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ABSTRACT Rapidly-exploring Random Trees (RRTs) have been widely used for motion planning problems
due to their ability to efficiently find solutions. Informed RRT* is an optimized version of RRT, which not
only implements the rewiring process to optimize the tree but also limits the search area to a subset of the
state space to return near-optimal solutions faster. However, limiting the state space is a function of the
obtained shortest path so that before a solution is found, the planner cannot limit the state space to a subset.
Moreover, unidirectional RRTs such as Informed RRT* take more time to find initial solutions in comparison
to the bidirectional RRTs. In this paper, we propose Hybrid RRT, which divides the planning process into
three parts: finding initial solutions by a dual-tree search, combining two trees into one, and optimizing the
solution. In order to obtain an initial solution, Hybrid RRT implements a dual-tree search, which helps it find
solutions faster than unidirectional searches. Then, it combines the start tree and the goal tree of the dual-tree
search into one so as to implement informed sampling for a single tree to optimize the current solution. The
simulation carried out in Open Motion Planning Library (OMPL), which shows that Hybrid RRT achieved
outstanding improvement over RRT* and Informed RRT*.

INDEX TERMS Motion planning, path planning, RRT, informed sampling, path optimization.

I. INTRODUCTION
MOTION planning is involved in various applications such
as Unmanned Aerial Vehicles (UAVs), Autonomous Under-
water Vehicles (AUVs), driver-less cars, virtual prototyping,
biology, and computer graphics [1]–[8]. Motion planners
need to find collision-free paths for movable agents from one
point to another in the state spaces. Several parameters define
the differences between the performances of motion planners,
such as planning time and path cost. In other words, a motion
planner needs to return low-cost paths in a short period.

Motion planning is mostly about finding paths in continu-
ous spaces, which is considered as an Np-hard problem to be
solved. In order to avoid this complexity, planners discretize
continuous spaces into discrete spaces to limit the number of
states that the planners need to check to release paths. There
are two types of motion planners: graph-based planners and
sampling-based planners.

A. GRAPH-BASED PLANNING
Graph-based methods create maps from continuous state
spaces in order to have a finite number of states so that they
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have a limited number of states to check. There are several
graph-basedmethods, such as Dijkstra [9] and A* [10]. These
methods are mostly able to return optimal solutions if at least
one solution exists, and they will return failure when there is
no solution. Therefore, they are resolution optimal and resolu-
tion complete. However, graph-based algorithms have prob-
lems with scaling with the problem dimension and size [11].

B. SAMPLING-BASED PLANNING
Sampling-based planning methods do not make a grid map
from the state space at the beginning of the planning process.
They take random samples from the state space and then
check the visibility of the sample to accept or reject it. Thus,
sampling-based methods can be scale well with the problem
dimension and size. These properties make sampling-based
methods successful in robotic motion planning and animated
characters [4]. They are probabilistically complete, which is
a weaker notion of complete [12]. It means that they are able
to return solutions with a sufficient number of samples if a
solution exists. However, they are not able to return failure if
no solution exists.

There are two types of sampling-based methods:
Multi-query and single-query methods. Multi-query planners

18658 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5831-2598
https://orcid.org/0000-0003-4894-0838
https://orcid.org/0000-0001-8414-2708
https://orcid.org/0000-0003-4324-8965
https://orcid.org/0000-0002-2343-6929


R. Mashayekhi et al.: Hybrid RRT: A Semi-Dual-Tree RRT-Based Motion Planner

such as Probabilistic RoadMap (PRM) [13] can solve several
problems with different start locations and goal locations in
the state space. They first create a roadmap by taking random
samples, then connect different locations of the map through
the created roadmap.

single-query planners such as Rapidly-exploring Random
Tree (RRT) [14] do not make a roadmap like multi-query
planners. Instead, they construct a tree rooted at the start
location and explore the state space by growing the tree
toward random samples. Once the goal location is sampled,
the exploring process will be stopped.

However, it may take time to spot a sample in the
goal area due to the random sampling process. Therefore,
RRT-Connect [15] has been proposed to address this problem.
It is a bidirectional version of RRT, which grow two trees
simultaneously, one from the start location and another one
from the goal location. Exploring the state space with two
trees makes RRT-Connect a faster planner in comparison to
RRT, especially when the goal location is challenging to be
sampled by using unidirectional searches.

Although RRT-based methods can solve the motion plan-
ning problems efficiently, they provide non-optimal solutions
[16]. It is due to the fact that they explore the state space with
the random walk so that their outputs would be a sequence
of random samples, and they do not have any procedure for
optimizing their trees.

RRT* [16] implements a rewiring operation, which leads
to near-optimal solutions. These types of planners called
asymptotically optimal, which means that they will return
near-optimal solutions by increasing the number of samples.
RRT* does not stop exploring the state spaces after a solution
is found. It continues exploring the state space with the aim
of returning better solutions than the current one. RRT* keeps
sampling all over the state space to optimize the current
solution so that it is an inefficient way due to its single-query
nature [11].

Informed RRT* [11], [17] solves this problem of RRT*
by limiting the search area to a subset of the state space so
as to return near-optimal solutions faster than the standard
version of RRT*. The subset is a function of the current
solution, which means that Informed RRT* cannot limit
the state space to a subset before a solution is found. In
other words, Informed RRT* acts similarly to RRT* before a
solution is found. Therefore, Informed RRT* only expedites
the optimization process. It still has the problems of other
unidirectional methods, which is spotting a sample in the
goal area, especially when the goal area is hidden beyond the
narrow passages.

There are some other RRT-based methods, which try to
find initial solutions faster than the standard version of RRT*
[18]–[20]. Wang et al. [18], [19] modified the sampling pro-
cess to find solutions faster than standard RRT*. However,
these methods resulted in nonuniform sample distributions.
Batch Informed Trees (BIT*) [20] limits the state space to a
subset of it, which including the start location and the goal
location in order to return initial solutions faster. Although

BIT* could return first solutions faster than RRT* in many
scenarios, it requires more time to find the first solutions in
Bug-Trap-like scenarios in comparison tomethods that do not
limit the exploring area.

Almost all RRT-based methods can be divided into two
categorizes: non-optimized versions and optimized versions.
Non-optimized versions such as RRT and RRT-Connect are
used to find initial solutions. On the other hand, optimized
versions like RRT* and Informed RRT* have been designed
to return near-optimal solutions so that they optimizing their
trees from the start moment of planning until the end. How-
ever, it makes them slower than non-optimized versions of
RRT in terms of finding initial solutions. In Addition to
these categorizes, most RRT-based methods are also cat-
egorized into two groups: unidirectional and bidirectional
methods.

In this paper, we introduce a single-query semi-
bidirectional planning method for optimal motion planning
problems called Hybrid RRT, which divides the planning time
into three phases. Phase one is to find an initial solution,
the second phase is to combine two trees of phase one into one
tree, and phase three is to optimize the solution. Hybrid RRT
implements a dual-tree search to achieve the first solutions
faster than unidirectional methods. After finding the first
solution, Hybrid RRT needs to merge its two trees into one.
Then, it optimizes the tree to find near-optimal solutions.

In order to achieve fast results out from the optimization
process, Hybrid RRT limits the state space into a subset of
the state space like Informed RRT*. Therefore, it needs to
combine two trees of phase one into one tree to be able to
implement Informed sampling on a single tree.

Hybrid RRT is neither an entirely unidirectional method
nor a fully bidirectional one. It is a combination of both
groups.Moreover, it is neither a non-optimized version nor an
optimized version. It uses a non-optimized search for finding
initial solutions, which make it faster than optimized versions
of RRT. Moreover, it implements optimization process to
be able to return near-optimal solutions. Hybrid RRT can
find first solutions as fast as RRT-Connect and returns the
near-optimal solutions as quickly as Informed RRT*.

The remainder of the paper is organized as follows.
Section II presents the necessary background for the paper,
including motion planning definition and related works. The
proposed method, Hybrid RRT, is introduced in Section III.
Section IV presents the simulation and Section IV eval-
uates the simulation results. Section VI concludes the
paper.

II. BACKGROUND
This section presents the paper background, including
the definitions of the problem, informed set, and related
literature.

A. PROBLEM DEFINITION
This paper defines the path planning problem similarly
to [11], [16]. Let X be the state space, the configurations that
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cannot be selected due to the presence of obstacles shown as
Xobs ⊂ X , the configurations that can be sampled without
having any collisions with obstacles is Xfree = cl ( Xobs). Let
show the start position as xstart ∈ Xfree and the goal area as
Xgoal ⊂ Xfree. Therefore, a path between the start position
and the goal area will be defined as a set σ : [0, 1]→ Xfree
such that σ (0) = xstart and σ (1) ∈ Xgoal .

Another important definition is path cost, which will be
shown as c : 6Xfree → R≥0. This function defines a cost to
each path, which is used as the quality criterion so that lower
path cost means more optimality. As a result, searching for
paths with lower path cost is the definition of the optimal path
planning. This definition is represented in (1).

σ ∗ = argσ∈6min{c (σ ) | σ (0) = xstart , σ (1) ∈ Xgoal,

∀s ∈ [0, 1], σ (s) ∈ Xfree} (1)

A subset of the state space that potentially can provide
shorter paths than the current one shown as Xf ⊆ X . Let cbest
be the cost of the current shortest path,

Xf = {x ∈ X | f (x) < cbest }. (2)

If a planner limits the search area to Xf , which has
fewer states than the whole state space, it then can return
near-optimal solutions faster.

Although searching within Xf can help find near-optimal
solutions faster, finding the exact subset would be compu-
tationally expensive. Therefore, an estimation of this subset
would be better to be considered for optimization purposes.
In order to have an estimated subset, a heuristic function is
required, f̂ (·). The definition of f̂ (·) is similar to (2).

B. INFORMED SET
Gammell et al. [11] defined this subset of the state space as an
n-dimensional prolate hyperspheroid. They divided the path
cost,f (x), into two different costs g(x) and h(x). The cost-
to-come, g(x), is the path cost from the start location to x.
Similarly, the cost-to-go, h(x), is the path cost from x to the
goal location. In order to estimate f (x), they estimated g(x)
and h(x). The estimation of f (x), f̂ (x), is equal to the sum of
the estimation of g(x), ĝ(x), and the estimation of h(x), ĥ(x).
ĝ(x) is the Euclidean distance between the start location

and x. Similarly, ĥ(x) is the Euclidean distance between x and
the goal location. Therefore, f̂ (x) will be defined as

Xf̂ = {x ∈ X | ‖ xstart − x ‖2 + ‖ x − xgoal ‖2≤ cbest }.

A2D example of this subset is shown in Fig. 1, in which the
start location, xstart , and the goal location, xgoal , are the focal
points of the ellipse. The transverse diameter of the ellipse
is the path cost of the shortest path, cbest , and its conjugate

diameter is obtained via
√
c2best − c

2
min, where the Euclidean

distance between xstart and xgoal shown as cmin.

C. DIRECT SAMPLING OF AN ELLIPSOIDAL SUBSET
In order to limit the sampling area to an ellipsoidal subset,
we need to have a sampler function, which returns samples

FIGURE 1. The informed set is an ellipse that the start location and the
goal location are the focal points. cmin is the Euclidean distance between
the start and the goal locations, and cbest is the cost of the current
shortest path.

from the subset instead of the whole state space. Direct
sampling from the ellipsoidal subset has introduced in [11].

This sampling process need to distribute the samples uni-
formly within the subset Xellipse ∼ U(Xellipse). It can be
achieved by distribute the sample uniformly over a unit
n-ball and then transfer them to the ellipsoidal subset,
Xball ∼ U(Xball),

xellipse = Lxball + xcenter ,

xcenter will be obtained from (xf 1 + xf 2)/2, where xf 1 and
xf 2 are the focal points of the ellipsoidal subset. Xball is the
samples inside a unit n-ball, Xball={x∈X | ‖ x ‖2≤1} [21].
The transformation is obtained by using Cholesky decom-

position of the hyperellipsoid matrix, S ∈ Rn×n,

LLT ≡ S,

(x − xcenter )T S(x − xcenter ) = 1,

S including eigenvectors corresponding to the axes of the
hyperellipsoid, {ai}, and eigenvalues corresponding to the
squares of its radii, {r2i }. The transformation, L, maintains the
uniform distribution in Xellipse [22].

As a result, the estimation of subset, Xf̂ , will be obtained
by transverse the radii and axis. The diagonal matrix of
transverse axis is

S = diag{
c2best
4
,
c2best − c

2
min

4
, . . . ,

c2best − c
2
min

4
}

and decomposition

L = diag{
cbest
2
,

√
c2best − c

2
min

2
, . . . ,

√
c2best − c

2
min

2
}

where diag{·} is the diagonal matrix.
After transforming samples from a unit n-ball to a

n-dimensional ellipsoid, they must be rotated to the world
frame. Wahba problem [23] is used to solve it.

The rotation matrix is

C = U diag{1, . . . , 1, det(U )det(V )}VT ,

where det(·) is matrix determinant, U ∈ Rn×n and V ∈ Rn×n

are unitary matrices of U6V T
≡ M through singular value

decomposition. The matrix M is calculated via the outer
product of the first column of the identity matrix, 11, and the
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transverse axis on the world frame, a1,

M = a11T1 ,

where

a1 = (xgoal − xstart )/ ‖ xgoal − xstart ‖2 .

Therefore, the informed subset will be obtained through

xf̂ = CLxball + xcenter ,

The procedure of sampling from the informed set is presented
in Alg. 7.

D. GRAPH PRUNING
Graph pruning is a process that eradicates unnecessary ver-
tices from the tree so as to keep the tree as small as possible,
which helps the planner explore the state space faster. Several
works implement graph pruning, such as [24]. In [24], each
vertex, x, has an estimated solution cost, f̂ (x), which is the
sum of the actual cost-to-come, g(x), and the estimated cost-
to-go, ĥ(x). Thus, f̂ (x) = g(x)+ ĥ(x).
g(x) is the actual cost of the vertex from the start location to

the vertex via passing through the tree. The estimated Cost-to-
go, ĥ(x), is the Euclidean distance between the vertex and the
goal location. If f̂ (x) is higher than the length of the current
shortest path, then the vertex will be removed from the tree.
Although this method keeps the tree smaller, the cost-to-come
of a vertex could get smaller due to the rewiring process,
which means that this process may remove some vertices that
could potentially provide better solutions.

Gammell et al. [17] implemented the pruning process sim-
ilar to [24], but they replaced the actual cost-to-come with
the estimated one to avoid removing vertices, which could
possibly provide better solutions. Therefore, the estimated
solution cost will be changed to f̂ (x) = ĝ(x)+ ĥ(x). In other
words, they considered the lowest cost of the path by taking
the shortest distance of x from the start location and the goal
location. As a result, the only vertices that could not provide
better solutions than the current one will be removed from the
tree. Alg. 9 presents the pruning tree process.

E. RELATED WORK
The related works of this paper are presented in this section.
Rapidly-exploring Random Tree (RRT) [14] is a tree-based
motion planningmethod that solves single-query problems by
growing a tree from the start location toward random samples.
RRT stops exploring once it adds one sample located inside
the goal area to its tree.

RRT is an efficient and straightforwardmotion planner that
explores the collision-free part of the state spaces rapidly.
However, it may take time to sample the goal region due to
its random sampling process.

Kuffner and LaValle [15] introduced a dual-tree version of
RRT, RRT-Connect, which explores the state space by imple-
menting two trees, one tree is growing from the start location,
Tstart , and another tree is growing from the goal location,
Tgoal . RRT-Connect grow Tstart and Tgoal simultaneously and

try to find a connection between them. The planner stops
exploring the state space once one connection between its two
trees is found.

RRT and RRT-Connect are able to solve high-dimensional
single-query path planning problems. However, their out-
puts remain non-optimal due to the lack of the optimization
process.

Karaman and Frazzoli [16] proposed RRT*, which has
an optimization method for RRT. The optimization process
rewires the tree around the newly added vertices by consid-
ering them as potential parents for their nearby vertices. This
method returns optimal solutions in which the path length is
defined as the optimality criterion.

Unlike RRT, RRT* does not stop exploring the state space
after an initial solution is found. It keeps sampling the state
space with the aim of optimizing the tree.

Although RRT* can return near-optimal solutions, it is
exploring all over the state space to optimize the tree, which
is not an efficient method due to its single-query nature [11].

It is better to search through the states that could possi-
bly provide better solutions than the current one instead of
all over the state space. Gammel et al. [11], [17] proposed
another version of RRT*, Informed RRT*, which limits the
search area to a subset of the state space based on the current
solution length. It helps the planner returns near-optimal
solutions faster than the standard version of RRT*.

Although RRT*, and Informed RRT* could return
near-optimal solutions, they are unidirectional searches,
which means that they may take more time to find an initial
solution than bidirectional methods.

III. THE PROPOSED METHOD
In this section, we present the proposed method, Hybrid RRT,
which is a semi-dual-tree RRT-based method.

Hybrid RRT divides the planning process into three sub-
processes: finding-an-initial-solution, combining-two-trees,
and optimizing-the-current-solution.

For finding an initial solution, Hybrid RRT implements a
dual-tree search to be able to find the first solutions faster
than the unidirectional searches. For the optimization pro-
cess, it applies informed sampling on a single-tree, which
helps it return near-optimal solutions more quickly than
other methods that do not limit their search area for the
optimization process. In other words, it uses a bidirectional
search in finding-an-initial-solution sub-process, and uses
a unidirectional search for optimizing-the-current-solution
sub-process. Therefore, it needs to convert the two trees of the
first sub-process into one to be able to pass it the third sub-
process. Thus, the second sub-process duty is to transform the
bidirectional trees into a unidirectional tree.

A. HYBRID RRT ALGORITHM
Alg. 1 outlines the steps of the Hybrid RRT method. It first
initializes the parameters of the algorithm from line 1 to
line 5. The two trees are initialized by having xstart and
xgoal as their roots. There are two other parameters, Xsoln
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and cbest , which need to be initialized. Xsoln keeps all the
vertices located within the goal region, and cbest keeps the
cost of the shortest path. Therefore, at the beginning of the
planning process, Xsoln is an empty collection, and cbest is
equal to infinity, which means that no solution is found and
the cost of going from the start location to the goal location is
infinity. Then, Hybrid RRT calls FindFirstSolution function
to find a solution. If this function could find an initial solution,
the obtained solution needs to be optimized. After finding
the first solution, the two trees need to be merged so as
to become ready for the optimization process. Therefore,
Hybrid RRT calls CombineTwoTrees function to combine the
two trees into one. Then, the obtained tree will be passed to
OptimizeTree function for the optimization process.

Algorithm 1 Hybrid RRT Algorithm
1: Va ← {xstart };Ea ← ∅;
2: Vb ← {xgoal };Eb ← ∅;
3: Ga ← (Va, Ea); Gb ← (Vb, Eb);
4: Xsoln ← ∅;
5: cbest ←∞;
6: [status, xcxn]← FindFirstSolution(Ga,Gb);
7: if status 6= Failure then
8: [Ga, cbest ,Xsoln]← CombineTwoTrees(Ga,Gb, cbest ,Xsoln, xcxn);
9: Ga ← OptimizeTree(Ga, xstart , xgoal , cbest ,Xsoln);

10: end if
11: return Ga;

1) FINDFIRSTSOLUTION FUNCTION
FindFirstSolution gets two trees (Ga and Gb) as its input
arguments. Then, it starts exploring the state space. It, first,
gets a random sample then expands Ga toward the sampled
point by Extend function. It then expands Gb toward the
newly added vertex of Ga by Connect function. Afterward,
Ga and Gb will be swapped for the next iteration. Once a link
between these two trees is found, the function returns Success
as the status, as well as the connection point of the trees,
xcxn. If the number of iterations reaches its maximum and no
link between trees is found, the function returns Failure as
the status, and null as the connection point, xcxn, so that the
planning will be stopped.

Algorithm 2 FindFirstSolution Function
1: function FindFirstSolution(Ga, Gb)
2: for i = 1 to n do
3: xrand ← Sample();
4: if Extend(Ga, xrand ) 6= Trapped then
5: if Connect(Gb, xnew) = Reached then
6: xcxn ← xnew;
7: status← Success;
8: return [status, xcxn];
9: end if
10: end if
11: Swap(Ga, Gb);
12: end for
13: xcxn ← null;
14: status← Failure;
15: return [status, xcxn];
16: end function

Extend function gets the tree and the random sample,
it then finds the nearest vertex of the tree to the sample.
Afterward, it implements the required constraints via Steer
function. Finally, it adds the sampled point to the tree if this
connection is collision-free.
Extend function provides three different status, Reached ,

Trapped , and Advanced . Reached is when the sample is
added to the tree, and Trapped is when the sample cannot be
added to the tree due to the presence of an obstacle. Finally,
if the sample is far from the tree reach and then another vertex
in the direction of the sample but nearer to the tree is added
to the tree, the function will return Advanced Alg. 3 outlines
the Extend function.

Algorithm 3 Extend Function
1: function Extend(G = (V ,E), x)
2: xnearest ← Nearest(G, x);
3: xnew ← Steer(xnearest , x);
4: if isCollisionFree(xnearest , xnew) then
5: V ← V

⋃
{xnew};

6: E ← E
⋃
{xnearest , xnew};

7: if (xnew = x) then
8: return Reached;
9: else
10: return Advanced;
11: end if
12: end if
13: return Trapped;
14: end function

Connect function duty is to connect two trees. It gets
the newly added vertex of Ga, xnew, and Gb, and then try
to add xnew to Gb by calling Extend function repeatedly.
It stops calling Extend function when Extend function returns
either Reached or Trapped . When Connect function receives
Reached from Extend function, it means that the connection
between the two trees is found. Alg. 4 presents this procedure.

Algorithm 4 Connect Function
1: function Connect(G, x)
2: repeat
3: S ← Extend(G, x);
4: until S 6= Advanced;
5: return S;
6: end function

2) COMBINETWOTREES FUNCTION
After FindFirstSolution function finds a path, it is time to
merge the two trees into one. Therefore, all vertices and edges
of the goal tree must be added to the start tree.

EstartTree = EstartTree ∪ EgoalTree
VstartTree = VstartTree ∪ VgoalTree

where EstartTree and EgoalTree stand for edges of the start
tree and the goal tree, respectively. Similarly, VstartTree and
VgoalTree are the vertices of the start tree and the goal tree,
respectively. For simplicity EstartTree and VstartTree will be
shown by E and V .
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FIGURE 2. An example of combining two trees together.

At this stage, all vertices and edges of the goal tree are
added to the start tree. However, some modifications are
needed to connect these two trees correctly. All vertices of
the goal tree must be directed to the xstart instead of xgoal .
In other words, the root of all the goal tree vertices must be
changed from xgoal to xstart .
The path is the only connection between these two trees so

that the path is the starting stage of merging these two trees.
In problem definition section, II-A, path defined as

σ [0, 1]→ Xfree such that σ (0) = xstart and σ (1) ∈ Xgoal .
FindFirstSolution function implements bidirectional search
to find solutions. Therefore, the path has two different parts;
one part is from the start tree, while another is from the goal
tree. Let xcxn be the connection vertex that is in both trees.
Therefore, the path defined as σ = σstart ∪ σgoal such that

σstart [0, 1]→ Xfree | σstart (0) = xstart , σstart (1) = xcxn,

and

σgoal[0, 1]→ Xfree | σgoal(0) = xgoal, σgoal(1) = xcxn.

Let n+ 1 be the number of vertices in σstart , and m+ 1 be
the number of vertices in σgoal . So, σstart can be defined such

σstart = σstart (0) ∪ σstart (
1
n
) ∪ σstart (

2
n
)

∪ . . . ∪ σstart (
n− 1
n

)

∪σstart (1) =
n⋃
i=0

σstart (
i
n
)

Similarly, σgoal can be defined such

σgoal = σgoal(0) ∪ σgoal(
1
m
) ∪ σgoal(

2
m
)

∪ . . . ∪ σgoal(
m− 1
m

)

∪σgoal(1) =
m⋃
i=0

σstart (
i
m
)

σstart is already part of the start tree, while σgoal needs to be
modified to be part of the start tree. The first step is to remove

the edge of xcxn and its parent in the goal tree and add it to the
start tree. In other words, the rule of child and parent must be
exchanged, xcxn must be parent of its parent in the goal tree,
σgoal(m−1m ).

Therefore, the edge in which σgoal(m−1m ) was the parent and
xcxn was the child must be removed from E . Let show an edge
with its two vertices as (xparent , xchild ). So,

E ← E\(σgoal(
m− 1
m

), xcxn)

Then, the new edge in which xcxn is the parent of σgoal(m−1m )
must be added to E .

E ← E ∪ (xcxn, σgoal(
m− 1
m

))

As a result, the two trees connection is no longer xcxn. They
are now connected via the previous parent of xcxn, σgoal(m−1m ).
In other words, xcxn gets one edge closer to xgoal . This process
must be continued until xgoal added to the start tree. It means
that all the edges of σgoal must be removed from E .

E ← E\(
0⋃

i=m

(σgoal(
i− 1
m

), σgoal(
i
m
)))

Instead of the removed edges, the reversed version of them
must be added to E .

E ← E
0⋃

i=m

(σgoal(
i
m
), σgoal(

i− 1
m

))

After changing the directions of all edges of σgoal , the ver-
tices of the path have their way back to xstart , which means
that they are connected to the start tree correctly.

All vertices of the goal tree can be categorized into three
groups from the viewpoint of σgoal : the first group is the
vertices located on the path, the second group is the vertices
that pass from at least one of the path vertices to reach
their root, xgoal , and finally, the third group is the vertices
that in their way to xgoal , they do not pass from any of the
path vertices. The third group is connected to xgoal via other
branches of the goal tree than the path.

VOLUME 8, 2020 18663



R. Mashayekhi et al.: Hybrid RRT: A Semi-Dual-Tree RRT-Based Motion Planner

By reversing the path edges in the goal tree part, the ver-
tices of the first group are now connected to the start tree
correctly. The second group, which are connected to their
roots via at least one of the path vertices, they are now
connected to xstart instead of xgoal . It is due to the fact that
when they are going back to their root, they need to pass via
at least one of the path vertices; once they reached the path
vertices, they will be directed to xstart . The third group, which
are connected to xgoal without passing from any of the path
vertices, they are also connected to the xstart . When they start
going back to their root, they will reach xgoal , which is now
a part of the start tree. Therefore, all the vertices of the goal
tree are connected to the start tree correctly. This procedure
is presented algorithmically in Alg. 5.

Fig. 2 shows an example of merging two tree by imple-
menting the presented methodology. Fig. 2a shows the two
trees before start merging them. The start tree highlighted by
blue, and the goal tree highlighted by orange. The vertex E is
connection vertex, xcxn. The path between vertex A, as xstart ,
and L as xgoal , is shown in Fig. 2b, in which the vertices and
the edges of the path are highlighted by green color.

The first step is to remove the edge of xcxn,E , and its parent,
F , in the goal tree, and add another edge in which xcxn, E , will
be the parent of F , Fig. 2c.
Similar to the first step, all other path edges that belong

to the goal tree must be removed from the edge matrix, and
their new versions in which the rule of child and parent
are swapped must be added. Therefore, the next change is
to remove G from its parent, K , and connect it as a child
to F , Fig. 2d. By replacing the parent of G, vertex H is now
connected to the start tree correctly, because, in its way back
to the root, it comes to vertex G so that it will be directed
to xstart , vertex A, instead of going to xgoal , vertex L.

Similarly, K must be disconnected from L and then con-
nected to G as one of its children. By doing so, J will be
connected to the start tree, too, Fig. 2e.

The finall step is to add L, xgoal , as a child to K , Fig. 2f.
As a result, all other vertices that are connected to xgoal , such
as I , have their path back to xstart , vertex A.

Algorithm 5 CombineTwoTrees Function
1: function CombineTwoTrees(Ga, Gb, cbest , Xsoln, xcxn)
2: E ← Ea

⋃
Eb;

3: V ← Va
⋃

Vb;
4: G = (V , E);
5: child = xcxn.ParentInGoalTree;
6: newParent = xcxn;
7: while isNotNull(child) do
8: oldParent = child .parent;
9: E ← E \ {(oldParent, child)};
10: E ← E

⋃
{(newParent, child)};

11: newParent = child;
12: child = oldParent;
13: end while
14: Xsoln ← {v ∈ V | v ∈ Xgoal };
15: cbest ← minxsoln ∈ Xsoln{Cost(xsoln)};
16: return [G, cbest , Xsoln];
17: end function

3) OPTIMIZETREE FUNCTION
In this stage, the planner has found a solution by using
the dual-tree search and then merge the two trees into one.
Therefore, it is time to optimize the solution. There are several
methods for optimizing the current solution of RRT-based
methods. Among them, informed sampling has shown a sig-
nificant impact by limiting the state space to one of its subsets
to make exploring area smaller, which helps the planner
return near-optimal solutions faster than other methods.

Algorithm 6 OptimizeTree Function
1: function OptimizeTree(G, xstart , xgoal , cbest , Xsoln)
2: for i = 1 to n do
3: xrand ← InformedSample(xstart , xgoal , cbest );
4: if Extend∗(G, xrand ) 6= Trapped then
5: if xnew ∈ Xgoal then
6: Xsoln ← Xsoln

⋃
{xnew}

7: end if
8: previous_cbest ← cbest ;
9: cbest ← minxsoln ∈ Xsoln{Cost(xsoln)};
10: if cbest < previous_cbest then
11: PruneTree(V , E, cbest );
12: end if
13: end if
14: end for
15: return G;
16: end function

Alg. 6 outlines the steps of OptimizeTree function, which
uses Informed sampling to optimize the tree. InformedSample
is called to return a sample within the subset, and then the
xrand returned from the InformedSample will be passed to
the Extend∗ to expand the tree toward the xrand . If Extend∗

function was not successful in adding xnew to the tree, then
the algorithm goes for the next iteration and takes another
sample. Otherwise, the newly added vertex, xnew, will be
checked to find whether it is located within the goal area,
Xgoal . If so, xnew will be added to Xsoln. Then, the shortest
paths will be calculated, and it will be compared with its
previous value. If a better value is found, the tree must be
pruned based on the new value of cbest .
InformedSample gets xstart , xgoal, and cbest and then

returns a sample within the informed set. This sampling
process is outlined in Alg. 7.

Algorithm 7 InformedSample Function
1: function InformedSample(xstart , xgoal , cbest )
2: cmin ←‖ xgoal − xstart ‖2;
3: xcenter ← (xstart + xgoal )/2;
4: C← RotationToWorldFrame(xstart , xgoal );
5: r1 ← cbest/2;

6: {ri}i=2,...,n ← (
√
c2max − c2min)/2;

7: L← diag{r1, r2, . . . , rn};
8: xball ← SampleUnitBall;
9: xrand ← (CLxball + xcenter )

⋂
X;

10: return xrand ;
11: end function

Extend∗ function is the optimized version of Extend . It
includes the rewiring process, which considers xnew as a
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potential parent for its near vertices. Alg. 8 outlines Extend∗

function.

Algorithm 8 Extend* Function
1: function Extend∗(G = (V ,E), x)
2: xnearest ← Nearest(G, x);
3: xnew ← Steer(xnearest , x);
4: if isCollisionFree(xnearest , xnew) then
5: V ← V

⋃
{xnew};

6: xmin ← xnearest ;
7: Xnear ← Near(G, xnew, rRRT∗ );
8: cmin ← Cost(xnearest , G)+ Cost(Line(xnearest , xnew));
9: for each xnear ∈ Xnear\xnearest do
10: if isCollisionFree(xnear , xnew) & (Cost(xnear , G) +

Cost(Line(xnear , xnew)) < cmin) then
11: xmin ← xnear ;
12: cmin ← Cost(xnear , G)+ Cost(Line(xnear , xnew));
13: end if
14: end for
15: E ← E

⋃
{xmin, xnew};

16: for each xnear ∈ Xnear\xmin do
17: if isCollisionFree(xnear , xnew) & (Cost(xnew, G) +

Cost(Line(xnew, xnear )) < Cost(xnear , G)) then
18: xparent ← Parent(xnear , G);
19: E ← E \ {(xparent , xnear )};
20: E ← E

⋃
{(xnew, xnear )};

21: end if
22: end for
23: if (xnew = x) then
24: return Reached;
25: else
26: return Advanced;
27: end if
28: end if
29: return Trapped;
30: end function

PruneTree is removing the vertices of the tree which are
not able to provide better solutions than the current one.
This function removes the leaves of the tree that have the
estimated cost, f̂ (v) = ĝ(v) + ĥ(v), more than the cur-
rent shortest path cost, cbest . This procedure is presented in
Alg. 9.

IV. SIMULATION
Hybrid RRT was compared to other RRT-based methods
on simulated problems in R3 and R6 using Open Motion
Planning Library (OMPL) [25]. The experiments have been
carried out on a laptop with the Intel Core i7-4600M pro-
cessor and 16 GB of RAM. The experiments were run in
Ubuntu 18.04.3 LTS installed on VMware (8 GB of RAM
were assigned to the VMware).

Four different state spaces are selected for the simulation,
which are the built-in state spaces of OMPL App. These four
state spaces are shown in Fig. 3 and Fig. 4. The planners were
compared together in these state spaces based on their ability
to find initial solutions, and their ability to return near-optimal
solutions. The planners were run 100 times in each scenario.

OMPL is a motion planning library written in C++,
which is integrated with the Robot Operating System
(ROS) [26]. OMPL App is the front-end for OMPL,
which has several rigid bodies and state spaces. Simula-

FIGURE 3. The OMPL App BugTrap_planar state space. It includes two
rigid bodies representing the start location, xstart , and the goal location,
xgoal .

Algorithm 9 PruneTree Function
1: function PruneTree(V ⊆ X , E ⊆ V × V , cbest ∈ R>0)
2: do
3: Vprune ← {v ∈ V | f̂ (v) > cbest , and ∀w ∈ V , (v,w) /∈ E};

4: E
−
← {(u, v) ∈ E | v ∈ Vprune};

5: V
−
← Vprune;

6: while Vprune 6= ∅;
7: end function

tion carried out on four different OMPL App scenarios,
BugTrap_planar, Maze_planar, Home, and Twistycool. Bug-
Trap_planar (Fig. 3), and Maze_planar (Fig. 4a) are 3D state
spaces, while Home (Fig. 4b), and Twistycool (Fig. 4c) are
6D state spaces.

Simulations are divided into two categories: the ability to
find initial solutions and the ability to return near-optimal
solutions.

A. FIND INITIAL SOLUTIONS
In this test, Hybrid RRT has been compared to RRT, RRT-
Connect, RRT*, Informed RRT*, and BIT*. In order to test
the ability of planners in terms of finding initial solutions,
each planner has unlimited time to find an initial solution.
All planners found first solutions for 100 times.

1) BUGTRAP_PLANAR
BugTrap_planar, Fig. 3, is an OMPL App state space with
3 Degree of Freedoms (DoFs), including one rotation and two
real vectors (x-axis and y-axis). This simulation is designed
to compare the ability of different planners in terms of finding
initial solutions.

As can be seen in table 1, Hybrid RRT could return
initial solutions with nearly the same amount of time as
iRRT-Connect, and faster than other planners.

B. FIND NEAR-OPTIMAL SOLUTIONS
In this simulation, Hybrid RRT has been compared to RRT*
and Informed RRT* in terms of finding near-optimal solu-
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FIGURE 4. The OMPL state spaces used for the simulation. The rigid bodies are highlighted by red color. Each state space has two rigid bodies, which are
representing the start location, xstart , and the goal location, xgoal .

TABLE 1. The obtained results of the planners in BugTrap_planar
scenario. Each planner was run for 100 times, and the average time
needed to find the initial solutions are presented.

tions in a limited time. In each scenario, the planners had
limited time for finding solutions and optimizing them.

1) MAZE_PLANAR
Maze_planar, Fig. 4a, is an OMPL App state space with
3 Degree of Freedoms (DoFs), including one rotation and two
real vectors (x-axis and y-axis). The planners had 5 seconds
to solve this problem in each run.

2) HOME
Home is 6DoFs problems (3 coordinate planes (x, y, z) and
their rotations (roll, pitch, yaw)) Fig. 4b. In order to return
near-optimal solutions, the planners must pass through the
window located between xstart and xgoal . Ten seconds had
been given to planners to solve this problem in each run.

3) TWISTYCOOL
Twistycool is a 6DoFs problem, Fig. 4c, which is difficult
to be solved due to offering only a small passage to connect
xstart to xgoal . There is a wall in the middle of the map, and it
has only a small window, which is the only passage through
the wall so that the planners need to find it to solve the
problem. Due to the difficulty of this scenario, each planner
had 100 seconds to solve the problem in each run.

V. EVALUATION
The evaluation of the simulation is represented in this section.
In the first simulation, finding initial solutions, it can be
seen that the optimized methods (RRT*, Informed RRT*,
and BIT*) are slower than non-optimized versions. It is due
to the fact that the optimized versions try to rewire their
trees from the early stage of planning so that this process
takes time and does not let them expand their trees as fast as
non-optimized versions. Hybrid RRT postpones the rewiring
trees until it finds an initial solution. Then, it starts optimizing
its solutions. This ability makes Hybrid RRT a fast planner in
terms of finding initial solutions.

The next three simulations were carried out to compare the
ability of RRT*, Informed RRT*, and Hybrid RRT in terms of
returning near-optimal solutions. The success rates over time
of planners in three scenarios are shown in Fig. 5, and the
median of path lengths are shown Fig. 6.

In all the scenarios, Hybrid RRT could achieve 100%
success rate, while RRT* and Informed RRT* could only
achieve complete success in Maze_planar, which is a 3DoF
problem.

Although all the planners could achieve 100% success
rate in Maze_planar, they reached it by consuming different
amounts of time. Hybrid RRT reached 100% after only 0.4s,
while RRT* and Informed RRT* achieved it after approx-
imately 4s. Therefore, Hybrid RRT acted ten times faster
than other planners in Maze_planar scenario. In terms of path
length, Hybrid RRT could achieve near-optimal solutions
faster and RRT* and Informed RRT*.

In the Home scenario, Hybrid RRT could reach 100%
after about 8s, while RRT* and Informed RRT* could only
achieve approximately 75% and 65% after 10s, respectively.
Moreover, Hybrid RRT was the fastest planner in terms of
optimizing the solution. Hybrid RRT obtained solution cost
of 310 before 3s, while Informed RRT* achieved it after 6s,
and RRT* could not reach this level at the end of the planning
time frame.
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FIGURE 5. The rate of success of the three planners versus time on all the
scenarios.

Twistycool is the most challenging problem to be solved
among all the simulated scenarios. Hybrid RRT was able
to reach total success after around 45s, while RRT* and
Informed RRT* were not able to reach 100%. They could
achieve nearly 80% after 100s. RRT* and Informed RRT*
could optimize their solution to approximately 470 after 100s,
which has been obtained by Hybrid RRT after only 35s.

VI. CONCLUSION
We presented a new path planner, Hybrid RRT, which com-
bines the abilities of bidirectional and unidirectional searches
to be able to surpass them. Hybrid RRT implements a
bidirectional search to find an initial solution faster than
unidirectional methods. Then, it merges its two trees into one
so as to optimize it via implementing informed sampling for
a single tree.

FIGURE 6. The solution cost versus time of the three planners on all the
scenarios. Error bars represent a nonparametric 95% confidence interval
for median solution cost.

The simulations show that Hybrid RRT outperforms RRT*
and Informed RRT* in terms of the success rate as well as
optimization time. It has a higher success rate, and it could
return near-optimal solutions faster. These abilities make
Hybrid RRT suitable for various motion planning problems.
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