number of neurons in the pat-
tern layer is equal to the sum of the training samples of
each fault category. The output of each mode unit in this
layer is:

T
f (X, W) = exp [— < W‘)ZSZ(X W’)} (19)
where, W; is the weight of the connection between the input
layer and the pattern layer, ¢ is the smoothing factor, and X is
the input feature vectors.

(3) The third layer is the summation layer, which accu-
mulates the probabilities originally belonging to a certain
class and calculates the probability value according to the
above formula, so as to obtain the estimated probability
density function of the fault category. Among them, each
fault category has only one summation layer neuron, which
is connected to the mode layer neuron belonging to its own
fault category, but not to the neurons of other fault categories
in the mode layer. Therefore, the sum layer neuron simply
adds up the output of the pattern layer neuron belonging to
its own fault category, independent of the output of other
fault categories in the pattern layer. The output of neurons
in the summation layer is proportional to the estimation of
the probability density of each fault category. Through the
normalization of the output layer, the probability estimation
of each fault category can be obtained as follows:

(X=X (X—Xp)

— ex
(27)2 §"N; ; P 252

PX W)= (20)

where, X;; is the column sample of W;, n is the dimension
of the sample feature vectors, and N; is the sum of samples
of W,'.

(4) The output layer of PNN consists of a simple threshold
discriminator, whose function is to select a neuron with the
maximum posterior probability density from the estimated
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FIGURE 19. GMPSO-VMD-PNN gear fault training identification result.

probability density of each fault category as the output of the
whole system. Output layer neurons is a kind of competition
neurons, each neuron respectively corresponding to a kind of
fault category, number of output layer neurons is equal to the
number of the kinds of the training sample data it receives
from the summation output layer of various fault categories
of probability density function, one of the biggest probability
density function of the neuron output is 1, which corresponds
to the type of unknown samples fault category, full of O to
other neurons. Where, when the value of distribution density
SPREAD is close to 0, it constitutes the nearest classifier.
When the SPREAD value is large, it constitutes an adjacent
classifier for several training samples.

VI. FAULT DIAGNOSIS AND RESULT

ANALYSIS OF GMPSO-VMD-PNN

Two sets of data were randomly selected from the sample
entropy values of four kinds of gear fault vibration signals
in Table 1, including normal gear, gear with tooth wear, gear
with tooth crack and gear with tooth break. A total of 8
sets of sample entropy values were obtained, which consti-
tuted the GMPSO-VMD-PNN training matrix. The sample
entropy values of the remaining 8 groups constituted the
GMPSO-VMD-PNN test matrix. Among them, the training
matrix and the test matrix each contain two sets of sample
entropy feature vectors of gear samples of normal gear, gear
with tooth wear, gear with tooth crack and gear with tooth
break.

Firstly, the training matrix is input into GMPSO-VMD-
PNN to obtain the gear fault identification result and training
error after training of GMPSO-VMD-PNN. Then the test
matrix is input into the trained GMPSO-VMD-PNN, and
the classification result of GMPSO-VMD-PNN on the vibra-
tion signal of gear fault is obtained. Figure 19 is the gear
fault identification result after GMPSO-VMD-PNN train-
ing, Figure 20 is the training error after GMPSO-VMD-PNN
training, and Figure 21 is the gear fault identification result
of GMPSO-VMD-PNN.
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FIGURE 20. GMPSO-VMD-PNN gear fault training error.
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FIGURE 21. GMPSO-VMD-PNN gear fault diagnosis and identification
results.

According to Figure 19 and Figure 20, the vibra-
tion signal training matrix of gear fault is trained by
GMPSO-VMD-PNN. The training error is 0, the training
accuracy is 100%, and the training accuracy is better.

According to Figure 21, the gear fault vibration signal
test matrix was diagnosed by GMPSO-VMD-PNN, and each
gear fault category was accurately classified, and the accu-
racy of gear fault diagnosis was 100%. The effectiveness
of GMPSO-VMD-PNN algorithm in gear fault diagnosis is
proved.

In order to verify the superiority of GMPSO-VMD-PNN
algorithm proposed in this paper, the proposed algo-
rithm is compared with VMD-PNN, EMD-PNN and
CEEMDAN-PNN algorithm in the accuracy of gear fault
diagnosis. Firstly, the training matrix is input into VMD-PNN
to obtain the gear fault identification result and training error
of VMD-PNN after training. Then the test matrix is input
into the trained VMD-PNN, and the classification result of
VMD-PNN on the vibration signal of gear fault is obtained.

Figure 22 is the gear fault identification result after
VMD-PNN training, Figure 23 is the training error after
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FIGURE 22. VMD-PNN gear fault training identification result.
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FIGURE 23. VMD-PNN gear fault training error.
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FIGURE 24. VMD-PNN gear fault diagnosis and identification results.

VMD-PNN training, and Figure 24 is the gear fault identi-
fication result of VMD-PNN.

According to Figure 22 and Figure 23, the vibration sig-
nal training matrix of gear fault is trained by VMD-PNN.
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FIGURE 25. EMD-PNN gear fault training identification result.
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FIGURE 26. EMD-PNN gear fault training error.

The training error is 0, the training accuracy is 100%, and
the training accuracy is better.

As shown in Figure 24, the test matrix of wheel fault
vibration signal was diagnosed by VMD-PNN. In the normal
gear vibration signal category, one group of signals was clas-
sified incorrectly, while the rest of each gear fault category
was accurately classified, and the accuracy rate of gear fault
diagnosis was 87.5%.

Then the accuracy of gear fault is compared with
EMD-PNN algorithm. Firstly, the training matrix is input
into EMD-PNN to obtain the gear fault identification result
and training error of EMD-PNN after training. Then the test
matrix is input into the trained EMD-PNN, and the classifica-
tion result of EMD-PNN on the vibration signal of gear fault
is obtained.

Figure 25 is the gear fault identification result after
EMD-PNN training, Figure 26 is the training error after
EMD-PNN training, and Figure 27 is the gear fault identi-
fication result of EMD-PNN.

According to Figure 25 and Figure 26, the vibration sig-
nal training matrix of gear fault is trained by EMD-PNN.
The training error is O, the training accuracy is 100%, and
the training accuracy is better.
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FIGURE 27. EMD-PNN gear fault diagnosis and identification results.

CEEMDAN-PNN effect after training

5

3 %
2
5
0
Qo
c
22 % g
S
Z
1723
8
o

14

L L ! L ! L
1 2 3 4 5 6 7 8

Sample number

FIGURE 28. Complete ensemble empirical mode decomposition adaptive
noise probabilistic neural network (CEEMDAN-PNN) gear fault training
identification result.

According to Figure 27, the gear fault vibration signal test
matrix was diagnosed by EMD-PNN, and there was a group
of classification errors in the normal gear vibration signal and
gear with tooth crack vibration signal categories, while the
rest of each gear fault category was accurately classified, with
the accuracy rate of gear fault diagnosis was 75%.

Then the accuracy of gear fault is compared with
CEEMDAN-PNN algorithm. Firstly, the training matrix is
input into CEEMDAN-PNN to obtain the gear fault iden-
tification result and training error of CEEMDAN-PNN
after training. Then the test matrix is input into the
trained CEEMDAN-PNN, and the classification result of
CEEMDAN-PNN on the vibration signal of gear fault is
obtained.

Figure 28 is the gear fault identification result after
CEEMDAN-PNN training, Figure 29 is the training error
after CEEMDAN-PNN training, and Figure 30 is the gear
fault identification result of CEEMDAN-PNN.

According to Figure 28 and Figure 29, the vibration signal
training matrix of gear fault is trained by CEEMDAN-PNN.
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FIGURE 29. CEEMDAN-PNN gear fault training error.
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FIGURE 30. CEEMDAN-PNN gear fault diagnosis and identification results.

The training error is 12.5%, the training accuracy is 87.5%,
and the training accuracy is better.

According to Figure 30, the gear fault vibration signal
test matrix was diagnosed by CEEMDAN-PNN, and there
was a group of classification errors in the normal gear
vibration signal and gear with tooth crack vibration signal
categories, while the rest of each gear fault category was
accurately classified, with the accuracy rate of gear fault
diagnosis was 75%. According to the comparison of accuracy
of gear fault diagnosis above, GMPSO-VMD-PNN algo-
rithm can improve the accuracy of gear fault diagnosis com-
pared with VMD-PNN algorithm, EMD-PNN algorithm and
CEEMDAN-PNN
algorithm.

According to different classification algorithms. In this
paper, SVM algorithm is used to replace PNN algorithm for
gear fault diagnosis. Table 2 shows the accuracy of gear fault
diagnosis after each classification algorithm is matched with
each other.

Among them, the training results represent the accuracy
of the overall classification system of PNN after the train-
ing of gear fault data. When the training results are good,
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TABLE 2. The accuracy of gear fault diagnosis by different decomposition
algorithms and classification algorithms.

Decomposition Classification Fault Diagnosis
Algorithm Algorithm Identification Rate
GMPSO-VMD PNN 100%
VMD PNN 87.5%
EMD PNN 75%
CEEMDAN PNN 75%
GMPSO-VMD SVM 14.29%
VMD SVM 14.29%
EMD SVM 28.57%
CEEMDAN SVM 0%

the classification effect reaches the standard. The test results
represent the classification of gear fault data by PNN after
training. The results only represent the accuracy of gear data,
not the PNN system after training.

According to the comparison between Figure 8 and
Figure 9, the GMPSO-VMD proposed in this paper can effec-
tively avoid the disadvantages such as mode mixing in EMD
algorithm, and has a certain influence on improving the accu-
racy of gear fault diagnosis. In according to the different
decomposition algorithm in Table 2 with different classifica-
tion algorithm combined with the comparative results of gear
fault diagnosis accuracy, the proposed GMPSO-VMD-PNN
algorithm in terms of gear fault diagnosis accuracy is 100%,
other algorithms in terms of gear fault diagnosis on mean
there is a certain error, especially the SVM classification
algorithm in terms of gear fault diagnosis accuracy rate is very
low. Therefore, the GMPSO-VMD-PNN algorithm proposed
in this paper has certain application prospects in gear fault
diagnosis.

VIi. CONCLUSION

In this paper, a gear fault diagnosis based on GMPSO-VMD-
PNN algorithm is proposed, and the following conclusions
are obtained:

(1) GMPSO-VMD algorithm can effectively avoid the
adverse effects of mode confusion in EMD algorithm, and
overcome the difficulty of parameter selection in VMD algo-
rithm. GMPSO-VMD algorithm can adaptively obtain the
optimal parameter combination [K, o] of signals to be ana-
lyzed. Moreover, the sample entropy of samples is selected
as the signal feature vectors, which can not only retain the
effective fault information in the signal, but also effectively
eliminate the interference of noise.

(2) In GMPSO-VMD algorithm, the minimum envelope
entropy value is selected as the fitness function of GMSPO
algorithm, and the optimal parameter combination of [K, «]
in the VMD algorithm can be quickly and effectively found.
In addition, in the GMPSO-VMD algorithm, the mutation
probability g is used to generate new positions and moving
velocities of particles, which can effectively avoid the gener-
ation of local minima.

(3) The effectiveness and feasibility of the GMPSO-VMD-
PNN algorithm proposed in this paper are verified by tak-
ing four kinds of vibration signal fault diagnosis of gear
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faults as examples. By comparing with fixed parameter VMD
algorithm, EMD algorithm and CEEMDAN-PNN algorithm,
the superiority of GMPSO-VMD-PNN in gear fault vibra-
tion signal analysis and fault feature extraction is verified.
Therefore, this study has certain potential value for gear
fault diagnosis. The method proposed in this paper can be
applied to the fault diagnosis of other mechanical parts, such
as bearings and other rotating mechanical parts.
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