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ABSTRACT Recently, convolutional neural network (CNN) compression via low-rank decomposition has
achieved remarkable performance. Finding the optimal rank is a crucial problem because rank is the only
hyperparameter for controlling computational complexity and accuracy in compressed CNNs. In this paper,
we propose a global optimal rank selection method based on Bayesian optimization (BayesOpt), which
is a machine learning based global optimization technique. By utilizing both a simple objective function
and a proper optimization scheme, the proposed method produces a global optimal rank that provides a
good trade-off between computational complexity and accuracy degradation. In addition, our method also
reflects the correlation of each rank in multi-rank selection, and is able to flexibly yield an optimal rank
with a given fixed compression ratio. Experimental results indicate that the proposed algorithm can identify
the global optimal rank regardless of the huge size of dataset or the various structural features of CNNs.
In all experiments on multi-rank selection, the proposed method produces the rank with higher accuracy and
lower computational complexity than the state-of-the-art rank selection method, variational Bayesian matrix
factorization (VBMF).

INDEX TERMS Bayesian optimization, convolutional neural networks, neural network compression,
low-rank decomposition, rank selection.

I. INTRODUCTION
Although convolutional neural networks (CNNs) with a
large number of parameters and complex structures have
achieved remarkable performance in various machine learn-
ing applications [1]–[5], there are serious implementation
challenges caused by over-parameterized CNNs on resource
constrained devices, such as mobile phones and embedded
systems. To address these problems, CNN compression via
low-rank decomposition has been proposed with various
decomposition methods including singular value decompo-
sition (SVD) [6], canonical polyadic decomposition (CPD)
[7], tensor-train decomposition (TT decomposition) [8], [9],
Tucker-2 decomposition [7], and block term decomposi-
tion [10]. The motivation behind low-rank decomposition
for CNN compression is to search for a compact convo-
lutional kernel that is close to the original by removing
redundant components [11]. In CNN compression via low-
rank decomposition, the rank is only a hyperparameter that
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controls the trade-off between compression rate and accuracy
degradation. Thus, finding the optimal rank that provides a
good trade-off on decomposed CNNs is the main purpose of
the rank selection method. In this paper, the rank selection
problem is separated into two categories-single- and multi-
rank selection-depending on the number of elements that
comprise the rank. For example, the rank selection of SVD
and Tucker-2 decomposition are considered as single- and
multi-rank selection, respectively, because SVD decomposes
the data with one rank r ∈ R and Tucker-2 decomposition
decomposes the data with two ranks r ∈ R2.

To find the optimal rank, several rank selection methods
have been proposed. Lebedev et al. [7], who used CPD, pro-
posed the heuristic rank selection method. However, because
the value of the optimal rank is very responsive to changes in
the dataset, structure of the CNNs, etc., this method is not uni-
versal and practical. Jaderberg et al. [6], who employed SVD,
tried to find optimal rank by optimizing the accumulated
principal component analysis (PCA) energy-based objective
function without a definite optimization scheme. The result-
ing method is therefore time-consuming, compounding the
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multi-rank selection problem. Saha et al. [43] proposed a fit-
ness based rank selection method with a heuristically defined
optimization scheme. However, this method is only suitable
for single-rank selection and may suffer from convergence
problems because of their optimization schemes. Kim et al.
[7] used Tucker-2 decomposition and proposed a variational
Bayesian matrix factorization (VBMF) [23] as a tool to deter-
mine Tucker-2 rank. Because each rank in Tucker-2 decom-
position is defined as the rank of the unfolded tensor that
is a form of the matrix, VBMF can automatically find the
noise variance and rank, and even provide a solid theoretical
foundation for perfect rank recovery. Hence, VBMF has been
used in other rank selection method to date [42]. However,
as VBMF is a matrix-based algorithm, it is not considered
a proper rank selection method in some low-rank tensor
decompositions, such as CPD, wherein the CP rank is defined
by the number of independent rank-one tensors. In addition,
as this method does not reflect the correlation among ranks,
it provides suboptimal rank in amulti-rank selection problem,
such as Tucker-2 decomposition. Therefore, VBMF is limited
in its applicability to multi-rank selection problems.

In this paper, we propose a novel global optimal rank
selection algorithm, which can be used in all low-rank decom-
position methods; in other words, our method can provide the
global optimal rank in both single- and multi-rank selection
problems. The proposed objective function contains com-
putational complexity and reconstruction losses to represent
the trade-off between compression rate and accuracy degra-
dation, which is controlled by rank selection. To address
devices with limited resource, we placed the computational
complexity loss term in a nonlinear function (rectifier), which
yields zero if the input is smaller than threshold; otherwise,
it returns the input value. Furthermore, our method reflects
the correlation among ranks inmulti-rank selection problems.
To obtain the global optimal rank, the loss function has been
optimized using Bayesian optimization (BayesOpt), which is
an efficient global optimization technique [12]–[15].

To employ BayesOpt, the loss function must be in the form
of a continuous function but not necessary to be differen-
tiable. Hence, we converted the proposed objective function,
which is a discrete function due to the rank characteristic,
to a continuous step function that is non-differentiable. The
BayesOpt constructs a probabilistic model of the objective
function to make decisions on where the feasible rank set
is to next evaluate the objective function while factoring out
uncertainty. Therefore, utilizing BayesOpt is not only a rea-
sonable way to optimize our proposed objective function, but
also an advanced way that produces a global optimal rank that
balances computational complexity and accuracy degrada-
tion in every low-rank decomposition method. We performed
CNN compression experiments based on SVD and Tucker-
2 decomposition to confirm the single- and multi-rank selec-
tion performance of the proposed technique, respectively.
Furthermore, to demonstrate the generalization performance
of the proposed algorithm for various CNNs on various
datasets, we conducted experiments on five representative

models, namely, AlexNet [16], VGG-16 [17], ResNet18 [18],
GoogLeNet [19], and SqueezeNet [20] on three benchmark
datasets [21], [34].

In summary, the main contributions of this study are as
follows:

• The proposed method produces the global optimal rank,
which provides a good trade-off between computational
complexity and accuracy degradation of compressed
CNNs, by using both the simple objective function and
a machine learning-based optimization algorithm.

• The global optimal rank, produced by the proposed
algorithm, works for all low-rank decompositions of
CNNs and all CNN structures. Furthermore, in multi-
rank selection, the proposed method reflects the correla-
tion between each rank.

• The proposed algorithm is a flexible rank selection
method that can produce the global optimal rank for
constrained resource devices, by just changing the
hyperparameter in the proposed objective function.

The remainder of this paper is organized as follows.
Section II briefly introduces SVD and Tucker-2 decomposi-
tion for CNN compression, VBMF, and BayesOpt. Section III
discusses our global optimal rank selection algorithm, focus-
ing on the proposed objective function and BayesOpt with
both Màtern 5/2 covariance function and expected improve-
ment acquisition function. Obtained experimental results are
presented and analyzed in Section IV. Finally, Section V
summarizes this paper.

II. PRELIMINARIES
A. LOW-RANK DECOMPOSITION FOR CNN
COMPRESSION
In CNNs, the convolution kernel W ∈ RD×D×S×T is a four-
way tensor, where D is the spatial window size, S and T are
the depth values of the input and output feature maps, respec-
tively. The inference operation of CNNs can be represented
by linear mapping that input feature-mapsX ∈ RH×W×S into
output feature maps Y ∈ RH ′×W ′×T , which is as follows:

Y(h′,w′, t) =
D∑
i=1

D∑
j=1

S∑
s=1

W(i, j, s, t)X(hi,wi, s),

hi = (h′ − 1)4+ i− P,

wj = (w′ − 1)4+ j− P, (1)

where X(a, b, c) is an element with coordinates (a, b, c) of
the tensor X; 4 is stride; and P is size of zero-padding.
The full convolution operation of the convolutional layer
is illustrated in Fig. 1(a). Thus, the number of parameters
(memory complexity) and multiplication-addition operations
(computational complexity) of (1) are equivalent to D2ST
and D2STW ′H ′, respectively. Following these definitions,
we define the compression rate of memory complexity cm(r)
and computational complexity ct (r) according to rank r as
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FIGURE 1. The transparent 3D tensors are feature maps in the convolutional layer and the arrows are linear mappings showing that input
feature maps into the output feature maps. Blue 3D tensors are 2D convolution kernels whereas yellow 3D tensors are 1× 1 convolution
kernels. Red and green 3D tensors are 1D convolution kernels. Small-sized 3D tensors are single elements of the target feature-maps. (a)
Full convolution in (1). (b) SVD on convolution kernel from (3) to (4) [6]. (c) Tucker-2 decomposition on convolution kernel from (8) to (10)
[7].

follows:

cm(r) =
number of parameters ofW decomposed with r

number of parameters ofW
,

ct (r) =
number of operations ofW decomposed with r

number of operations ofW
.

As previously mentioned, we divided the rank selection
problem into two categories, according to how many compo-
nents are associated with rank r: single-rank selection prob-
lem and multi-rank selection problem. Therefore, to evaluate
single- and multi-rank selection via our proposed method,
we utilized SVD [6] and Tucker-2 decomposition [7] for-
mulations, which require single-rank r ∈ R and multi-rank
r ∈ R2, respectively.

1) SINGULAR VALUE DECOMPOSITION (SVD) ON
CONVOLUTION KERNEL
SVD has been used as a simple tool to decompose convolu-
tion kernelsW into two components with a single rank:

W(i, j, s, t) ≈ Ŵ(i, j, s, t) =
r∑

r=1

U(i, 1, s, r)V(1, j, s, t), (2)

where Ŵ is low-rank decomposed convolution kernels; and
U ∈ RD×1×S×r and V ∈ R1×D×r×T are factors from SVD.
After substituting the decomposed kernels into the original
kernel, we obtain the following two consecutive expressions
for the convolution operation with a low-rank approximated
kernel:

Z(h′,w, r) =
D∑
i=1

S∑
s=1

U(i, 1, s, r)X(hi,w, s), (3)

Y(h′,w′, t) =
D∑
j=1

r∑
r=1

V(1, j, r, t)Z(h′,wi, r), (4)

where Z is intermediate feature maps of sizes H ′ ×W × r.
The output tensor Y can be expressed by substituting
V and Z.
From the above equations, we can see that the SVD sepa-

rates theD×D convolution kernel intoD×1 and 1×D convo-
lution kernels. The Fig. 1(b) shows this SVD-based low-rank
decomposition of convolution kernels. In CNN compression
via SVD, the compression rates of memory complexity cm(r)
and computational complexity ct (r) are as follows:

cm(r) =
DSr+ DT r

D2ST
, (5)

ct (r) =
DSWH ′r+ DTW ′H ′r

D2STW ′H ′
. (6)

From (5) and (6), we demonstrated that rank r is the only
hyperparameter that controls the computational complexity
of the decomposed model because all the remaining parame-
ters have fixed values.

2) TUCKER-2 DECOMPOSITION ON CONVOLUTION KERNEL
Tucker2-decomposition on convolution kernels can decom-
pose the original convolution kernel into three factors with
two ranks. Hence, the rank of Tucker-2 decomposition r ∈ R2

is composed of both r(1) and r(2). Because the spatial size
of recent convolution kernels has already become small, e.g.,
3×3 or 5×5, Tucker-2 decomposition may not be necessary
to decompose the first and second axes of convolution kernels
W, shown below:

W(i, j, s, t)

≈ Ŵ(i, j, s, t)

=

r(1)∑
r1=1

r(2)∑
r2=1

C(i,j,r1,r2)U(1)(1, 1, s, r1)U(2)(1, 1, r2, t), (7)
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where C is the core tensor of size D × D × r(1) × r(2); and
U(1)
∈ R1×1×S×r(1) and U(2)

∈ R1×1×r(2)×T are the projec-
tion factors of the third and fourth axis of W, respectively.
r(1) and r(2) are indicated by the number of independent
columns of mode-3 matricization (at size S × DDT ) and
mode-4 matricization (at size T × DDS) of the convolution
kernel, respectively. After the Tucker-2 decomposition is con-
ducted on the convolution kernelW, the original kernel in (1)
can be replaced by low-rank approximated convolution kernel
in (7) as follows:

Z(1)(h,w, r1) =
S∑
s=1

U(1)(1, 1, s, r1)X(h,w, s), (8)

Z(2)(h′,w′, r2) =
D∑
i=1

D∑
j=1

r(1)∑
r1=1

C(1, j, r1, r2)Z(1)(hi,wi, r1),

(9)

Y(h′,w′, t) =
r(2)∑
r2=1

U(2)(1, 1, r2, t)Z(2)(h′,w′, r2), (10)

where Z(1) and Z(2) are intermediate tensors of sizes H ×
W × r(1) and H ′ × W ′ × r(2), respectively. The Fig. 1(c)
shows the overall process of consecutive operations from (8)
to (10). We can see that Tucker-2 decomposition decomposes
the D × D convolution kernel into 1 × 1 convolution kernel
for dimension reduction,D×D convolution kernel and 1× 1
convolution kernel for dimension expansion, sequentially.
Analogous to both (5) and (6), the memory compression rates
of memory complexity and computational complexity are as
follows:

cm(r) =
Sr(1)+ D2r(1)r(2)+ T r(2)

D2ST
, (11)

ct (r) =
Sr(1)WH + D2r(1)r(2)W ′H ′ + T r(2)W ′H ′

D2STW ′H ′
. (12)

Equations (11) and (12) demonstrate that the correlation
among ranks must be considered to ensure efficient compres-
sion performance in multi-rank selection.

B. RANK SELECTION VIA VBMF
Recently, VBMF has become a promising tool used in lay-
erwise rank selection, which was first employed in [7]. This
is because the VBMF can automatically find noise variance,
rank, and even provide theoretical condition for rank recovery
[22], [23]. However, because the VBMF is based on matrix
format data, it cannot produce optimal rank on all low-rank
decomposition on CNNs. For example, in [7], ranks r(1) and
r(2) were determined from (7) by applying this algorithm on
mode-3 matricization ∈ RS×D2T and mode-4 matricization
∈ RT×D2S of convolution kernel W, respectively. However,
as indicated in (11) and (12), because the computational
complexity and accuracy degradation of the decomposed
convolutional layer are simultaneously related with r(1) and
r(2), the rank selection method must consider the correlation
of each rank in multi-rank selection. Therefore, multi-rank

selection via VBMF cannot be an optimal rank. The impor-
tance of correlation in multi-rank selection will be discussed
in Section IV as we compare the performance of the pro-
posed method with VBMF through Tucker-2 decomposition
experiments.

C. BAYESIAN OPTIMIZATION (BAYESOPT)
BayesOpt is a class of machine learning-based optimiza-
tion methods. BayesOpt consists of two major components:
a Bayesian statistical model for modeling the objective func-
tion and an acquisition function for deciding the next sam-
pling points [12]–[15]. The Bayesian statistical model, which
is a Gaussian Process (GP), provides quantified uncertainty
of objective function values at an unobserved data [24].
The acquisition function measures the predictive enhance-
ment at an unobserved data, to determine the next sam-
pling point [25], [33]. Therefore, BayesOpt is designed for
black-box derivative-free global optimization because 1) it
does not require the structural information of objective func-
tion (black-box); 2) it does not observe the derivatives of
objective function (derivative-free); and 3) it finds the global
optimum by calculating the uncertainty of the objective
function at unobserved points (global optimization). These
properties not only simplify the design complexity of the
objective function for rank selection, but also enable global
optimal rank selection through the objective function. By uti-
lizing BayesOpt, our proposed algorithm can produce the
global optimal rank on all decompositions using the designed
objective function.

III. PROPOSED METHOD
In this section, we explain the global optimal rank selec-
tion method, which applies to all low-rank decompositions,
including single- and multi-rank selection via BayesOpt.
In addition, we show that the proposed method is able to
select the optimal rank flexibly with a given fixed compres-
sion ratio. The overall process of CNN compression via the
proposed algorithm is summarized as follows:

1) Train the CNN with a dataset and select any low-rank
decomposition method for CNN compression.

2) Compute the global optimal rank for all convolutional
layers via proposed method. More details are given in
Algorithm 1.

3) Compress the trained CNN using the chosen low-rank
decomposition with the computed global optimal rank.

4) To compensate for the errors caused by the low-rank
decomposition, fine-tune the compressed CNN using
the dataset.

A. PROPOSED OBJECTIVE FUNCTION
The proposed algorithm aims to find a global optimal rank
that guarantees both low computational complexity and
low accuracy degradation in decomposed neural networks.
Therefore, the proposed objective function f is simply for-
mulated through the superposition between computational
complexity loss ct and reconstruction loss cr , which are easily
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Algorithm 1 Basic Pseudo-Code for Proposed Global Optimal Rank Selection Method
Perform the initial space-filling experiment by randomly sampling the objective function f on n0 ranks.
Assume the prior multi-variate normal distribution using GP with Màtern 5/2 covariance function in (16).
Estimate the hyperparameter of Màtern 5/2 covariance function via maximum a posteriori in (18).
Set n as n0.
Initialize maximum iteration numberM and mimimum Euclidean distance F .
while n <= M and Euclidean distance with previous observed rank > F do
Calculate the posterior distribution of objective function f on unobserved rank r∗ by using observed rank f (r1:n) according
to the Bayesian rule in (19)
Estimate the hyperparameters of Màtern 5/2 covariance function via maximum a posteriori in (18)
Initialize the rbest as argminr1:n f (r1:n)
Compute expected improvement acquisition function using current posterior distribution in (21)
Set rn+1 as a maximizer of the expected improvement acquisition function in (22)
Observe f (rn+1).
n = n+ 1

end while
Return a solution: rbest

computable in all low-rank decomposition as below:

r̃ = argmin f (r),

f (r) = cr (r)+ ct (r),

cr (r =
||W− Ŵ||2F
||W||2F

, (13)

where r̃ means global optimal rank, and reconstruction loss
cr is measured by the squared Frobenius norm. The squared
Frobenius norm of a convolution kernel W ∈ RD×D×S×T is
defined as the sum of the squares of its elements:

||W||2F =
D∑
i=1

D∑
j=1

S∑
s=1

T∑
t=1

W(i, j, s, t). (14)

As reconstruction loss cr is linear with accuracy degra-
dation, the proposed objective function (13) represents the
trade-off relationship between computational complexity and
accuracy degradation based on rank selection. In addition,
the objective function in a multi-rank selection problem has
a form of the multimodal function to reflect the correla-
tion of each rank. Therefore, the proposed rank selection
method based on the objective function is available in all low-
rank decompositions, including both single- and multi-rank
selections.

However, as rank r is discrete data, the objective
function has the form of a discrete function which is
not applicable to BayesOpt. To address this problem,
we simply change the proposed objective function to a
continuous step function. Although the changed objective
function with the form of a step function is not differ-
entiable, BayesOpt is derivative-free; hence, it is possible
to find the global optimal rank via the proposed objective
function.

For devices with limited resources, practical CNN
compression techniques require maximum performance
under the condition of fixed computational complexity.

To handle this demand, we transform (13) into its final
objective function:

r̃ = argmin f (r),

f (r) = cr (r)+ g(ct (r), α),

g(x, α) =

{
x if x > α

0 otherwise
, (15)

where g(x, α) is a rectifier function that either provides an
input value, if the input value is greater than the threshold α,
or zero. By setting α to zero, there is no condition for compu-
tational complexity. Therefore, we can use the objective func-
tion by controlling the computational complexity threshold α
at the rectifier.

In summary, the proposed objective function has four
properties: 1) It represents the relationship between compu-
tational complexity and accuracy degradation for a low-rank
approximated convolution kernel according to rank selection.
2) Because the objective function involves the dependencies
of each rank in a multi-rank selection, and each loss term is
readily computable on any low-rank decompositions, it can be
used for all low-rank decomposition, including both single-
and multi-rank selections. 3) It can be applied to rank selec-
tion problems with fixed computational complexity by using
the computational complexity loss rectifier with threshold α.
4) It has a continuous function form that can be globally
optimized via BayesOpt.

To verify the properties of the objective function, we per-
formed Tucker-2 decomposition on the convolution kernel
of the third convolutional layer of AlexNet, which is trained
on ImageNet classification. This convolution kernel has a
size of 3 × 3 × 192 × 382. Figs. 2(a), 2(b), and 2(c)
show the surfaces of computational complexity loss, recon-
struction loss, and objective function, respectively. It can be
confirmed that the computational complexity loss follows
an increasing function with respect to rank values whereas
the reconstruction loss does not. In addition, the objective
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FIGURE 2. All sub-figures cover Tucker-2 decomposition on the third convolutional layer of AlexNet, which is trained on ImageNet classification.
The x- and y-axes of all sub-figures are r(1) and r(2), respectively. (a) Surface of computational complexity loss ct (r). (b) Surface of reconstruction
loss cr (r). (c) Surface of objective function without rectifier (α = 0) in (15). (d) Surface of computational complexity loss with rectifier (α = 0.3). (e)
Surface of objective function with rectifier (α = 0.3) in (15).

function represents the trade-off between the two loss terms.
Figs. 2(d) and 2(e) show the surfaces of computational com-
plexity loss and objective function, respectivelywhenα is 0.3,
suggesting that the computational complexity is zero when
the threshold value is less than 0.3. It creates a steep cliff on
the surface of the objective function and moves the optimal
rank point near this cliff. All sub-figures in Fig. 2 show the
dependencies between r(1) and r(2) via multimodal objective
function.

B. GAUSSIAN PROCESS (GP) REGRESSION ON
PROPOSED OBJECTIVE FUNCTION
In the proposed method, GP regression provides the poste-
rior distribution that represents the potential values of the
proposed objective function f (r∗) at unevaluated ranks r∗,
based on a prior distribution taken from previously observed
k ranks r1, . . . , rk ∈ RD, where the D denotes the value of
rank dimensionality; therefore, if r is the rank of Tucker-
2 decomposition than D is two. In other words, this algo-
rithm quantitatively estimates the uncertainty of unconfirmed
loss values f (r∗) based on revealed objective function values
[f (r1), . . . , f (rk)] obtained from either previous optimiza-
tion iterations or initial space-filling experiments. For more
compact notation, we describe this finite collection of k
ranks as r1:k, and denote the loss value vector of r1:k as
f (r1:k) = [f (r1), . . . , f (rk)] ∈ Rk . Following the Bayesian
rule, we must define the prior distribution of f (r1:k) to
obtain the conditional distribution P(f (r∗)|f (r1:k)). There-
fore, we assume the prior distribution of f (r1:k) to be a
multivariate normal distribution by using the mean function
µ0 andMàtern 5/2 covariance function60. The equations are
as follows:

P(f (r1:k)) ∼ Normal(µ0(r1:k), 60(r1:k, r1:k)), (16)

60(ri, rj) = θ0
(
1+

√
5v2(ri, rj)+

5
3
v2(ri, rj)

)
× exp

{
−

√
5 v2(ri, rj)

}
,

v2(ri, rj) =
D∑
d=1

(ri(d)− rj(d))2

θ2d
, (17)

where θ0:D = [θ0, .., θD] is the hyper-parameter of60. In par-
ticular, the mean vector µ0(r1:k) and Màtern 5/2 covariance
matrix 60(r1:k, r1:k) are:

µ0(r1:k) = [µ0(r1), . . . , µ0(rk)] ∈ Rk ,

60(r1:k, r1:k) =

60(r1, r1) · · · 60(r1, rk)
...

. . .
...

60(rk, r1) · · · 60(rk, rk)

 ∈ Rk×k .

The Màtern 5/2 covariance function is commonly applied
for the BayesOpt problem because GP regression with this
covariance function is smooth in effect under practical opti-
mization problems [14]. The hyper-parameters θ0:D inMàtern
5/2 covariance function play a role in the design of prior
distribution on f (r1:k), and they can be estimated using max-
imum a posteriori (MAP) estimation, as follows:

θ̂0:D = argmax
θ0:D

P(θ0:D|f (r1:k))

= argmax
θ0:D

P(f (r1:k)|θ0:D)P(θ0:D). (18)

By using the prior distribution given by (16), we can cal-
culate the conditional distribution of f (r∗):

P(f (r∗)|f (r1:k)) ∼ Normal(µk (r∗), σ 2
k (r
∗)),

µk (r∗)

= 60(r∗, r1:k)60(r∗, r1:k)−1(f (r1:k)−µ0(r1:k))+µ0(r1:k),

σ 2
k (r
∗)

= 60(r∗, r∗)−60(r∗, r1:k)60(r1:k, r1:k)−160(r1:k, r∗).

(19)

Therefore, we can define the potential values of the pro-
posed objective function in a rank that has not been evaluated
from a conditional distribution, typically associated with the
prior distribution of k observed ranks. Fig. 3 shows the results
of the proposed algorithm for Tucker-2 decomposition on the
third convolutional layer of AlexNet. In particular, the fig-
ures at the bottom establish the consequences of the proposed
algorithm with α of 0.3. Figs. 3(a) and (b) represent posterior
mean and posterior standard deviation, respectively, which
are obtained from GP with Màtern 5/2 covariance function.
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FIGURE 3. All sub-figures cover Tucker-2 decomposition on the third convolutional layer of AlexNet, which is trained on ImageNet classification.
Top BayesOpt on objective function without rectifier (α = 0) in (15). Bottom BayesOpt on objective function with rectifier (α = 0.3) in (15). (a) and (f)
Mean of posterior distribution µk (r∗) in (19). The x- and y-axes are r(2) and r(1), respectively. (b) and (g) Standard deviations of posterior
distribution σ2

k (r∗) in (19). The x- and y-axes are r(2) and r(1), respectively. (c) and (h) Expected improvement acquisition function EIk (r∗) in (21).
The x- and y-axes are r(2) and r(1), respectively. (d) and (i) Distance between consecutive observed ranks in all iterations. The x- and y-axes are
iteration and the Euclidean distance respectively. (e) and (j) Objective function value of the best rank f (rbest) in all iterations. The x- and y-axes are
iteration and f (rbest), respectively.

The red dots in the Figs. 3(a) and (b) denote the 40 observed
rank points. As the Màtern 5/2 covariance function has the
property that points close in the input space are more strongly
correlated, it can be deemed that the standard deviation of the
unobserved points close to the observation point has a small
value and vice versa. Figs. 3(f) and (g) also show similar
tendencies. However, owing to the large distortion by the
computational complexity rectifier, the standard deviation of
the unobserved data points far from the observed data points
is high.

C. EXPECTED IMPROVEMENT (EI) FOR
GLOBAL OPTIMAL RANK
In our proposed algorithm, we utilize the expected improve-
ment acquisition function to determine the next sampling rank
point [25]. The key idea of this acquisition function is to
return the best rank that yields the lowest loss among the
already observed ranks. As the proposed objective function
generates the loss of observed rank without noise, there is
no doubt that the best current rank rbest is the rank that has
the least error among those previously evaluated. Hence, it is
appropriate to use the expected improvement (EI) acquisition
function in BayesOpt framework to optimize the proposed
objective function. In this section, we denote the best current
rank as rbest = argminr1:k f (r1:k), the cumulative distribution
function of the normal distribution as 8, and the probability
density function of normal distribution as φ.
To quantify the improvement at candidate rank r∗,

the expected improvement acquisition function compares
the loss value of current best rank f (rbest) and the
approximated objective error of candidate ranks f (r∗).

Therefore, the expected improvement can be defined as
follows:

EIk (r∗) := Ek [max(f (rbest)− f (r∗), 0)], (20)

Therefore the EI acquisition function in proposed method
computes the expectation taken under the conditional dis-
tribution P(f (r∗)|f (r1:k)) of utility function which returns a
positive value if f (r∗) ≤ f (rbest) or zero if f (r∗) > f (rbest)
[25]. Another main reason of utilizing the EI acquisition
function is that it has a closed form under GP regression
[12], [14], [33]. Thus (20) can be changed into a closed form,
as follows:

EIk (r∗) = σk (r∗)(γk (r∗)8(γk (r∗))+ φ(γk (r∗)),

γk (r∗) =
f (rbest)− µk (r∗)

σk (r∗)
. (21)

To determine the next rank point rk+1, which is expected
to be closer to the global optimal rank r̃ than the current best
rank rbest, the expected improvement acquisition function
evaluates the candidate rank r∗ with the largest expected
improvement:

rk+1 = argmaxEIk (r∗). (22)

After the EI, if the BayesOpt termination condition is
satisfied, then the obtained rank from the expected improve-
ment function rk+1 becomes the solution of the proposed
algorithm; otherwise, it will be used to construct the pos-
terior distribution through GP regression. Figs. 3(c) and
(h) show the EI acquisition function value of each experi-
ment. In Fig. 3(c), almost all values of the acquisition func-
tion are zero, i.e., the proposed algorithm converges to the
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TABLE 1. Performance comparison of SVD for CNN compression using VBMF and the proposed method.

global optimal rank. Fig, 3(d) shows the Euclidean distance
between two consecutive ranks observed in all iterations. As
the expected improvement acquisition function picks the next
sampling point based on uncertainty, the distance between
the observed consecutive ranks has irregular fluctuations in
all iterations, verifying that BayesOpt globally optimizes the
proposed objective function. Fig. 3(e) shows the loss of the
current best rank f (rbest) in all iterations and confirms that
BayesOpt converge to the global optimal rank. The pro-
posed method with the α = 0.3 case is also represented in
Figs. 3(h-j), which have similar trends with Figs. 3(a-e).
Therefore, we can verify that the proposed method converges
to the global optimal rank.

IV. EXPERIMENTAL RESULTS
In this section, both SVD and Tucker-2 decomposition-based
CNN compression experiments were performed to verify the
single- and multi-rank selection performance of the proposed
method, respectively. In addition, to confirm the general-
ization performance of our proposed method, we used five
representative CNNs, namely AlexNet, VGG-16, ResNet18,
GoogLeNet, and SqueezeNet, which have different struc-
tural properties. The experiments are conducted on three
representative datasets; ImageNet [21], CIFAR-100 [34], and
CIFAR-10 [34]. In this study, we evaluated the performance
of rank selection in terms of top-1 accuracy, top-5 accuracy,
computational complexity, and memory complexity in the
decomposed CNNs. Note that, the computational complexity
is expressed in floating point operations per second (FLOPS).
In addition, to validate the experimental results with respect to
statistical methods, we conducted all experiments five times
and then acquired the averages and standard deviations.

The experiment consists of three steps: 1) rank selection
via proposed method, 2) low-rank decomposition on convo-
lutional layer, and 3) fine-tuning the low-rank decomposed
CNNs to recover the accumulated accuracy loss.

A. IMPLEMENTATION DETAILS
CNNs and BayesOpt tools were actualized using PyTorch
in a GPU implementation [26] and GPyOpt in a CPU
implementation [27], respectively. Tensorly API was utilized
for SVD and Tucker-2 decomposition constructions [28].

As previously noted, our CNNs model was pre-trained on
ImageNet classification and downloaded from torchvision
[29]. We performed all experiments on GTX 1080 8-GB
GPU and an Intel core i7 CPU. In Algorithm 1, the number
of initial space-filling experiments n0 is 10; the number of
maximum iterations is 30; and the threshold of the distance
between two consecutive observed ranks F is fixed at 10−3.
To fairly compare our method and VBMF, we initialized the
learning rate at 10−3 and reduced it by a factor of 10 every
five epochs. In addition, we only decomposed convolutional
layers to accelerate the convergence speed in fine-tuning.

B. SINGLE-RANK SELECTION OF SVD
FOR CNN COMPRESSION
To evaluate the performance of the proposed method on
single-rank selection, we performed experiments with four-
way tensor convolution kernel decomposition using SVD.
Here, the rank is chosen by the number of indepen-
dent columns of reshaped convolution kernel, which has a
DS × DT size. The target model is AlexNet with the win-
dow sizes of the convolution kernels being 11 × 11, 5 × 5,
and 3 × 3. In image classification on ImageNet, AlexNet
achieved 56.66% top-1 accuracy and 70.09% top-5 accu-
racy. In CIFAR-10 and CIFAR-100 experiments, we changed
11×11, 5×5 convolution kernels to 3×3 convolution kernels
to fit the AlexNet’s receptive field in size of input images.

1) EXPERIMENTS WITH ALEXNET
Table. 1 shows that the proposed method achieved
1.1 times higher compression rate on computational com-
plexity than VBMF with −0.32% top-1 accuracy and
−0.31% top-5 accuracy in ImageNet experiment. In contrast,
the proposed method achieved 2.5 times lower compression
rate on computational complexity than VBMF with +0.62%
top-1 accuracy and +0.13% top-5 accuracy in CIFAR-
100 experiment. From these results verify that the accuracy
of the decomposed model is linear with its computational
complexity; hence, these experiments cannot determine the
superior method in a single-rank selection problem. If the
experiments performed were single-rank tensor decomposi-
tion such as CP-decomposition [7], VBMF would be unus-
able because it is a matrix-based rank selection method,
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TABLE 2. Performance comparison of Tucker-2 decomposition for CNN compression using VBMF and the proposed method.

whereas the proposedmethodwould be usable because it only
takes rank value as an input.

C. MULTI-RANK SELECTION OF TUCKER-2
DECOMPOSITION FOR CNN COMPRESSION
In Tucker-2 decomposition of the convolution kernel, r(1)
and r(2) are indicated by the number of independent columns
of mode-3 matricization (size of S × DDT ) and mode-
4 matricization (size of T ×DDS) of the convolution kernel,
respectively. To obtain the Tucker-2 rank using VBMF, [7]
entered both mode-3 and mode-4 matricization of the convo-
lution kernel into VBMF, which only accepts data in a matrix
format. When calculating the Tucker-2 rank via VBMF,
each rank is acquired individually without considering the

correlation between r(1) and r(2). In contrast, the proposed
method considers not only the trade-off between reconstruc-
tion loss and computational complexity loss, but also the
dependencies between the two ranks.

Four representative pretrained CNN models with different
structural characteristics were utilized in our experiments
to show that the proposed method can produce global opti-
mal Tucker-2 rank independent of the CNN structure. The
VGG-16 model achieved 71.592% top-1 accuracy and
90.382% top-5 accuracy; consisting of only 3 × 3
convolutional layers, it has the simplest structure among
all models [17]. The second model, ResNet18, achieved
69.758% top-1 accuracy and 89.076% top-5 accuracy. It uses
skip-connection, which provides a new solution for the
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FIGURE 4. Top-1 Accuracy of low-rank decomposed CNNs using Tucker-2 decomposition in fine-tuning. The x- and y-axes of all sub-figures are
finetuning epochs and top-1 accuracy, respectively. first row ImageNet, second row CIFAR-100, third row CIFAR-10, first column VGG-16, second
column ResNet18, third column GoogLeNet, and fourth column SqueezeNet.

FIGURE 5. Top-5 Accuracy of low-rank decomposed CNNs using Tucker-2 decomposition in fine-tuning. The x- and y-axes of all sub-figures are
finetuning epochs and top-5 accuracy, respectively. first row ImageNet, second row CIFAR-100, first column VGG-16, second column ResNet18,
third column GoogLeNet, and fourth column SqueezeNet.

gradient vanishing problem [18]. Adopting an inceptionmod-
ule, which enables parallel processing of various window
size convolution filters in specific convolutional layer [19],
GoogLeNet achieved 69.778% top-1 accuracy and 89.530%
top-5 accuracy. Finally, the SqueezeNet model achieved

58.092% top-1 accuracy and 80.422% top-5 accuracy.
It has the CNNs baseline and been developed for resource-
constrained devices. Thus, this model’s building block is
called the fire module, which has dimension reduction
effects [20].
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TABLE 3. Performance comparison of Tucker-2 decomposition for CNN compression using the proposed method with a computational complexity
rectifier for various α. In particular, ct (rVBMF) denotes the proposed method with α as the layerwise computational complexity loss of VBMF.

FIGURE 6. Top-5 accuracy-FLOPS curves of low-rank decomposed CNNs using proposed method with computational complexity rectifier on various
α. ct (rVBMF) denotes the proposed method with the α as layerwise computational complexity loss of VBMF, VBMF denotes the performance of
VBMF, and Ours means the performance of proposed method without computational complexity rectifier. The x- and y-axes of all sub-figures are
FLOPS and top-5 accuracy, respectively. first row ImageNet, second row CIFAR-100, first column VGG-16, second column ResNet18, third column
GoogLeNet, and fourth column SqueezeNet.

1) EXPERIMENTS WITH VGG-16, ResNet18, GoogLeNet,
AND SqueezeNet
Table. 2 shows that the proposed method based decomposed
CNN has both higher accuracy and lower computational

complexity than a VBMF based decomposed CNN in all
experimental results. Figs. 4 and 5 illustrate the top-1 and
top-5 accuracy curves of the decomposed models using
VBMF and the proposedmethod in every epoch, respectively.
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TABLE 4. Layerwise analysis of Tucker-2 decomposed VGG-16 using VBMF and the proposed method with and without a computational complexity
rectifier. ct (rVBMF) denotes the proposed method with α as the layerwise computational complexity loss of VBMF.

From these observations, it can be confirmed that in every
epoch, the decomposed CNNs using the proposed method
achieved higher top-1 and top-5 accuracies than the model via
VBMF. In addition, the proposed method provides a global
optimal multi-rank irrespective of CNNs structure.

In multi-rank selection, the major reason the proposed
method performs better than VBMF is that the proposed
method calculates the multiple ranks simultaneously through
constructing the multi-modal objective function. However,
VBMF computes each rank independently. In other words,
from the point of view of optimization theory, VBMF returns
a locally optimal rank solution in the multi-rank selection
problem. Thus, the experimental results on Tucker-2 rank
selection, confirm that considering the correlation among
ranks in multi-rank selection is an important key to good
compression performance.

2) EXPERIMENTS WITH PROPOSED METHOD WITH
TIME-COMPLEXITY RECTIFIER ON VARIOUS α
From Table. 3, it can be verified that using a computa-
tional complexity rectifier results in the compressed CNNs
satisfying the restricted computational complexity condition

and makes the proposed method flexible. As an example,
the proposed method with α = 0.1 means that all convo-
lutional layers in original CNNs are decomposed with the
same 0.1 computational complexity condition. Thus, the dot-
ted curves in Fig. 6 can be considered as the approximated
minimum boundary of the proposed method. All experiments
in Fig. 6 show that VBMF produces the rank with the decom-
posed CNNs having higher computational complexity and
lower accuracy than the proposed method. Therefore, it is
verified that the proposed method produces the rank with
more effective decomposed CNNs than VBMF because the
former considers the correlation between ranks in multi-rank
selection.

3) LAYERWISE ANALYSIS
Table. 4 shows that the proposed technique tends to produce
r(2) larger than r(1) in all remaining layers, except for the
last two layers, showing that it has used 1 × 1 convolution
kernel for dimension expansion more than 1× 1 convolution
kernels used in the dimension reduction. This property is typ-
ical to CNNs design, which increases the depth feature map
according to the deeper layer; this property is also seen in the
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proposed method (α = ct (rVBMF)). Conversely, the VBMF
independently selects r(1) and r(2), ignoring the correlation
between the two ranks.

D. COMPUTATIONAL COMPELXITY ANALYSIS
The computational complexity of VBMF is denoted as
O(6|�|K ). Here, |�| and K represent the whole number of
indices in the given matrix and the rank, respectively [23],
[41]. In contrast, the computational complexity of BayesOpt
is defined as O(N 3), where N is the number of observed
samples [24], [35]–[37]. The major cause of computational
complexity is the inversion of a covariance matrix in GP
regression [24]. Although, the computational complexity of
the proposed method is higher than that of VBMF, several
studies have investigated reducing the computational com-
plexity of BayesOpt.

• A parallel processing based BayesOpt reduces the
O(N 3) to O(N 2) [30]–[32].

• A sparse approximation based BayesOpt alleviate from
O(N 3) to O(M2N ), where M is the size of subsamples
for sparse approximation;M � N [24], [38], [39].

• An exact inference based BayesOpt decreases theO(N 3)
to O(M1+1/D), where D is the dimension of objective
function, using a Cartesian product structure [40].

Therefore, there exist several possible ways to reduce the
computational complexity of the proposed method using a
proper BayesOpt acceleration algorithm. We leave the use of
BayesOpt acceleration methods to reduce the computational
complexity for future work.

V. CONCLUSION
In this paper, a novel global optimal rank selection method
of low-rank decomposition for CNN compression based on
BayesOpt was proposed. The proposed algorithm designs
the objective function suitable for rank selection and opti-
mizes it through BayesOpt to provide a global optimal
rank. It has the following characteristics: 1) It represents
the trade-off between computational complexity and accu-
racy degradation of decomposed CNNs according to the
selected ranking. 2) It reflects the dependencies of each
rank that constitutes a multi-rank, providing optimal rank
in multi-rank selection. 3) With our proposed objective
function, the combinatorial rank selection problem is con-
siderably alleviated by BayesOpt. BayesOpt ensures that
the proposed algorithm provides the global optimal rank
because it performs uncertainty based optimization by uti-
lizing the Gaussian process based on Màtern 5/2 covariance
function and the expected improvement acquisition func-
tion. To demonstrate that the proposed algorithm is glob-
ally applicable on all rank selection problems, experiments
using five representative CNNs with different structural
features (AlexNet, VGG-16, ResNet18, GoogLeNet, and
SqueezeNet) from various datasets (ImageNet, CIFAR-100,
and CIFAR-10) were conducted. The experimental results
showed that the proposed algorithm provides multi-rank

with higher compression and higher performance than the
state-of-the-art rank selection technique, VBMF.
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