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ABSTRACT The unmanned aerial vehicles (UAVs) have been widely considered as one of the key
applications for future wireless communication systems, where UAVs can be used as aerial base stations
(BSs) for coverage extension, transmission improvement, emergency communication, and etc. Against this
background, each UAV BS is expected to select the optimal codeword to form directional analog beams, and
it is capable of achieving concurrent transmissions from multiple other UAV BSs simultaneously. However,
in such a kind of UAV networks, due to the vast number of connected mobile users (MUEs), UAVBSs cannot
timely and preciously select the codeword from the pre-defined codebook. Fortunately, machine learning
(ML) is suitable for decreasing complexity in codeword selection, becauseML could extract features from the
data samples acquired in real environments. In this paper, we propose anML approach to achieve an efficient
and low complexity codeword selection for UAV networks. Specifically, we first derive the probabilities that
multiple UAV BSs serve one MUE to obtain the average sum rate (ASR) in UAV networks. On that basis,
we develop an ML approach to maximize the ASR, where we design a classifier based on support vector
machine (SVM), where our ML approach is used for selecting the optimal codeword and maximizing the
ASR in UAV networks. Third, we proposed an iterative sequential minimal optimization (SMO) training
algorithm to train the data of all links between UAV BSs and MUEs, where the algorithm convergence is
also discussed. Finally, we show the comparison between our proposed algorithm and the traditional methods
by the simulation results. The simulation at last demonstrate our method is a more efficient solution for
obtain a higher performance, where amuch lower computational complexity can achieved than the traditional
algorithm based on channel estimation.

INDEX TERMS Machine learning, UAV networks, concurrent transmissions, codeword selection, support
vector machine.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) networks play an impor-
tant role for future wireless communication system [1].
By densely deploying a large number of UAV base stations
(BSs), thousands of connections and high transmission rate
are supported to provide a variety of local wireless ser-
vices [2]. By leveraging mmWave large-scale arrays in UAV
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networks for improved spatial spectrum efficiency, multiple
UAV BSs can select different codewords to form directional
analog beams aligned to the same target mobile user (MUE)
for providing concurrent transmissions simultaneously
[3], [4]. TheUAVBS can substantially reduce the propagation
loss because the mmWave transmission is used in a very short
distance to each MUE.

Concurrent transmissions of UAV BSs have already been
under investigation as a critical issue in previous works
[5]–[8]. In [5], the downlink performance of concurrent
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transmissions is analyzed under different UAV BS deploy-
ments, where the impact of different fading channels is also
considered. Further, dynamic concurrent transmissions are
analyzed to evaluate the communication qualities in both line
of sight (LoS) andNon LoS (NLoS) scenarios [6]. In addition,
the UAVBS handover strategy is also discussed in [7] and [8],
which leads to seamless concurrent transmissions for MUE.
The pervious works list above make contributions for the
research of UAV networks. However, those traditional meth-
ods meet a great obstacle for performance improvement with
the evolution of the UAV networks, especially with the large
number of UAV and MUEs.

Recently, machine learning (ML) becomes popular in solv-
ing problems for wireless communication. ML is the artificial
intelligence (AI) theory for finding features hiding behind the
data [9], [10], which means ML is data driven. Utilizing the
ML theory, the system could extract the features form UAV
networks through the data training of the historical network
information [11], [12]. After the data training, an intelligent
system can be established and make automatic decisions
such as smart throughput improvement [13], smart UAV
deployment [14], computing offloading [15], etc. The works
above bring a huge performance gain and deeply improve the
effectiveness of UAV networks.

Hence, in this paper, based on our previous research work
on codeword selection, we aims to show a novelML approach
for concurrent transmissions in UAV networks, where UAV
BSs can use a very low computational overhead to effectively
select the optimal codeword. In our UAV networks, first,
the entire distribution of UAV BSs can be modeled as a het-
erogeneous Poisson point process (HPPP). Then, the average
sum rate (ASR) of MUE under concurrent transmissions can
be obtained. Second, we collect data related with all downlink
UAV BSs. The data are further prepared for extracting the
features by ML, where the support vector machine (SVM)
classifier is used. Then, we proposed an iterative sequential
minimal optimization (SMO) training algorithm for UAV
BSs. During the concurrent transmission for each MUE,
the codeword is selected effectively in a low complexity.
Finally, we used Google TensorFlow to evaluation the pro-
posed SVM classifier, all the data of the UAV networks is
iteratively trained during our simulation. The performance
results obtained demonstrate that the iterative SVM classifier
gets a approximate performance to the theoretical bound of
codeword selection. In addition, compare with the traditional
algorithm based on channel estimation (CE), our method can
greatly improve the ASR of the UAV networks with a much
lower computational complexity.

The remaining of this paper is organized as follows.
To begin with, we describe the basic scenario UAV net-
works, in which the UAV BS are modeled by the HPPP.
Then, in section III, the ASR of concurrent transmission is
further derived. For section IV, both SVM classifier and the
iterative SMO training algorithm are demonstrated in detail.
In section V, simulation results for assessing our proposed

method are provided. Last, our conclusions are shown in
section VI.

II. SCENARIO DESCRIPTION OF UAV NETWORKS
We consider a downlink UAV networks with a lot of UAV
BSs randomly distributed. The deployment of UAV BSs is
modeled as points of an HPPP 5U with density λU on two
dimensional plane < [16]. All UAV BSs are in charge of
providing wireless services to MUEs, which include smart
phones, tablets, and so on. Each UAVBS orMUE is equipped
with massive MIMO to support mmWave transmission. The
antenna numbers of UAV BS and MUE are denoted as NUAV
and NMUE, respectively. Utilizing beamforming technology,
the MUE can be simultaneously served by several UAV BSs
through the directional analog beams as shown in Fig. 1, i.e., a
scheme of concurrent transmissions is adopted to improve
the spectrum efficiency. Then, it is assumed that the MUE
could estimate the channel and process the receive signal
from each UAV BS by zero forcing (ZF). Further, we can
place a typical MUE at the origin on 2-dimensional plane <.
Based on Slivnyak’s theory [17], the system performance can
be evaluated by this typical MUE because the statistics of
HPPP will not be changed. Denote R as the maximum radius
of the communication service, the average number of UAV
BS in this circular area around the MUE can be written as

NU =

⌊
λUπR2

⌋
, (1)

FIGURE 1. Scenario of concurrent transmissions in UAV networks.

where b·c is the floor function resulted from the practical
communication system. Define the data stream from the kth
UAV BS to MUE is dU,k , (1 ≤ k ≤ NU), and the transmit
power of UAV BS is defined as PU,k . The downlink signal
of UAV BS can be written as

sUAV,k = cU,kdU,k ,. (2)

where cU,k ∈ CNUAV×1 is the analog beam of the kth UAVBS.
This beam can directionally point to the MUE by using the
radio frequency phase shifters. We use the Saleh-Valenzudela
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channel model [18] to build the channel model between UAV
BS and MUE. The form of the channel satisfies as follows:

HU,k = γ

L∑
l=1

αU,k,laMUE
(
φMUE,k,l

)[
aU,k

(
φU,k,l

)]H (3)

where γ =

√
NUAVNMUE

L , L is the number of prop-
agation paths, αU,k,l is the complex gain of the lth
path with αU,k,l∼CN (0, 1). HU,k satisfies

∥∥HU,k
∥∥2
F =

NMUENUAV, where ‖·‖F is the Frobenius norm of the matrix.
aMUE

(
φMUE,k,l

)
is the array response of MUE’s antenna,

while aU,k
(
φU,k,l

)
is the array response of UAV BS’s

antenna. For lth path, φMUE,l is the azimuth angle of arrival
(AoA) and φU,l is the azimuth angle of departure (AoD). For
the uniform linear array (ULA), both the elevation angle of
AoA and AoD are set as π

2 , which can be ignored. We also
define that the antennas of ULA are deployed along y-axis
at each MUE and UAV BS. Hence, the array steering vectors
aMUE

(
φMUE,k,l

)
and aU,k

(
φU,k,l

)
can be written as:

aMUE
(
φMUE,k,l

)
=

[
1, ejσDMUE sin(φMUE,k,l),. . . , ejσDMUE(NMUE−1) sin(φMUE,k,l)

]T
√
NMUE

,

(4)

aU
(
φU,k,l

)
=

1
√
NUAV

[
1, ejσDU sin(φU,k,l),. . ., ejσDU(NUAV−1) sin(φU,k,l)

]T
,

(5)

where σ = 2π
λ
, λ is the signal wavelength, DMUE and DU

are the spacing of two adjacent ULA elements at the MUE
and the UAV BS. Then, we get the received signal of MUE as
follows:

yMUE

= gMUE

NU∑
k=1

HU,kcU,kdU,k + gMUEn

= gMUE
[
HU,1cU,1, . . . ,HU,NUcU,NU

] dU,1
...

dU,NU

+ gMUEn,

(6)

where gMUE =

 gMUE,1 . . . 0
...

. . .
...

0 . . . gMUE,NMUE

, each element in

this vector represents the phase shifter value of the antenna.
We define G =gMUE

[
HU,1cU,1, . . . ,HU,NUcU,NU

]
, after ZF

receiver, the signal becomes

yMUE,ZF=
[
dU,1, · · · , dU,NU

]T
+

(
GHG

)−1
GHgMUEn. (7)

For the downlink concurrent transmissions, all UAV
BSs must choose their own codeword to form the direc-
tional analog beams based on the pre-defined codebook

C =

{
c1U, c

2
U, . . . , c

NC
U

}
, where ciU ∈ CNUAV×1, i =

1, 2, . . . ,NC , (NC > 2), where NC is the number of the
codewords.

III. AVERAGE SUM RATE (ASR) OF UAV NETWORKS
The MUE can be simultaneously served by multiple UAV
BSs, where the UAVBS density is λU. Based on the statistical
property of HPPP, the probability of UAV BS number in the
R-radius circular area satisfies

PrU (NU = τ) =

(
λUπR2

)τ
τ !

e−λUπR
2
, (τ = 0, 1, . . .). (8)

The received noise power of MUE satisfies

E
[(

GHG
)−1

GHgMUEn
]
= δ2NMUE

(
GHG

)−1
. (9)

According to the expression of G, we can get(
GHG

)−1
=

1
NMUE


∥∥HU,1cU,1

∥∥2 . . . 0
...

. . .
...

0 . . .
∥∥HU,NUcU,NU

∥∥2
 .
(10)

Consider the concurrent transmissions of UAV BSs,
the ASR of UAV networks can be written as:

RU = lim
τ→∞

τ∑
k=1

[(
λUπR2

)τ
τ !

e−λUπR
2

]

× log2

(
1+

PU,k
∥∥HU,kcU,k

∥∥2
NUAVσ 2

)
, (11)

where

SNRU,k =
PU,k

∥∥HU,kcU,k
∥∥2(

NUAVδ2
) , (12)

it represents the signal to noise ratio (SNR) between theMUE
and kth UAV BS.

IV. DATA DRIVEN ITERATIVE SVM CLASSIFIER FOR UAV
NETWORKS
According to ML theory, we propose an iterative SVM clas-
sifier for UAV networks, which is used to select the code-
word from the codebook. The training of our SVM classi-
fier is based on the data collected from the UAV networks
beforehand. Then, we propose an iterative SMO algorithm
for data training, where the convergence and complexity are
also discussed at last.

A. DATA TRAINING SAMPLES OF CONCURRENT
TRANSMISSIONS FOR UAV NETWORKS
Generally, SVM classifier is a kind of ML classifier based
on big data training samples. For UAV networks, the UAV
BSs are densely deployed with the density λU. All the data
samples for training can be obtained through multiple HPPP
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snapshots with the same UAV BS density. The distribution of
each UAV BS is changed in each snapshot. Hence, the trans-
mit power of UAV BS should be chosen in a value range.
From the description before, we know the number of the path
is L. Hence, the element number of each data sample is 4L+2.
Each element has one path loss value, one power value of
UAV BS. There are 2 × L azimuth angles for both AoD and
AoA. In addition, the gain is the complex value, which con-
sists of L real part and L imaginary part, respectively. Because
different elements in the sample are chosen in different value
range (e.g., dBm of power and angle value in [0, 2π)), we get
rid of the difference between each element in the sample with
normalization. Define 3 = {1, 2, . . . , J}. Therefore, we get
a database contains each sample as a 1× (4L + 2) vector xj,
j ∈ 3, where J is the number of data samples in the database.
In downlink concurrent transmissions, each UAV BS

should choose one analog beam from NC candidate vectors
in C. Each training sample should be mapped to its own
optimal analog beams ci∗, i∗ ∈ {1, 2, . . . ,NC}, i.e., if ci∗ is
chosen, the SNRU,k can reach a maximum value. Therefore,
classify the samples as NC kinds for ML training and the
jth sample is xj, and it is the feature vector which will be
labeled as one kind of codewords in C. If the channel variation
happed, UAV BS could judge which codeword is fit for
transmission based on the SVM classifier, i.e., the hyperplane
for classification between different kinds of data samples.
In order to classify all data samples, an easy way is to use
NC traditional SVM classifiers. Nevertheless, consider the
impact of the amount of data samples, the samples belong
to one kind must be too small compared with the rest of the
data. If we directly use those data for training, there may
cause a serious bias to our SVM classifier. In order to avoid
this situation, we propose an iterative SVM classifier for ML
training.

B. DATA DRIVEN ITERATIVE SVM CLASSIFIER WITH SMO
ALGORITHM
Before the training, first we divide the data samples into two
different kinds based on a sub set U of C, which has two dif-
ferent codewords. After each classification, a part of samples
are classified into one of the two kinds. Next, a new codeword
is taken from the codebook and replace the classified one
to update U. Further, we classify the part of training data
based on this updatedU. The SVM classifier iteratively keeps
the data training until the rest NC − 1 codewords are taken.
During each iteration, the data training is based on the SMO
algorithm, where the details of an iteration are shown below.

We take the sub set U =
{
c1U, c

2
U

}
⊂ C as an example,

actually, the classification for any two different vectors of C
are the same. We also label the data samples which classified
to c1U as -1, while classified to c2U as 1. The minimization
problem of the SVM classifier is shown below:

min
1
2
‖w‖2

s.t. yj
[
wTφ

(
xj
)
+ b

]
≥ 1(j ∈ 3), (13)

where w is the vector for separated hyperplane coefficients,
φ (·) is the map of xj to the transformed feature space, yj is the
class label, b is the constant item of the hyperplane formula.
Then, due to the impact of fading, shadowing, and noise
in the practical networks, the training samples must contain
the outliers with the noise and deteriorate the selection of
support vectors. So we introduce the slack variable, which
is the tolerable value of the function margin for the feature
point ξj ≥ 0. The hyperplane optimization problem can be
rewritten as

min
1
2
‖w‖2 + C

J∑
j=1

ξj

s.t. yj
[
wTφ

(
xj
)
+ b

]
≥ 1− ξj (j ∈ 3)

ξj ≥ 0, (14)

where the weight C controls the margin between the
support vectors and the hyperplane. According to the
Karush-Kuhn-Tucker condition [19]. We further introduce
the Lagrange multiplier αj ≥ 0, βj ≥ 0, j = 1, 2, . . . , J ,
choose the kernel function φ (·) as linear kernel, then we get
the Lagrange function of the original problem as:

L
(
w, b, ξj, αj, βj

)
=

1
2
‖w‖2 + C

J∑
j=1

ξj

−

J∑
j=1

αj

{
yj
[
wTxj + b

]
− 1+ ξj

}
−

J∑
j=1

βjξj. (15)

Take the partial derivation of (15) withw, b, and ξj, respec-
tively, we can get

∂L
∂w
= 0⇒ w =

J∑
k=1

αkykxk , (16)

∂L
∂b
= 0⇒

J∑
j=1

αjyj = 0, (17)

∂L
∂ξj
= 0⇒ C − αj − βj = 0. (18)

Take the results back to L
(
w, b, ξj, αj, βj

)
, we have the

dual problem as:

min
αj,αk

1
2

J∑
j=1

J∑
k=1

αjαkyjyk
〈
xj, xk

〉
−

J∑
j=1

αj

s.t. C ≥ αj ≥ 0, (j ∈ 3)
J∑
j=1

αjyj = 0, (19)

where
〈
xj, xk

〉
is the linear kernel function, which is the scalar

product of vector xj and xk . For all the samples, we denote
the output function of the feature as

µj = wTxj + b, (j ∈ 3). (20)
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From ∂L
∂w = 0, we can get w =

J∑
k=1

αkykxk , take it back

to (20), we have

µj =

J∑
k=1

αkykxTk xj + b, (j ∈ 3). (21)

Consider the constraints of (21) and the outliers, we get αj
as follows:

1) When αj = 0, the data samples for trainingmust belong
to one kind of codeword, they are at one side of the
support hyperplane, and we have yiµj ≥ 1;

2) When 0 < αj < C , the data samples are support
vectors, all the data are on the support hyperplane, and
yiµj = 1 is established;

3) When αj = C , the support vectors locate between
the support hyperplane and separated hyperplane, and
yiµj ≤ 1 is established.

αj should also satisfy
J∑
j=1
αjyj = 0, when the three condi-

tions are not established, we need to simultaneously update
two αj values. Suppose we update αj1 and αj2 , j1 6= j2,
j1, j2 ∈ 3. We have

αnewj1 y1 + αnewj2 y2 = αoldj1 y1 + αoldj2 y2 = ρ, (22)

the word ‘new’ or ‘old’ in equation (22) represents the
value is updated or not. ρ has the constant value. Define
αnewj2
∈ [αL , αH ], set 4 = 3\ {j1, j2}, we have

1) If y1y2 < 0, αoldj1 − α
old
j2
= ρ. We can get αL =

max (0,−ρ), αH = min (C,C − ρ);
2) If y1y2 > 0, αoldj1 +α

old
j2
= ρ. So αL = max (0, ρ − C),

αH = min (C, ρ).

Because
J∑
j=1
αjyj = 0 needs to be established. Hence,

we can get αj1yj1 = αj2yj2 +
∑
j∈4

αjyj, transpose the equation,

then we can get

αj1 = −tαj2 + A, (23)

where t = yj1yj2 , A = yj1
∑
j∈4

αjyj.

Define vj1 =
∑
j∈4

αjyjxTj1xj, vj2 =
∑
j∈4

αjyjxTj2xj, the target

function changes as

f
(
αj1 , αj2

)
= αj1 + αj2 −

1
2
α2j1x

T
j1xj1 −

1
2
α2j2x

T
j2xj2

− yj1yj2αj1αj2x
T
j1xj2 − yj1αj1vj1 − yj2αj2vj2 + D, (24)

where D represents all the rest item without αj1 and αj2 . Take
(23) take back to (24), and notice that t2 = 1, we have

f
(
αj2
)
= A− tαj2 + αj2 −

1
2

(
A− tαj2

)2xTj1xj1
−

1
2
α2j2x

T
j2xj2 − t

(
A− tαj2

)
αj2x

T
j1xj2

− yj1
(
A− tαj2

)
vj1 − yj2αj2vj2 + D. (25)

Then,
∂f
∂αj2
= −t + 1+ tAxTj1xj1 − αj2x

T
j1xj1 − αj2x

T
j2xj2

− tAxTj1xj2 + 2αj2x
T
j1xj2 + yj2vj1 − yj2vj2 = 0. (26)

The updated αj2 is

αnewj2
′
=

(
−yj1+yj2+vj1−vj2−yj1Ax

T
j1
xj2+yj1Ax

T
j1
xj1
)
yj2

xTj1xj1+x
T
j2
xj2−2x

T
j1
xj2

.

(27)

From (20) and j1 6= j2, j1, j2 ∈ {1, 2, . . . , J}, we know
µj2 = wTxj2 + b.
Then, makeEji = µji − yji , (i = 1, 2), ζ = xTj1xj1+x

T
j2
xj2−

2xTj1xj2 . Take vj1 , vj2 , t , and A into (27), it has the form shown
below

αnewj2
′
= αoldj2 +

(
yj2
/
ζ
) (
Ej1 − Ej2

)
. (28)

Further, we combine the constraint of 0 < αj < C , we can
get

αnewj2 =


αH αnewj2

′ < αL

αnewj2
′ αL ≤ α

new
j2
′
≤ αH

αL αnewj2
′ > αH .

(29)

From (22), we get the updated αnewj1
as

αnewj1 = α
old
j1 + yj1yj2

(
αoldj2 − α

new
j2

)
. (30)

C. ITERATIVE SMO TRAINING ALGORITHM FOR
CODEWORD SELECTION IN UAV NETWORKS
All data samples need to be divided by several separated
hyperplanes, so, an iterative SMO training algorithm is pro-
posed for selecting the codeword. The detail of the algorithm
is shown in Algorithm 1. The convergence of this proposed
algorithm is ensured by Osuna’s theorem [20], which means
the function shown in equation (19) will keep decreasing in
each round of the iteration.

In the following, the complexity of the proposed algo-
rithm is analyzed. The traditional codeword selection algo-
rithm judges the ASR caused by every analog beam to
select the optimal one for signal transmission, which is
the rate-based algorithm. Since each candidate vector is
an NUAV-dimensional vector and the dimension of chan-
nel HU,k is NUAV × NMUE, the calculation complexity
of each receive signal is O

(
N 3
UAVN

2
MUE

)
. Because there

are NC candidate vectors. The computational complexity is
O
[
NCN 3

UAVN
2
MUE

(
N 2
U + NU

)/
2
]
.

Based on the proposed algorithm, 12 (NC)
2 separated hyper-

planes can be obtained by ML training. As the iterative SMO
training algorithm can be performed offline, and the number
of separated hyperplanes is reduced by half after every itera-
tion, e.g., when classifies them to two different codewords cm

and cn, (m, n ≤ NC,m 6= n). If the codeword cm is selected,
all the separated hyperplanes related to cn are removed in
the future round of classification. Each round of comparison
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Algorithm 1 Iterative SMO Training Algorithm
Initialization:

Set the initial values of λU, R, C, U, NMUE, NUAV, NU.
Iteration:
1: while k ← {1, 2, . . . ,NU} do
2: Based on SNRU,k , and αj, set the initial values of data

samples xj, labels yj, (j ∈ 3).
3: for all m, n ≤ NC , (m 6= n) do
4: Chose αj1 that do not meet the above three condi-

tions of (21);
5: Chose αj2 which could make Eji − Ej2 get the max-

imum value;
6: Fixed all αj,, j ∈ J\ {j1, j2}, calculate ρ, αL , αH , and

ζ ;
7: Calculate αnewj2

according to (29), further update Ej1
and Ej2 ;

8: Update αnewj1
as (30).

9: if all αjmeet the above three conditions of (21) then
10: Store all αj as coefficients for separated hyper-

plane SPm,n between cm and cn;
11: Update cm or cn in U.
12: end if
13: end for
14: end while

includes NUAV times of multiplication and addition to decide
which side the testing sample locates and the complexity
of each round is O (2NUAV). Consider the number change
of all separated hyperplanes, the complexity at every UAV
BS is O

[(
1− 1

2NC−1

)
N 2
CNUAV

]
. Because there are NU =⌊

λUπR2
⌋
UAVBSs for current transmissions, the complexity

based on the separated hyperplane can be further calculated
as follows O

[(
1
4 −

1
2NC+1

) (
N 2
U + NU

)
NUAVN 2

C

]
.

V. ANALYSIS OF SIMULATION RESULTS
In order to assess the performance of the iterative SVM
classifier, simulation of UAV networks is analyzed in this
section. The detail simulation parameters are list in Table 1.

TABLE 1. Simulation parameters.

In Fig. 2, we can see as the increase of UAV BS density,
the ASR increases. This is due to more UAV BSs can offer
more options for user to transmit signals, which increase the
probabilities of transmissionwith small propagation loss. The
increased tendency of ASR becomes slow when UAV BS

FIGURE 2. ASR of UAV networks vs. UAV BS density.

density continues to increase, all MUEs can be served by
UAV BSs. The CE algorithm selects the codeword based on
the estimated channels. We can see our proposed algorithm
achieve a closed ASR the rate-based algorithm which is the
theoretical bound, and the proposed algorithm performs bet-
ter than the CE algorithm. This is due to the reason that more
communication links can be used for sample training when
the density of UAV BS becomes larger, the feature extraction
is much more accurate, which makes the classification much
better.

Fig. 3 illustrates the relationship betweenASR of small cell
networks and power of UAV BS. We can see as the power of
UAVBS increases, the ASR becomes larger because the SNR
of receiver increases. The iterative SMO training algorithm
outperforms the classical CE algorithm since more features
of channel can be ‘learned’ by the iterative SVM classifier.

FIGURE 3. ASR of UAV networks vs. power of UAV BS.

Fig. 4 depicts the variation of ASR with different amounts
of MUEs. It can be obviously seen that the ASR increases as
the MUE number increases. Similar with the analysis above,
this is due to features of data samples are fully ‘learned’ by the
training of our proposed algorithm, which causes the SVM
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FIGURE 4. ASR of UAV networks vs. number of MUEs.

classifier dynamically adjust to perform codeword selection
according to the variation of the UAV networks. Last, CE
algorithm has the worst performance, due to it estimates the
channel change based on the previous channel states, which
only contain a part features of data samples.

Last, Fig. 5 shows the computational complexity compari-
son between rate-based algorithm and our proposed iterative
SMO training algorithm.With the help of SVMclassification,
the UAV BS can directly select the optimal codeword with
the help of the well-trained SVM classifier without traversing
the entire codebook. So, the complexity of the proposed
algorithm is significantly reduced.

FIGURE 5. Computational complexity comparison.

VI. CONCLUSION
In this paper, we design an ML based codeword selection
for concurrent transmissions in UAV networks. By modeling
the distributions of UAV BSs as an HPPP, we derive the
ASR of UAV networks. Further, we propose an iterative
SVM classifier based on the data collected beforehand, which
include the parameters of channel and the power of UAV
BS. For data training, an iterative SMO training algorithm is

used to obtain the separated hyperplanes, which makes UAV
BS quickly select the optimal codeword under a low com-
putational complexity. Last, Google TensorFlow is adopted
as the ML framework in our simulation. The results show
that the proposed algorithm can get a very closed ASR to
the performance bound. In addition, the results demonstrate
our method is a more efficient solution for obtain a higher
performance, where a much lower computational complexity
can achieved than the traditional algorithm based on CE.
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