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ABSTRACT Federated learning is a newly emerged distributed machine learning paradigm, where the
clients are allowed to individually train local deep neural network (DNN) models with local data and
then jointly aggregate a global DNN model at the central server. Vehicular edge computing (VEC) aims
at exploiting the computation and communication resources at the edge of vehicular networks. Federated
learning in VEC is promising to meet the ever-increasing demands of artificial intelligence (AI) applications
in intelligent connected vehicles (ICV). Considering image classification as a typical AI application in VEC,
the diversity of image quality and computation capability in vehicular clients potentially affects the accuracy
and efficiency of federated learning. Accordingly, we propose a selectivemodel aggregation approach, where
‘‘fine’’ local DNNmodels are selected and sent to the central server by evaluating the local image quality and
computation capability. Regarding the implementation of model selection, the central server is not aware of
the image quality and computation capability in the vehicular clients, whose privacy is protected under such a
federated learning framework. To overcome this information asymmetry, we employ two-dimension contract
theory as a distributed framework to facilitate the interactions between the central server and vehicular
clients. The formulated problem is then transformed into a tractable problem through successively relaxing
and simplifying the constraints, and eventually solved by a greedy algorithm. Using two datasets, i.e.,MNIST
and BelgiumTSC, our selective model aggregation approach is demonstrated to outperform the original
federated averaging (FedAvg) approach in terms of accuracy and efficiency. Meanwhile, our approach also
achieves higher utility at the central server compared with the baseline approaches.

INDEX TERMS Federated learning, vehicular edge computing, model aggregation, contract theory.

I. INTRODUCTION
Federated learning has been proposed by Google as a dis-
tributed machine learning paradigm to push the computa-
tion of artificial intelligence (AI) applications into more
and more end devices while protecting the privacy of end
users [1]. In federated learning, a central server sends an
initialized global deep neural network (DNN)model to clients
as the first step. Based on the initialized global DNN model,
clients separately train local DNN models with their local
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data as the second step. Instead of directly sending their
local data, clients send the trained local DNN models back
to the central server as the third step. The above steps are
repeated in multiple rounds until the training accuracy of
the global DNN model meets the requirement of the central
server. Due to the above advantages, federated learning has
been applied to many application scenarios, such as financial
applications [1], virtual keyboard applications [2], and elec-
tronic health applications [3].

Vehicular edge computing (VEC) is a fast-developing
vehicular technology, where vehicles and roadside servers at
the network edge contribute communication, computation,
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storage and data resources to close proximity of vehicular
users [4]. With the rapid penetration of intelligent connected
vehicles (ICV), there is an urgent need to study federated
learning in VEC as an important technical framework to meet
the ever-increasing demands of AI applications in vehicular
networks. In this paper, we consider image classification as a
typical AI application in VEC [5]. As we know, the images
captured from on-board cameras usually contain sensitive
information with individual privacy of the vehicular clients.
Using federated learning in VEC is beneficial in exploiting
vehicular images for DNN training while protecting their
privacy. For example, the vehicular clients use on-board cam-
eras to capture images, which are classified and labeled by
automatic labeling technology [6]. After that, the vehicular
clients are selected by the central server to participate in
federated learning in a supervised fashion and generate global
and local DNN model updates.

The major challenge of federated learning in VEC is two
folds. On the one hand, the diversity of image quality may
cause severe loss of the accuracy of model aggregation.
In VEC, the captured images generally suffer from motion
blur, noise, and distortions [7], especially motion blur that
is usually with different levels for different vehicular clients.
During local training, the local DNNs are tuned according
to the local images, and therefore, only work with the best
accuracy under the specific statistics of the motion blur.
As a result, the overall accuracy of the aggregated global
DNNmodel will severely degrade if inappropriate local DNN
models are involved. On the other hand, the diversity of com-
putation capability has an impact on the efficiency of model
aggregation. The difference in computation capability leads
to different latency of training local DNN models. For syn-
chronization, the central server performs model aggregation
only after receiving all the local DNN models. This means
that the vehicular clients with low computation capability
hinder the efficiency of model aggregation [8].

To improve the accuracy and efficiency of model aggre-
gation, this paper proposes a selective model aggregation
approach. First of all, we exploit a geometric model that
illustrates the relationship between the object of interest and
the camera in each vehicular client. The geometric model is
used to evaluate the image quality in the motion blur level
by observing the instantaneous velocity of each vehicular
client. After that, the computation capability is quantified via
a parameter of resource consumption. By evaluating local
image quality as well as computation capability, the ‘‘fine’’
local DNN models on the ‘‘fine’’ clients are selected and
sent to the central server for aggregation. Since federated
learning prevents from sending local data, the central server
is not aware of the image quality and computation capability
of vehicular clients, which is called information asymmetry.
To deal with the information asymmetry, the selection pro-
cedure of the ‘‘fine’’ local DNN models is formulated as
a two-dimensional image-computation-reward contract the-
ory problem. The formulated problem is transformed into
a tractable problem through relaxing and simplifying the

complicated constraints, and eventually solved by a greedy
algorithm. In summary, the main contributions of the paper
are listed as follows.

• We study federated learning in VEC to meet the
rapid-growing demands of AI applications in ICV. For
federated learning with image classification, a selective
model aggregation approach is proposed to reduce the
influence from the diversity of image quality and com-
putation capability in vehicular clients.

• A geometric model that illustrates the relationship
between the object of interest and the camera in each
vehicular client is built up to evaluate the image qual-
ity in the motion blur level. According to the model,
the image quality could be implicitly predicted by
observing the instantaneous velocity of each vehicular
client.

• To tackle the information asymmetry caused by feder-
ated learning, the model selection procedure is formu-
lated as a two-dimensional contract theory problem. The
problem is successively relaxed and simplified into a
tractable problem, and solved by a greedy algorithm.

• Using the MNIST and BelgiumTSC datasets, the pro-
posed selective model aggregation approach is shown to
outperform the original federated averaging (FedAvg)
approach in terms of the accuracy and efficiency of
model aggregation. Also, our approach can achieve
higher utility at the central server compared with exist-
ing baseline approaches.

The rest of this paper is organized as follows. Section II
presents related work of federated learning in edge comput-
ing and distributed networks. Section III describes a gen-
eral framework of federated learning in VEC. Section IV
presents the system model for image quality, computa-
tion capability, vehicular client utility and type, and central
server utility. In Section V, we describe contract formulation
to the model selection procedure and elaborate the solu-
tion. Section VI shows performance evaluation and numeric
results. Section VII gives conclusions of the paper.

II. RELATED WORK
The challenging problem of federated learning in edge com-
puting and distributed networks mainly lies in the hetero-
geneity of clients. For example, heterogeneous clients have
different data quality, amount of data, computation capabil-
ity (i.e., amount of computation resources), communication
condition, and willingness to participate.

To improve the performance of model updates, the authors
in [9] design a greedy algorithm to find out as many clients
with high computation capability and good wireless channel
condition as possible. Under bandwidth and time limitation,
the authors in [10] design a heuristic algorithm to assign
the clients who are willing to upload their local data to a
central server. The uploaded data is constructed for approxi-
mately independent and identically distributed (i.i.d.), which
increases the classification accuracy. In these studies, it is not
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TABLE 1. A comparison about client selection for federated learning in edge computing and distributed networks.

practical to assume that the clients contribute their resources
without the compensation of the cost of consuming resources.
Accordingly, the authors in [11], [12], [13] utilize game
theory to attract clients to share their resources. In [11],
the authors use the Stackelberg game to incentive clients to
contribute their data resources for improving the learning
accuracy of the model. Similarly, the authors in [12] use
the Stackelberg game to incentive clients to contribute their
computation resources for reducing the latency of model
training. In [13], the authors adopt the Stackelberg game
to study the interaction between participating clients and
an edge server. The interaction includes the strategies of
participating clients and the edge server, i.e., local relative
accuracy and reward. The participating clients make opti-
mal local relative accuracy to maximize their benefits. Then
the edge server makes optimal reward to its benefit, which
improves the global accuracy of model training. But the
above studies assume that the central server is aware of
clients’ data quality, computation capability, energy state,
and willingness to participate, namely information asymme-
try. To overcome the information asymmetry, contract the-
ory is a powerful tool to model the incentive mechanism
[15], [16]. The authors in [14] use a multi-weight subjec-
tive logic model to design a reputation-based worker selec-
tion scheme for reliable federated learning. Then, they use
contract theory to stimulate high-reputation workers with
high-quality data to participate in model training, which
reduces the latency of model training. In addition, a con-
sortium blockchain is used to manage the reputation in a
decentralized manner. The above existing work focus on
mobile edge computing (MEC) [9], [13] and distributed net-
works [10], [11], [12], [14]. In this paper, we study federated
learning in VEC, which is important for generalizing AI
applications in ICV, although it has not been reported in other
work. At the same time, we employ two-dimensional contract
theory to select some ‘‘fine’’ vehicular clients to participate in

model aggregation, which reduces latency of model training
and improves accuracy of model training. Table 1 gives the
comparison of existing related work and our work.

III. FEDERATED LEARNING IN VEC
In this section, we first propose a general framework for fed-
erated learning in VEC. Then we describe the selective model
aggregation approach. The mathematical notations used in
this paper are listed in Table 2.

A. A GENERAL FRAMEWORK
As shown in Fig. 1, the general framework of federated
learning in VEC consists of the following components:

• Central Server: Central server plays a core role in
the procedure of federated learning. It communicates
with vehicular clients to collect the updated local
DNN models and perform model aggregation. We take
image classification as a typical AI application in VEC.
DNN-based image classification has been widely used
in autopilot and interactive navigation for ICV, as well
as object tracking and event detection in ITS [17], [18].
To obtain high accuracy and efficiency of model aggre-
gation, the central server should evaluate the image qual-
ity and computation capability of vehicular clients, and
select the ‘‘fine’’ models from vehicular clients.

• Vehicular Client: Vehicular clients are equipped with
a set of built-in sensors, such as cameras, GPS,
tachographs, lateral acceleration sensors, and also
accommodate storage space, computation and commu-
nication resources [18]. The built-in sensors are used to
capture images that may be preprocessed for data aug-
ment. After that, the preprocessed images are classified
and labeled by automatic labeling technology [6], and
are cached in vehicular clients. After receiving a request
from a central server, vehicular clients separately train
local DNN models with their local images. Vehicular
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FIGURE 1. A general framework of federated learning in vehicular edge computing.

TABLE 2. Summary of main notations.

clients send updated the local DNNmodels to the central
server for model aggregation.

FIGURE 2. Selective model aggregation. Three vehicular clients are
illustrated in the case, where vehicular clients 1 and 2 are finally selected
while vehicular client 3 is not, according to the contract based procedure.

Based on the principle of federated learning, the original
algorithm, i.e., federated averaging (FedAvg), will randomly
assign some vehicular clients to perform tasks of training
the local DNN models [19]. The selected vehicular clients
have diverse image quality and computation capability, which
reduces the accuracy and efficiency of model aggregation.
To cope with the above dilemma, we propose a selective
model aggregation approach.

B. SELECTIVE MODEL AGGREGATION
As shown in Fig. 2, the main procedure of selective model
aggregation has the following steps.

• Step 1 (Contract Based Selection): The central server
initializes a global DNN model denoted as w(0). Based
on the historical records of vehicular clients, the cen-
tral server evaluates their image quality and computa-
tion capability. The details about the utilized evalua-
tion method are presented in Section IV. The central
server designs two-dimensional contract items for vehic-
ular clients. Each item includes the amount of images,
the amount of computation resources and the reward. All
the contract items are broadcasted to vehicular clients
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periodically. The contract items are signed if they are
accepted by the corresponding type of vehicular clients.
For example, vehicular clients 1 and 2 are selected while
vehicular client 3 is not, in Fig. 2.

• Step 2 (Global Model Download): After confirming the
contract items, vehicular clients 1 and 2 download the
global DNN model w(0) from the central server.

• Step 3 (Local Model Training): According to the pre-
designed contract items, vehicular clients 1 and 2 train a
local DNN model by using their local images and com-
putation resources. More specifically, vehicular client 1
uses the global DNN model w(0) and a number of x1
local images to conduct the forward-backward prop-
agation algorithm to minimize the local loss function
F1(w(0)). After E rounds of local iterations, vehicular
client 1 updates the local DNN model wE

1 (0). Similarly,
vehicular client 2 updates the local DNN model wE

2 (0).
• Step 4 (Updated Local Model Upload): To meet syn-
chronization requirements, the updated local DNNmod-
elswE

1 (0) andw
E
2 (0) are sent to the central server in time.

• Step 5 (Global Model Aggregation):After receiving the
updated local DNNmodelswE

1 (0) andw
E
2 (0), the central

server aggregates them to update the global DNNmodel,
which generates the global DNN model w(1). Also,
the central server aggregates the local loss functions
F1(wE

1 (0)) and F2(w
E
2 (0)) as a new global loss function

F(w(1)) = x1 F1(wE1 (0))+x2 F2(w
E
2 (0))

x1+x2
[19].

Steps 1 to 5 form one global iteration (i.e., one communi-
cation round). In the k-th global iteration, the change of the
global loss function is denoted as1Fk = F(w(k))−F(w(k−
1)), namely global loss decay [20]. The procedure of selective
model aggregation is repeated iteratively until 1F reaches a
predefined threshold.

IV. SYSTEM MODEL
We now consider a general scenario where a central server
schedules a set of vehicular clients (denoted as M ). In the
model aggregation, the heterogeneity of resources among the
vehicular clients affects the accuracy and efficiency of model
aggregation. In other words, the diverse image quality and
computation capability affect the accuracy and efficiency of
model aggregation, respectively. Each vehicular client knows
exactly its image quality and computation capability, but the
image quality and computation capability are not available to
the central server. This means that there exists asymmetric
information between the vehicular clients and the central
server. To overcome the above problem, the central server can
leverage contract theory to design an incentive mechanism
to motivate the vehicular clients to participate in the model
aggregation. In contract theory, an employer makes optimal
contracts for the employees when the employer does not
know the privacy information of each employee [15]. Here,
contract theory is used to model the interactions between
the central server and the vehicular clients under information
asymmetry. The central server acts as the employer and offers

different contract items to the vehicular clients. The vehicular
clients act as the employees and select the contract items
matching their own types.

Next, we define the image quality and computation capa-
bility of vehicular clients. Based on the image quality and
computation capability, we define the utilities of the vehic-
ular clients and the types of the vehicular clients. Finally,
we model the utility of central server.

A. IMAGE QUALITY
Due to the mobility of vehicles, the images captured by
on-board cameras generally suffer from motion blur, noise,
and distortion [21], [22]. The noise and distortion in different
vehicular clients may follow identical statistical distribution,
while the motion blur level varies with instantaneous velocity
of each vehicular client [7]. For depicting the motion blur
level caused by instantaneous velocity, we utilize a geometric
model to illustrate the relationship between an object of
interest and the on-board camera. According to the model,
the motion blur level can be implicitly predicted by observing
the instantaneous velocity of each vehicular client. By [7],
we have

v′ =
σ l

H [s cos(δ)− (g+ l) sin(δ)]
, (1)

where v′ is the relative velocity between velocity v of vehicu-
lar client and velocity vo of the object, σ is the perpendicular
distance from the pinhole to the starting point of an object,
l is the length of the motion blur on the image plane, H is
the exposure time interval, s is the camera focal length, δ is
the angle between the image plane and the motion direction,
and g is the starting position of the object on the image plane.
We denote the charge-coupled device (CCD) pixel size in the
horizontal direction as Q, and have

L =
v′H [s cos(δ)− QG sin(δ)]

v′HQ sin(δ)+ σQ
, (2)

where G and L are the starting position of the object and the
level of motion blur in the image (in pixels), respectively.
As shown in Fig. 3, considering the case where the image
plane and the motion direction are parallel (δ = 0), and
the object of interest is static (vo = 0), Equation (2) is
transformed into

L =
vsH
σQ

, (3)

where sH
σQ is a parameter of the on-board camera. The equa-

tion directly shows that low instantaneous velocity means the
low motion blur level.

Based on the motion blur level, we try to evaluate the
image quality. By [5], we consider that when the motion
blur level of training images is more similar to that of testing
images, the higher the classifying accuracy is resulted. As a
consequence, we measure the image quality by function β
that has the form as

β = β(L,Lt ), (4)
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FIGURE 3. Geometric model for image quality analysis.

FIGURE 4. Image quality with motion blur level.

where Lt is the given motion blur level of testing images.
Function β has the following characteristics. If L is approxi-
mated to Lt , β(L,Lt ) is larger; and vice versa. If |L1 − Lt | =
|L2 − Lt | and L1 < L2, we have β(L1,Lt ) ≥ β(L2,Lt ). To
satisfy the above characteristics, β(L,Lt ) is defined by

β(L,Lt ) =
{
eq1(L−Lt ), 0 ≤ L ≤ Lt ,
e−q2(L−Lt ),Lt ≤ L,

(5)

where q1 and q2 are two predefined constants. In Fig. 4,
we shows an example of function β, where q1 = 0.5, q2 =
0.8 and Lt = 6.

In the k-th global iteration, based on the image quality,
we express the valuation function of vehicular client m as

rk,m = βk,mhk (pk,m), (6)

where βk,m is the image quality for vehicular client m,
pk,m is the reward for contributing images and computation
resources to the central server, and hk (pk,m) is a revenue
function which is increased with the increasing of the reward
pk,m. The similar valuation function appears in [23].

B. COMPUTATION CAPABILITY
For vehicular client m, contributing images and computation
resources incurs a cost of resource consumption, which is

denoted as

ck,m = αk,mxk,m + Ek,mek,mxk,mf 2k,m, (7)

where αk,m is the unit cost for collecting each image, xk,m is
the amount of images, and fk,m is the amount of compu-
tation resources. Ek is regarded as a constant for all the
vehicular clients [14], [24]. According to [25], ek,m =

ιk,mbk,mηk,mρk,m where ιk,m is the unit cost for the compu-
tation resource consumption, bk,m is the size of each image,
ηk,m is the effective switched capacitance that depends on
the chip architecture, and ρk,m is the number of CPU cycles
to process one bit. We consider a special case that αk,m =
µkek,m, where µk could be identical for all the vehicular
clients. The cost of vehicular client m is simplified into

ck,m = µkek,mxk,m + Ekek,mxk,mf 2k,m. (8)

With a lower ek,m, vehicular client m can be more suitable to
provide computation resources at a lower cost. Thus, ek,m is a
key factor of the computation capability of vehicular clientm.

C. UTILITY FUNCTION AND TYPE OF VEHICULAR CLIENT
The utility of vehicular client m is related to the difference
between its valuation and cost. Using (6) and (8), the utility
of vehicular client m is shown by

uk,m = βk,mhk (pk,m)− µkek,mxk,m − Ekek,mxk,mf 2k,m. (9)

To formulate the type of vehicular client m, we first trans-
form (9) with ek,m as follows

ûk,m =
uk,m
ek,m
=
βk,m

ek,m
hk (pk,m)− µkxk,m − Ekxk,mf 2k,m.

(10)

The authors in [23] has claimed that the transformation has
no impact on contract design.Wewill discuss the details later.
The type of vehicular client m is represented by θk,m =

βk,m
ek,m

.
Definition 1: In the k-th global iteration, the types of vehic-

ular clients are sorted in an ascending order and classified into
θk,1, . . . θk,N , which follows

θk,1 < ... < θk,n < ... < θk,N ,N ≤ M . (11)

The higher order of θ implies that they have greater avail-
ability to contribute their images and computation resources
in the local DNN model training. Each vehicular client can
easily determine its own type by measuring its image quality
and computation capability while the central server is totally
not aware of their exact types. But the central server can
only obtain the number of each type vehicular clients through
observing their historical records. Let Mk,n represent the
number of vehicular clients belonging to type-n in the k-th
global iteration. We have

∑
n∈N Mk,n = Mk . The utility of

type-n vehicular client is expressed by

ûk,n = θk,nhk (pk,n)− ck,n(xk,n, fk,n), (12)

where ck,n(xk,n, fk,n) = µkxk,n + Ekxk,nf 2k,n.
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D. UTILITY FUNCTION OF CENTRAL SERVER
In a certain global iteration, the utility of the central server is
calculated by

Uk = Rk − Ck , (13)

where Ck is the cost function in terms of rewards, and Rk
is the revenue function in terms of images and computation
resources. The revenue function Rk is shown by

Rk = ψkAk , (14)

where Ak indicates the learning efficiency and ψk is the
unit revenue for the learning efficiency. According to [20],
the learning efficiency is modeled as

Ak =
1Fk
tk

, (15)

where 1Fk is the global loss decay, and tk is the end-to-end
latency of federated learning in one global iteration.

1) GLOBAL LOSS DECAY
According to [20], vehicular clients contribute more training
images for federated learning, which results in a much lower
global loss decay. Thus, the relationship between the global
loss decay and the total amount of contributed training images
can be approximately evaluated as

1Fk = ξ
√
Ek
∑
n∈N

Mk,nxk,n, (16)

where ξ is the coefficient determined by the specific structure
of the DNN model.

2) END-TO-END LATENCY
The central server starts for model aggregation only after
receiving all the updated local DNNmodels. In the k-th global
iteration, the end-to-end latency of federated learning for N
types of vehicular clients is determined by

tk = max
n∈N

tk,n, tk ≤ Tmaxk , (17)

where Tmaxk is the synchronization latency required by the
central server and tk,n is the end-to-end latency for type-n
vehicular client in the global iteration. The end-to-end latency
for type-n vehicular client is calculated by

tk,n = tdk,n + t
c
k,n + t

u
k,n, (18)

where tdk,n is the latency of downloading the global DNN
model, tck,n is the latency of training the local DNN model,
and tuk,n is the latency of uploading the updated local DNN
model.
• Global Model Download Latency: The latency of down-
loading the global DNN model is

tdk,n =
φdk,n

rdk,n
, (19)

where φdk,n is the size of the global DNN model and rdk,n
is the downlink rate.

• Local Model Training Latency: Within Ek local
iterations, the number of CPU cycles for type-n vehic-
ular client to perform xn training images, is denoted as
Ekbk,nxk,nρk,n. Thus, the latency of training the local
DNN model is

tck,n =
Ekbk,nxk,nρk,n

fk,n
. (20)

• Updated Local Model Upload Latency: The latency of
uploading the updated local DNN model is given by

tuk,n =
φuk,n

ruk,n
, (21)

where φuk,n is the size of the updated local DNN model
and ruk,n is the uplink rate.

For the central server, the cost Ck is formulated as

Ck =
∑
n∈N

Mk,npk,n. (22)

The entire utility function of the central server is

Uk =
ψkξ

√
Ek
∑

n∈N Mk,nxk,n
maxn∈N tk,n(xk,n, fk,n)

−

∑
n∈N

Mk,npk,n. (23)

V. CONTRACT FORMULATION AND SOLUTION
To simplify the notations, we skip global iteration k in all
the variables below. We first present feasibility conditions
overcoming information asymmetry and encouraging the
vehicular clients to participate in the model aggregation.
Subject to the feasibility conditions, we design a series of
two-dimensional contract items to maximize the utility of
the central server. The two-dimensional image-computation-
reward contract item is denoted as (x(θ ), f (θ ), p {x(θ ), f (θ )})
where x(θ ) is the amount of images, f (θ ) is the amount of
computation resources and p {x(θ ), f (θ )} is the reward for
participating in the model aggregation. For ease of expres-
sion, the contract item is expressed as (x, f , p). The optimal
two-dimensional contract is formulated as a non-convex opti-
mization problem. The optimization problem enables each
vehicular client to have two kinds of types or two different
strategy sets. However, it is difficult to optimize two different
strategies for each vehicular client simultaneously. Thus,
we relax and simplify the formulated problem into a tractable
problem (i.e., one-dimensional adversary selection), where
the amount of computation resources relies the amount of
images. Finally, the tractable problem is solved by a greedy
algorithm.

A. CONTRACT FORMULATION
To encourage the vehicular clients to participate in the model
aggregation, the contract items need to satisfy the constraints
individual rationality (IR) and incentive compatibility (IC).
Definition 2 (Individual Rationality (IR)):Vehicular clients

should choose the contract items ensuring a non-negative
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utility, i.e.,

ûn(xn, fn, pn) = θnh(pn)− cn(xn, fn) ≥ 0,

n ∈ {1, 2, . . . ,N } . (24)

The IR ensures that the reward of each vehicular client
compensates the cost of resource consumption in the model
aggregation. If ûn ≤ 0, the vehicular client will not participate
in themodel aggregation, i.e., choosing the contact item (xn =
0, fn = 0, pn = 0).
Definition 3 (Incentive Compatibility (IC)): Vehicular

client m must choose the contract item (xn, fn, pn) matching
its own type, which can be mathematically expressed as

θnh(pn)− cn(xn, fn) ≥ θnh(pj)− cj(xj, fj),

n, j,∈ {1, 2, . . . ,N } . (25)

The IC constraint ensures that each vehicular client auto-
matically chooses the contract items designed for its
corresponding type.

For satisfying the constraints of IC and IR, the optimization
problem of maximizing the utility of the central server is
formulated as

max
(x,f,p)

U =
ψξ
√
E
∑

n∈N Mnxn
maxn∈N tn(xn, fn)

−

∑
n∈N

Mnpn,

s.t. C1 : θnh(pn)− cn(xn, fn) ≥ 0, n ∈ {1, 2, . . . ,N } ,

C2 : θnh(pn)− cn(xn, fn) ≥ θnh(pj)− cj(xj, fj),

n, j ∈ {1, 2, . . . ,N } ,

C3 : 0 ≤ pn, 0 ≤ xn, 0 < fn, n ∈ {1, 2, . . . ,N } , (26)

where C1 and C2 are IR and IC, respectively, C3 ensures
decision variables are non-negative and p, x, f ∈ RN are
vectors.

B. PROBLEM RELAXATION AND TRANSFORMATION
1) RELAXING CONSTRAINT
It is hard to solve the optimization problem in (26) with
non-convex objective function and constraints. To make it
better tractable, a new variable T is introduced to denote
the end-to-end latency, i.e., T = maxn∈N tn(xn, fn). The
optimization problem in (26) is transformed into

max
(x,f,p,T )

U =
ψξ
√
E
∑

n∈N Mnxn
T

−

∑
n∈N

Mnpn,

s.t. C1 : θnh(pn)− c(xn, fn) ≥ 0, n ∈ {1, 2, . . . ,N } ,

C2 : θnh(pn)− c(xn, fn) ≥ θnh(pj)− c(xj, fj),

n, j ∈ {1, 2, . . . ,N } ,

C3 : 0 ≤ pn, 0 ≤ xn, 0 < fn, n ∈ {1, 2, . . . ,N } ,

C4 : max
n∈N

tn = T ,

C5 : 0 < T ≤ Tmax , (27)

where C5 ensures the end-to-end latency can not achieve the
synchronization latency required by the central server.
Lemma 1: When ρ, b, td and tu are constants with the

same value for all vehicular clients,maxn∈N tn = T is relaxed

into td + tu < T and fn = λ(T )xn, n ∈ {1, 2, . . . ,N } where
λ(T ) = ρbE

(T−td−tu) .
Proof: maxn∈N tn = T is firstly relaxed into tn =

T , n ∈ {1, 2, . . . ,N }. tn = T is rewritten as fn = xn
ρnbnE

(T−tdn−tun )
.

Referring to [26], [27], ρn and bn are simplified into constants
ρ and b with the same value for all vehicular clients. Similar
to [14], [24], ∀n ∈ N , tdn and tun are set constants with the same
value for all vehicular clients. As a result, fn = xn

ρnbnE
(T−tdn−tun )

is

simplified into fn = xn
ρbE

(T−td−tu) .We define λ(T ) = ρbE
(T−td−tu)

where T − td − tu > 0. fn = xn
ρbE

(T−td−tu) is rewritten as
fn = λ(T )xn and td + tu < T .

To simplify the expression, λ(T ) is expressed as λ. Replac-
ing maxn∈N tn = T in (27) with fn = λxn, n ∈ {1, 2, . . . ,N }
and td + tu < T , the optimization problem (27) is rewritten
as

max
(x,f,p,T )

U =
ψξ
√
E
∑

n∈N Mnxn
T

−

∑
n∈N

Mnpn,

s.t. C1 : θnh(pn)− cn(fn, xn) ≥ 0, n ∈ {1, 2, . . . ,N } ,

C2 : θnh(pn)− cn(fn, xn) ≥

θnh(pj)− cj(fj, xj), n, j ∈ {1, 2, . . . ,N } ,

C3 : 0 ≤ xn, 0 < fn, 0 ≤ pn, n ∈ {1, 2, . . . ,N } ,

C6 : fn = λxn, n ∈ {1, 2, . . . ,N } ,

C7 : td + tu < T ≤ Tmax , (28)

where C6 and C7 comes from C4 and C5 with Lemma 1.
By replacing fn, n ∈ {1, 2, . . . ,N } in (28) with fn =

λxn, n ∈ {1, 2, . . . ,N }, we can rewrite (28) as

max
(x,p,T )

U =
ψξ
√
E
∑

n∈N Mnxn
T

−

∑
n∈N

Mnpn,

s.t. C1 : θnh(pn)− cn(λxn, xn) ≥ 0, n ∈ {1, 2, . . . ,N } ,

C2 : θnh(pn)− cn(λxn, xn) ≥

θnh(pj)− cj(λxj, xj), n, j ∈ {1, 2, . . . ,N } ,

C3 : 0 ≤ xn, 0 ≤ pn, n ∈ {1, 2, . . . ,N } ,

C7 : td + tu < T ≤ Tmax . (29)

Using Lemma 1, (x, f , p) is simplified into (x, λx, p), which
implies that the amount of computation resources relies the
amount of images. In other words, for type-n vehicular client,
type θn =

βn
en

is simplified into θn =
βn
e which only depends

on the image quality.

2) SIMPLIFYING COMPLICATED CONSTRAINT
Non-convex and couple constraints in (29), i.e., N IR con-
straints and N (N − 1) IC constraints, makes (29) hard to be
solved directly. To reduce constraints of (29), we introduce
the following lemmas.
Lemma 2: Given T , for any feasible contact (xn, λxn, pn),

pn ≥ pj if and only if xn ≥ xj,∀n, j ∈ {1, . . . ,N }.
Proof: Please refer to Appendix A.

From Lemma 2, vehicular clients contribute more images
resulting in more computation resources, the vehicular client
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will receive more reward. If two vehicular clients contribute
the same amount of images, they will recieve the same
reward. Using Lemma 2, we can deduce Lemma 3.
Lemma 3 (Monotonicity): Given T , for any feasible con-

tact (xn, λxn, pn), pn ≥ pj if and only if θn ≥ θj,∀n, j ∈
{1, . . . ,N }.

Proof: Please refer to Appendix B.
Lemma 3 indicates that a higher type of vehicular client
should get more reward, which is the monotonicity property
of the contract design.

Based on the above analysis, the IC constraints are used
to reduce the IR constaints. Thus, we have the following
lemma.
Lemma 4: Given T , with the IC condition, the IR con-

straints can be reduced as

θ1h(p1)− c1(λx1, x1) ≥ 0. (30)

Proof: Please refer to Appendix C.
Based on the IC constaints, we also have the following

lemma.
Lemma 5: Given T , by utilizing the monotonicity in

Lemma 3, the IC condition can be transformed into the Local
Downward Incentive Compatibility (LDIC) given by

θnh(pn)− cn(λxn, xn) ≥ θnh(pn−1)− cn−1(λxn−1, xn−1),

n ∈ {2, . . . ,N } , (31)

and the local upward incentive compatibility (LUIC) given by

θnh(pn)− cn(λxn, xn) ≥ θnh(pn+1)− cn+1(λxn+1, xn+1),

n ∈ {1, . . . ,N − 1} . (32)

Proof: Please refer to Appendix D.
Using Lemma 2 to Lemma 5, we reduce the complicated

IR and IC constraints. The optimization problem in (29) can
be further transformed as follows

max
(x,p,T )

U =
ψξ
√
E
∑

n∈N Mnxn
T

−

∑
n∈N

Mnpn,

s.t. C1 : θnh(pn)− cn(λxn, xn) ≥ 0, n ∈ {1, 2, . . . ,N } ,

C3 : 0 ≤ xn, 0 ≤ pn, n ∈ {1, 2, . . . ,N } ,

C7 : td + tu < T ≤ Tmax ,

C8 : θnh(pn)− cn(λxn, xn) ≥

θnh(pn−1)− cn−1(λxk,n−1, xk,n−1), n ∈ {2, . . . ,N } ,

C9 : θnh(pn)− cn(λxn, xn) ≥

θnh(pn+1)− cn+1(λxn+1, xn+1), n ∈ {1, 2, . . . ,N − 1} ,

C10 : p1 ≤ p2 ≤ · · · ≤ pN ,

(33)

where C8 and C9 are the LDIC and LUIC, respectively,
and C10 is the monotonicity property of the contract design.
Using the LDIC and the LUIC in (33), we deduce Lemma 6.
Lemma 6: Given T , since the objective function of (33) is

an increasing function in terms of xn as well as a decreasing

function of pn, ∀n ∈ {1, . . . ,N }, the optimization problem
in (33) can be further simplified as

max
(x,p,T )

U =
ψξ
√
E
∑

n∈N Mnxn
T

−

∑
n∈N

Mnpn,

s.t. C3 : 0 ≤ xn, 0 ≤ pn, n ∈ {1, 2, . . . ,N } ,

C7 : td + tu < T ≤ Tmax ,

C10 : p1 ≤ p2 ≤ · · · ≤ pN ,

C11 : θ1h(p1)− c1(λx1, x1) = 0,

C12 : θnh(pn)− cn(λxn, xn) =

θnh(pn−1)− cn−1(λxn−1, xn−1), n ∈ {2, . . . ,N } , (34)

where C11 and C12 come from C9 and C10.
Proof: Please refer to Appendix E.

C. SOLUTION TO OPTIMAL CONTRACTS
To quantity the analysis, we consider a case h(p) = p. The
similar case appears in [26]. We use the method of iterating
C11 and C12 constraints to obtain pn expressed as

pn =
c(x1, λx1)

θ1
+

∑n

a=1
1a, (35)

where1a =
c(xa,λxa)

θa
−

c(xa−1,λxa−1)
θa

and11 = 0. By replacing
pn in (34) with (35), we can rewrite (34) as

max
(x,T )

U =
ψξ
√
E
∑

n∈N Mnxn
T

−

∑
n∈N

Mndncn,

s.t. C3 : 0 ≤ xn, n ∈ {1, 2, . . . ,N } ,

C7 : td + tu < T ≤ Tmax , (36)

where dn =
Mn
θn
+

(
1
θn
−

1
θn+1

)∑N
j=n+1Mj with n < N , dn =

Mn
θn

with n = N , and cn = µxn + Eλ2x3n .
Given T , it can be easily verified that (36) is a concave opti-

mization problem. Based on the above analysis, we design
Algorithm 1 as follows:

• Step 1: Initializing parameters such as M ,N ,E , b, µ,
setting i = 1, T = tu + td + τ where τ is a step size,
and U?

= 0.
• Step 2:By solving the optimization problem in (36) with
convex optimization, we get U i and xi.

• Step 3: If U i
−U?
U? < 10−5, the algorithm goes to step 5;

If U? < U i, U? will be replaced by U i. Continuously,
i = i+ 1 and T = T + τ are executed.

• Step 4: If T < Tmax , the algorithm goes to step 2.
Otherwise, the algorithm returns U?, x? and T ?.

• Step 5: Based on x? and T ?, we compute the optimal
price p? and amount of images x? using (35) and amount
of computation resources f = λ(T )x, respectively.
Finally, the algorithm outputs p?, x?, f? and T ?.

Considering the implementation of Algorithm 1, we could
evaluate its computational complexity, which has the form of
Cx ∝ N 3(Tmax − td − tu)/τ and thus, Cx ∼ O(N 3). The
result indicates that our approach will consume the comput-
ing resource at a moderate level for vehicular applications.
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Algorithm 1 Contract Optimization Based Greedy
Method
1 Set i = 1, T = td + tu + τ and U?

= 0;
2 while T ≤ Tmax do
3 Get U i with solving optimization problem (36) with

standard convex optimization tools;
4 if U

i
−U?
U? < 10−5 then

5 Break for
6 end
7 if U? < Ui then
8 U?

= Ui
9 end
10 i = i+ 1;
11 T = T + τ ;
12 end
13 Return x? and T ?;
14 Assign the optimal price p? with (35) ;
15 Compute the optimal amount of images x? with

f? = λ(T ?)x? ;
16 Return p?, x?, f?,T ?;

VI. NUMERICAL RESULTS
A. SIMULATION SETTINGS
In the simulation, the velocity of vehicular clients is set
uniformly distributed in

[
vmin, vmax

]
, where vmin and vmax are

lower and upper bounds of the velocity, respectively [28]. But
the lower and upper bounds are different in urban, suburban,
and highway [29]. We consider a suburban case where the
velocity of vehicular clients is generated in [0,15] m/s and
there are M = 10 vehicular clients with N = 10 types.
By [7], [14], [24], [30], other parameters are listed in Table 3.
We conduct the simulation in MATLAB to get the optimal
contract items. The simulation experiment has two parts.

For the first part, under asymmetric information (CA),
we compare the proposed selective model aggregation
approach with the original FedAvg approach in terms of
accuracy and efficiency of model aggregation. In the FedAvg
approach, each vehicular client is supposed to have the same
amount of images and randomly given computation capabil-
ity. The simulation involves the public MNIST dataset [31],
and the BelgiumTSC (Belgium Traffic Sign for Classifica-
tion) vehicular dataset [32]. The MNIST dataset consists of
55, 000 training images and 10, 000 testing images of 28×28
pixels. The BelgiumTSC dataset consists of 4591 training
images and 2534 testing images. Because the images in the
BelgiumTSC dataset are not all the same size, we just resize
the images to a fixed size, i.e., 28×28 pixels. The comparison
is divided into two cases.

• Blurred Training Image and Unblurred Testing Image
(BU): We randomly divide the training images into
10 groups and each group has the same amount of
images. We synthesize motion-blurred images by [33].
The motion blur level is divided into 10 levels, i.e., L =
1, 2, . . . , 10. Each group has amotion blur level. Blurred

TABLE 3. Parameter setting in the simulation.

training images and unblurred testing images constitute
the training and testing datasets, respectively.

• Blurred Training Image and Blurred Testing Image
(BB): The training dataset is produced similar to that in
BU. The testing images are blurred with level L = 3 to
constitute the testing dataset.

According to the optimal contract items designed for their
own types, each vehicular client picks out a part of training
images to train the local DNN model with a convolutional
neural network (CNN) in PYTHON. For the MNIST dataset,
the local DNN model is executed with iteration round E = 5
and full gradient descent. The CNN consists of two convo-
lutional layers followed by two fully connected layers and
then another 10 units activated by soft-max, with totally about
1, 662, 752 parameters. According to [20], the size of the
local DNN model φ is about 6.5 MB. For the BelgiumTSC
dataset, the local DNNmodel is executed with iteration round
E = 5 and full gradient descent. The CNN consists of two
convolutional layers followed by three fully connected layers,
with totally about 274, 730 parameters. The size of the local
DNN model is about 1 MB.

For the second part, we firstly evaluate the optimal contract
items in the CA approach. Then, we compare the utilities
of the central server and the vehicular clients with existing
baseline approaches. The first one is contract based approach
under symmetric information (CS). The second one is Stacke-
berg game based approach under asymmetric information
(SG) [12]. The third one is the linear pricing approach [15].
In the SG and the linear pricing approaches, we consider that
the unit price for both images and computation resources
are the same. Finally, we analyze the performance of four
approaches under different system settings.

B. ACCURACY AND EFFICIENCY OF
MODEL AGGREGATION
As shown in Fig. 5, using the MNIST dataset, we com-
pare the accuracy of model aggregation for the CA and
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FIGURE 5. Accuracy of model aggregation under the MNIST dataset.

FIGURE 6. Accuracy of model aggregation under the BelgiumTSC dataset.

FIGURE 7. Efficiency of model aggregation under CA and FedAvg.

FedAvg approaches under BB and BU. As the number of
global iteration increases, the accuracy of model aggregation
is increasing for the BB and BU cases. The accuracy of
model aggregation in the BB case is higher than that in
the BU case. In the BB case, because the level of training
image quality is closer to the level of testing image qual-
ity, which causes a high accuracy in classifying the images.
In the BU case, because the gap between the level of train-
ing image quality and the level of testing image quality
is large, which leads to a low accuracy in classifying the
images. The similar results appear in [5]. In the BB case,
the accuracy of model aggregation with the CA approach
is 2.42% higher than the accuracy of model aggregation
with the FedAvg approach. In the BU case, the accuracy of
model aggregation adopting the CA approach is 6.28% higher
than the accuracy of model aggregation adopting the FedAvg
approach.

FIGURE 8. Utilities of vehicular clients for types of vehicular clients.

As shown in Fig. 6, using the BelgiumTSC dataset, we also
compare the accuracy of model aggregation for the CA and
FedAvg approaches under BB and BU. The accuracy of
model aggregation in the BB case is also higher than that in
the BU case. In the BB case, the accuracy of model aggre-
gation with the CA approach is 1.23% higher than that of
the FedAvg approach. In the BU case, the accuracy of model
aggregation adopting the CA approach is 0.2% higher than
that of the FedAvg approach.

For the CA and FedAvg approaches in the MNIST dataset,
Fig. 7 shows the efficiency of model aggregation for global
iteration number k = 1, 2, . . . , 10. Since the FedAvg
approach is not adapted to the random computation capability
in the vehicular clients, the training latency changes in a wide
range, which causes inefficient model aggregation. In the CA
approach, the synchronization of training latency is beneficial
for the model aggregation. The performance of efficiency of
the model aggregation in the BelgiumTSC dataset has similar
results to that in the MNIST.

C. OPTIMAL CONTRACT ANALYSIS
The IR and IC constraints are verified in Fig. 8. It shows
the utilities of type-1, type-4, type-7 and type-10 vehicu-
lar clients. The central server offers all the contract items
(pn, xn, fn), n ∈ 1, 2, . . . ,N for each vehicular client. Fig. 8
shows that the utility of each vehicular client reaches the high-
est when choosing the contract item designed for its own type,
which satisfies the IC constraint. For instance, we consider
the utility of type-7 vehicular client. If a type-7 vehicular
client chooses the contract item (p7, x7, f7), its utility could be
maximized. Furthermore, when each vehicular client selects
the contract item fitting its corresponding type, the utility
of each vehicular client is nonnegative, which indicates that
the IR constraint is satisfied. Therefore, after choosing the
best contract item, the types of the vehicular clients will be
revealed to the central server. In other words, the central
server will know about the image quality and computation
capability of the vehicular clients.

Fig. 9 shows that the contract items under different types of
the vehicular clients. The contract item includes the amount
of images, the amount of computation resources and the
reward. To show contract items in the same figure, the amount
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FIGURE 9. Contract items with types of vehicular clients.

FIGURE 10. Utility of central server under different approaches in terms
of latency.

FIGURE 11. Utilities of central server and vehicular clients under different
approaches.

of computation resources and the reward are reduced by 107

times and 102 times, respectively. The relationship among
contract items remains unchanged. As the type becomes
higher, each type of vehicular client is eager to share more
images and computation resources for higher reward. This
means Lemma 2 and Lemma 3 are both satisfied.

Fig. 10 shows the effect of latency T on the utility of
the central server under four cases, i.e., CS, CA, SG, and
linear pricing approaches. We can see that, as the latency
grows, the utility of the central server first increases to the
maximum value and then decreases. With a given latency,
firstly, the CS approach achieves the best performance among
four approaches and serves as upper bound. This is because
that the central server is fully aware of the types of the
vehicular clients and tries its best to extract the revenue from
the vehicular clients until the utilities of all the vehicular

clients are zero. Secondly, two contract based approaches (CS
and CA) havemore the utility at the central server than the SG
approach. The contract based approaches try to extract the
revenue from the vehicular clients as much as possible while
satisfying both the IR and IC constraints, which will leave a
small portion of revenue for the vehicular clients. In contrast,
the SG approach aims at maximizing both the utilities of the
central server and the vehicular clients, which can reserve
more revenue for the vehicular clients. Finally, the utility
of the central server achieved by the SG approach is better
than the linear pricing approach. In other words, the linear
pricing approach achieves the worst performance among four
approaches and serves as lower bound. This is because the
linear pricing approach would not allow the central server to
adapt to the change of the amount of images and computation
resources, and thus make the performance become worse.

D. SYSTEM PARAMETER ANALYSIS
Fig. 11 compares the utilities of the vehicular clients and
the central server in the case with the optimal latency. For
the central server, the performance among four approaches is
similar to that in Fig. 10. For the vehicular clients, the best
performance of the vehicular clients is the linear pricing
approach as upper bound while the worst performance of
the vehicular clients is the CS approach as lower bound.
The performance of the vehicular clients by adopting the CA
approach and the SG approach is between the upper and lower
bound. The SG approach gets higher utilities of the vehicular
clients than the CA approach.

Fig. 12 shows the utility of the central server under dif-
ferent unit revenue. As the unit revenue increases, the utility
of the central server is also enlarged. Fig. 13 compares the
effect of the number of vehicular clients on the utility of the
central server. As the number of vehicular clients increases,
the utility of the central server become high.

Fig. 14 shows the impact of the number of local itera-
tions to the utility of the central server. With the increasing
number of local iterations, the utility of the central server is
slightly enlarged. It is noted that the objective function in (36)
shows the high number of local iterations increases the global
loss decay as well as the cost of the reward. Probably the
increasing rate of the global loss decay exceeds that of the

FIGURE 12. Utility of central server under different approaches with unit
revenue.
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FIGURE 13. Utility of central server under different approaches for
number of vehicular clients.

FIGURE 14. Utility of central server under different approaches with
different number of local iteration.

cost of the reward. As a result, the utility of the central server
gradually increases.

VII. CONCLUSION
In this paper, we study selective model aggregation of
image classification for federated learning in vehicular edge
computing. Using the geometric relationship between the
object of interest and the camera motion in vehicular clients,
we first evaluate the image quality in the motion blur level.
To select out the "fine" local DNN models with satisfying
image quality and computation capability, the model selec-
tion procedure is formulated as a two-dimensional image-
computation-reward contract-theoretic problem. The contract
problem is transformed into a tractable problem through
relaxing and simplifying the complicated constraints, and
eventually solved by a greedy algorithm. Extensive simula-
tion is conducted to demonstrate the performance enhance-
ment of the proposed approach in terms of model accuracy
and aggregation efficiency.

APPENDIXES
APPENDIX A
PROOF OF THE LEMMA 2
We bring the fn = λxn into the cn(xn, fn) given by

cn(xn, λxn) = µxn + Eλ2x3n . (37)

It is obvious that cn(xn, λxn) is a convex function in terms
of xn. To simplify the expression, cn(xn, λxn) is expressed as
cn. First, we prove that if xn > xj, then pn > pj. According to

constraint (25), we have the following inequality:

cn − cj < θn(h(pn)− h(pj)), n, j ∈ N . (38)

Since xn > xj, we can obtain cn − cj > 0. Then, h(pn) −
h(pj) > 0 is satisfied. Due to the increasing valuation function
of h(·), we have pi > pj. Furthermore, we prove that if
pn > pj, then θn > θj. Referring to constraint (25), we have
the following inequality:

θj(h(pn)− h(pj)) < cn − cj, n, j ∈ N . (39)

Since pi > pj and h(·) is a monotonically increasing valuation
function in terms of p, we have θj(h(pn) − h(pj)) > 0. Thus,
we can obtain cn − cj, i.e., xn > xj. Finally, we prove that
xn = xj if and only if pn = pj, ∀n, j ∈ {1, . . . ,N }. We use the
similar procedure to prove xn = xj if and only if pn = pj.

APPENDIX B
PROOF OF THE LEMMA 3
Following [16], we prove the sufficiency at first: if θn ≥ θj,
then pn ≥ pj. Based on the IC constraints of type θn and type
θj vehicular clients, we have

θnh(pn)− cn ≥ θnh(pj)− cj, (40)

and

θjhj − cj ≥ θjh(pn)− c(xn). (41)

Adding (40) and (41), and by rearranging, we can get (θn −
θj)(h(pn) − h(pj)) ≥ 0. As θn ≥ θj, we must have h(pn) −
h(pj) ≥ 0. Since pn ≥ pj and h(·) is a monotonically
increasing valuation function in terms of p, we have pn ≥ pj.
Next, we prove the necessity: if pn ≥ pj, then θn ≥ θj. Similar
to the above process, we use the IC constraint to obtain the
same result (θn−θj)(h(pn)−h(pj)) ≥ 0. The reason is similar
to the sufficiency.

APPENDIX C
PROOF OF THE LEMMA 4
Given that θ1 < θ2 < ... < θN , we utilize IC constraints to
have

θnh(pn)− cn ≥ θnh(p1)− c1 ≥ θ1h(p1)− c1 ≥ 0. (42)

(42) indicates that the first type of vehicular client satisfies
the IR constraint, other types of vehicular clients will sat-
isfy the other IR constraints automatically. Thus, we need
to keep the IR constraint for the first type and the other IR
constraints can be reduced.

APPENDIX D
PROOF OF THE LEMMA 5
The IC constraints between types n and j, n, j ∈ {2, . . . ,N }
are defined as downward incentive constraints (DICs) repre-
sented as

θnh(pn)− cn ≥ θnh(pj)− cj, ∀n, j ∈ {2, . . . ,N } , n > j.

(43)
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The IC constraints between type n and type j, n, j ∈
{2, . . . ,N } are defined as upward incentive constraints (UICs)
represented as

θnh(pn)− cn ≥ θnh(pj)− cj, ∀n, j ∈ {2, . . . ,N } , n < j.

(44)

Specifically, two adjacent types in UICs are defined as LUICs
and two adjacent types in DICs are defined as LDICs. The
LUICs and LDICs can be represented as, respectively,

θnh(pn)− cn ≥ θnh(pn+1)− cn+1, ∀n ∈ {1, . . . ,N − 1} ,

(45)

and

θnh(pn)− cn ≥ θnh(pn−1)− cn−1, ∀n ∈ {2, . . . ,N } .

(46)

With the following proof, we will first reduce the DIC to the
LDIC. Adopting the LDIC with three continuous types of the
vehicular clients, θn−1 ≤ θn ≤ θn+1, n ∈ {2, . . . ,N − 1},
we have the following inequalities

θn+1h(pn+1)− cn+1 ≥ θn+1h(pn)− cn, (47)

θnh(pn)− cn ≥ θnh(pn−1)− cn−1. (48)

According to the monotonicity, i.e., pn > pj if and only if
θn > θj, we have

θn+1(h(pn)− h(pn−1)) ≥ θn(h(pn)− h(pn−1)). (49)

Combining (48) and (49), we have

θn+1h(pn)− cn ≥ θn+1h(pn−1)− cn−1. (50)

Combining (47) and (50), we have

θn+1h(pn+1)− cn+1 ≥ θn+1h(pn−1)− cn−1. (51)

Using (51), we can prove that all the DICs can hold

θn+1h(pn+1)− cn+1 ≥ θn+1h(pn−1)− cn−1 ≥ ...
≥ θn+1h(p1)− c1.

(52)

Hence, we use the LDICs to hold and reduce all the DICs.
Using similar process, we can also prove that all the UICs
can automatically hold, when the LUICs are satisfied.

APPENDIX E
PROOF OF THE LEMMA 6
We will first prove that the reduced IR constraint θ1h(p1) −
c1 ≥ 0 can be reduced to θ1h(p1) − c1 = 0. For the reduced
IR constraint, the data requester will try its best to decrease
p1 to improve the optimization objective function U until
θ1h(p1)− c1 = 0.

Secondly, we will prove that the LDIC can be transformed
as θnh(pn) − cn = θnh(pn−1) − cn−1, which is combined
with monotonicity to ensure the LUIC hold. Notice that the

LDIC θnh(pn) − cn ≥ θnh(pn−1) − cn−1, ∀n ∈ {2, . . . ,N }
will still hold if both pn and pn−1 are reduced to the same
amount. To maximize the optimization objective function,
the data requester will decrease pj as possible as it can until
θnh(pn) − cn = θnh(pn−1) − cn−1. Notice that this process
doesn’t have an effect on other types LDIC. So the LDIC
can be simplified as θnh(pn)− cn = θnh(pn−1)− cn−1,∀n ∈
{2, . . . ,N }.

Thirdly, we will prove that if θnh(pn)− cn = θnh(pn−1)−
cn−1,∀n ∈ {2, . . . ,N } and the monotonicity hold, the LUIC
holds. The constraint θnh(pn)− cn = θnh(pn−1)− cn−1,∀n ∈
{2, . . . ,N } can be transformed as

θnh(pn)− θnh(pn−1) = cn − cn−1. (53)

Due to the monotonicity, i.e., if θn ≥ θn−1, then h(pn) ≥
h(pn−1), we further have

θnh(pn)− θnh(pn−1) ≥ θn−1h(pn)− θn−1h(pn−1). (54)

Combine (53) and (54), we have

θnh(pn)− θnh(pn−1) = cn − cn−1
≥ θn−1h(pn)− θn−1h(pn−1). (55)

Equation (55) equally is transformed as

θn−1h(pn−1)− cn−1 ≥ θn−1h(pn)− cn, (56)

which is exactly the LUIC condition. So we remove the LUIC
from the constraints in (34).
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