SPECIAL SECTION ON BLOCKCHAIN-ENABLED TRUSTWORTHY SYSTEMS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 10, 2020, accepted January 18, 2020, date of publication January 21, 2020, date of current version January 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968492

Fabric-iot: A Blockchain-Based Access

Control System in loT

HAN LIU ™, DEZHI HAN, AND DUN LI

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Corresponding author: Dezhi Han (dzhan @shmtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672338 and Grant 61873160.

ABSTRACT 10T devices have some special characteristics, such as mobility, limited performance, and
distributed deployment, which makes it difficult for traditional centralized access control methods to support
access control in current large-scale IoT environment. To address these challenges, this paper proposes an
access control system in IoT named fabric-iot, which is based on Hyperledger Fabric blockchain framework
and attributed based access control (ABAC). The system contains three kinds of smart contracts, which are
Device Contract (DC), Policy Contract (PC), and Access Contract (AC). DC provides a method to store
the URL of resource data produced by devices, and a method to query it. PC provides functions to manage
ABAC policies for admin users. AC is the core program to implement an access control method for normal
users. Combined with ABAC and blockchain technology, fabric-iot can provide decentralized, fine-grained
and dynamic access control management in IoT. To verify the performance of this system, two groups of
simulation experiments are designed. The results show that fabric-iot can maintain high throughput in large-
scale request environment and reach consensus efficiently in a distributed system to ensure data consistency.

INDEX TERMS Blockchain, IoT, ABAC, hyperledger fabric, distributed system.

I. INTRODUCTION

With the developments of Internet and computer hardware,
more and more devices are connected with each other through
wireless network, making the scale of Internet of Things(IoT)
larger and larger. IoT is a distributed network composed of a
large number of sensors and gateways. IoT devices interact
with the environment all the time, producing different types
of data resources, such as image, audio, video, digital sig-
nal, etc. All systems and applications of IoT can access the
Internet to effificiently share resources and information [1].
That is to say, we are living in a world where everything is
connected [2]. However, due to the distributed deployment of
the IoT devices and their large number and scale, the access
control of device resources is facing great challenges. The
resources produced by IoT devices often contain privacy
and sensitive data, so there will be serious consequences
when they are obtained illegally. The access control technol-
ogy is an important means to protect resources, which has
been widely used in various systems and environments [3].
Traditional access control methods include discretionary
access control (DAC), identity-based access control (IBAC),

The associate editor coordinating the review of this manuscript and

approving it for publication was Hong-Ning Dai

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

and mandatory access control (MAC), etc. But these methods
are all centralized designs, which have the disadvantages of
single-point failure, difficult to expand, low reliability and
low throughput. In fact, IoT devices may belong to different
organizations or users, and probably have mobility and lim-
ited performance, which make centralized access control dif-
ficult to meet the requirements of access control in IoT envi-
ronment. Attributed based access control (ABAC) is a logical
access control model, which controls the access between sub-
jects and objects, according to the attributes of entries, opera-
tions and related environments [4]. ABAC firstly extracts the
attributes of user (subject), resource (object), permission and
environment respectively, then combines the relationship of
these attributes flexibly, and finally transforms the manage-
ment of permission into the management of attribute, provid-
ing a fine-grained and dynamic access management method.
Blockchain [5] is another kind of emerging data manage-
ment technology, it ensures the reliability of data through
distributed storage. The reading or modification record of
data is written into a block as a transaction, and the blocks
are linked by hash algorithm as a chain to ensure the integrity
of the data. It synchronizes data between nodes through
P2P network and consensus algorithm, which makes all par-
ties involved in blockchain network reach a consensus, thus

18207

https://orcid.org/0000-0002-1085-9877
https://orcid.org/0000-0002-1986-7144
https://orcid.org/0000-0001-6165-4196

IEEE Access

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

ensuring data consistency. Hyperledger Fabric [6] is an open-
source blockchain development platform, which not only has
the characteristics of blockchain such as decentralized ledger,
immutable, and group consensus, but also provides more
efficient consensus mechanisms, higher throughputs, smart
contracts, and support for multiple organizations and ledgers.

In this paper, we apply blockchain technology to IoT access
control, design and implement an access control system
named fabic-iot, which is based on Hyperledger Fabric and
ABAC. By using distributed architecture, fabric-iot can trace
records, provide dynamic access control management and
solve the access control problem in IoT.

The main contributions of this paper are:

1) We define a device resource sharing model according to
the data production of the IoT devices in real life. The model
makes the data resources generated by the device correspond
to the URL one by one, greatly simplifying the sharing mode
and storage structure of the device resources.

2) We propose a blockchain-based access control system
for IoT named fabric-iot and describe its workflow and archi-
tecture in detail. The system uses distributed architecture to
separate users and devices, and implemented the dynamic
management of permissions to support efficient access.

3) We design three kinds of smart contracts based on the
Hyperledger Fabric platform. The first one implements the
ABAC model. The second one implements the ABAC policy
management. The last one implements the device resource
management.

4) We introduce the network initialization, chaincode
installation, and smart contract invoking of fabric-iot in detail.

5) We design two groups of comparative experiments to
verify the system performance and consensus speed.

The remaining of this paper is organized as follows.
Section II introduces the related work. Section III details the
structure and operating mechanism of Hyperledger Fabric,
as well as ABAC model. The design of resource model, policy
model, system’s structure, workflow, and the implements of
smart contract are presented in Section IV. In Section V,
we demonstrate how to setup fabric-iot system and how
to work with it to manage the access control of the IoT
resources. We set two groups of comparative experiments,
and then analysis the results. In section VI, we make a con-
clusion for this paper and give a preview for further work.

Il. RELATED WORK

The rapid development of IoT requires a higher standard for
distributed access control. The blockchain technology has
four advantages for assess control which are decentralization,
data encryption, scalability, and non-tampering. At present,
the blockchain technology has evolved to 3.0 version. As
its core technology, smart contracts built a safe and reliable
operating environment for applications, and give blockchain
more powerful functions. Therefore, based on the existing
access control methods, many scholars proposed a variety of
IoT access control methods by combining it with blockchain
and smart contracts.

18208

Reference [7] proposed a secure Fabric-based data trans-
mission technique and realized a power trading center in
industrial IoT, which solved the problems of low security,
high management cost, and difficulty in supervision. In ref-
erence [8], a decentralized access control scheme for the
IoT devices was proposed. The scheme used a single smart
contract to reduce the communication cost between nodes.
A node called management hub is designed to interact with
devices, avoiding direct interaction between blockchain and
IoT devices. It has six advantages, which are Mobility, Acces-
sibility, Concurrency, Lightweight, Scalability and Trans-
parency. In reference [9], an access control scheme based
on Ethereum smart contract was proposed, which included
three smart contracts: access control contract (ACC), judge
contract (JC), and register contract (RC). ACC implemented
policy-based authorization by checking the behavior of
objects. JC was used to judge the wrong behavior and
return the corresponding punishment. RC was used to register
the above two smart contracts and provide update, delete,
and other operations. Finally, the architecture was imple-
mented with one PC, one notebook, and two Raspberry Pi.
In reference [10], a distributed application (DAPP) based
on Ethereum was proposed. It combines the SaaS business
model with blockchain, which was used to buy and sell
sensor data. Reference [11] proposed an improved blockchain
structure. In the enterprise network, the private chain was
used to manage the device configuration files of IoT in a
distributed way. It stored the device configuration files on
blockchain and monitors the operation with a smart contract.
In reference [12], the routing information of router nodes are
saved to blockchain to ensure that the routing information
can’t be tampered and traced. In reference [13], an attribute-
based access control method for IoT was proposed, which
saved attribute data through blockchain. This method avoided
data tampering and simplified the access control protocol to
meet the computing power and energy constraints of the IoT
devices. In reference [14], a multi-blockchain distributed key
management architecture (BDKMA) was proposed, and a fog
computing method was introduced to reduce the delay of the
multi-chain operation, which can better guarantee the privacy
and security of users. In reference [15], blockchain was used
for the trust management of the Internet of vehicles. By com-
bining two consensus mechanisms, proof of work (PoW) and
proof of stake (PoS), the difficulty of mining nodes can be
changed dynamically, so the consensus can be reached more
efficiently. Reference [16] proposed an efficient and safe
road condition monitoring authentication scheme based on
fog computing. In reference [17], a kind of Edge-chain was
proposed, which used the currency system of blockchain to
link the edge computing resources with the resource usage
between accounts and IoT devices. Edge-chain established a
trust model based on the behavior of devices to control the
IoT devices to obtain resources from edge servers. In refer-
ence [18], a scalable security management architecture of IoT
was designed for wireless sensor networks, and its perfor-
mance was compared with the existing management solutions

VOLUME 8, 2020

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

IEEE Access

of IoT. In reference [19], a rights management system based
on bitcoin was proposed, which allowed users to publish and
transfer access policies. The advantage was that the access
policies would be opened to all users and prevent any party
from denying the authenticity of the policies. Reference [20]
combined blockchain and RBAC and implemented a cross-
organizational RBAC based on Ethereum, which allowed
small organizations to participate, so the users can fully
control their roles. In reference [21], the Fair-Access privacy
protection and rights management framework was proposed,
which used smart contracts to manage access policies in a
fine-grained way and checked policy reuse. In reference [22],
a scheme named EduRSS was proposed. It used a Ethereum-
based blockchain to store and share educational records.
Reference [23] proposed a novel trust-based recommenda-
tion scheme (TBRS) to ensure security and real-time data
transmission in a vehicular CPS network. In reference [24],
ablockchain model based on hypergraphs was proposed. This
model used hyperedge structure to organize storage nodes,
transformed the data storage of the whole network into local
network storage, reduced storage consumption, and improved
the security level.

Ill. PRELIMINARIES

A. HYPERLEDGER FABRIC

Digital currencies represented by bitcoin have achieved great
success and attracted worldwide attention to blockchain tech-
nology. However, this kind of public chain has many disad-
vantages which are listed as follows:

1) Low transaction throughput. Only about 7 transactions
can be accepted per second.

2) Long transaction confirmation time. Each transaction
takes about 1 hour to be finally confirmed.

3) Waste of resources. The PoW mechanism consumes a
lot of computing resources and power.

4) Consistency issues. Blockchain is easy to form a
branch. When a branch is formed, only the longest chain takes
effect, and all transactions in other chains are invalid.

5) Privacy issues. As the ledger of bitcoin is open, there is
no privacy in the transaction.

To solve those problems, the Linux Foundation launched
the Hyperledger project in 2015, which built an enterprise
blockchain developing platform. As one program of them,
Hyperledger Fabric uses a modular structure to provide
scalable components including encryption, authentication,
consensus algorithm, smart contract, data storage and other
services.

All the programs of the Hyperledger Fabric run in the
docker containers. The container provides a sandbox envi-
ronment, which separates the application program from the
physical resources, and isolates the containers from each
other to ensure the security of the application. Hyperledger
Fabric is a kind of alliance chain, in which all the nodes
need to be authorized to join the blockchain network. On this
basis, Fabric provides a consensus mechanism based on

VOLUME 8, 2020

Kafka message queue, which can quickly reach consensus
in large-scale application scenarios. Hyperledger Fabric over-
comes those shortcomings of public chain.

1) MAIN COMPONENTS: CA, CLIENT, PEER, ORDERER

CA provides unified management for digital certificates of
member nodes, and generates or cancels identity certificates
of members.

Client is used to interact with the peer node and operate
the blockchain system at the same time. The operation is
divided into two categories. The first one is management
category which is mainly used to manage the nodes, includ-
ing start, stop, configure nodes, etc. The other is chaincode
category which is mainly used for the life cycle management
of chaincode, including installation, instantiation, upgrade
and execution of chaincode, etc. The Client is generally a
command-line client or an application developed by SDK.

Peer is an equal footing node in the distributed system,
this component stores ledgers and chaincodes of blockchain.
Applications connect to peer and query or update ledgers by
invoking chaincodes. There are two types of peers: endorser
and committer. The endorser node is responsible for verify-
ing, simulating and endorsing transactions. The committer
is responsible for verifying the legitimacy of transactions as
well as updating the blockchain and ledger status.

Orderer is responsible for accepting the transactions sent
by the peer node, sorting the transactions according to cer-
tain rules, packaging the transactions in a certain order into
blocks, and sending them to the peer node. The peer node
updates the local ledger with new blocks, and finally reaches
a consensus.

2) CHANNEL

An important requirement of most enterprise applications
is data privacy and confidentiality. The Fabric designes a
channel system to isolate the blockchain data of different
organizations. In each channel, there is an independent private
ledger and a blockchain. Therefore, Fabric is a system with
multi-channel, multi-ledger, and multi-blockchain.

3) LEDGER

The data of Fabric is stored as a distributed ledger, and the
data items in this ledger are stored in the form of key-value
pairs. All key-value pairs constitute the state of the ledger,
which is called ‘World State’, as shown in Fig.1.

4) CHAINCODE

The smart contract in Fabric is called chaincode. Chaincode is
a program written in golang (supporting other programming
languages, such as Java) and implements predefined inter-
faces. Transactons can be generated by chaincode, which is
the only way for the outside to interact with the blockchain
system. By submiting or evaluating a transaction, the out-
siders can change or read the data of state database (SDB),
while the transaction would be written to ledger of Fabric.
Business logic can be implemented by writing chaincode,

18209

IEEE Access

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

modifiable
—_— *".\;
; N
/
state Database
X
Reads[] = 3 K-V
Writes[] K-V
/ T K-V
/
Immutabla/\ T CouchDB
\ Reads|]
Writes[]
T Block Index
TX
Reads[] fast search
Writes[]
\\\ File System Level DB

FIGURE 1. Structure of the ledger in Hyperledger Fabric.

thus developers can write different chaincodes to implement
different applications.

B. ABAC MODEL

Attributed based access control (ABAC) is a kind of access
control technology, which takes the attribute of subject,
object, permission, and environment into account. It deter-
mines whether to grant access to the requester by judging
whether its request contains the correct attributes. Because
the attributes of subject and object are defined separately,
ABAC can separate policy management and access control
efficiently. The policy can be changed according to the actual
situation, such as adding or reducing the attributes of it, for
the scalable purpose. Besides, the attributes of entities can
be defined from various perspectives to achieve fine-grained
access control. Attributes are the core of ABAC, which can
be defined to a set with four elements: A € {S, O, P, E}. The
meaning of each field is explained as follows:

A represents the attribute, A = {name : value}. The value
of a attribute has a key name.

S represents the attribute of subject, which means the iden-
tity and characteristics of the entity that initiates the access
request, such as a person’s ID, age, name, position, etc.

O represents the attribute of the object, which means the
attribute of the accessed resource, such as resource type,
service IP address, network protocol, etc.

P represents the attribute of permission, which means
the operation of the subject on the object, such as reading,
writing, executing, etc.

E represents the attribute of environment, which means the
environment information when the access request is gener-
ated, such as time, location, etc.

ABACR (Attributed based access control request) is
defined as: ABACR = {AS A AO A AP A AE}, which is
a set contains the above four attributes. It represents the
AP(Attributes of Operation) of the AS(Attributes of Subject)
on the AO(Attributes of Object) under the AE(Attributes of
Environment).

18210

ABACP (Attributed based access control policy) is defined
as: ABACP = {AS A or VAO A or VAP A or V AE},
which represent the access control rules of the subject to the
object. It expresses the needed attribute set for the protected
resources accessing.

IV. SYSTEM MODEL AND DESIGN

A. RESOURCE AND POLICY MODEL

There are many kinds of data produced by IoT devices,
and most of them are unstructured data [25]. For example,
the camera can capture the real-world images and produces
pictures or video data, the microphone can capture the exter-
nal sound and produces audio data. Sensors can capture
physical signals such as temperature, humidity, light, and
convert them into digital signal data. Most of these data are
unstructured, so they can’t be directly stored in the relational
database. And because they are all real-time data, they need
to be pushed to the authorized users in time. In general, voice
and video data are all streaming data. The data collected by
the device is encoded and then pushed to the cloud server
through WiFi or 4G. Finally, a resource URL is generated.
The users can pull streaming data according to the video
transmission protocols such as HLS and RTMP by URL.
For sensor data, the device sends the data to a topic through
the MQTT-based [26] service or other protocols. After the
client is authorized, it subscribes the corresponding topic
(which can be represented by URL), and the server pushes
the message under the topic to the client. Besides, this kind of
data is mainly used to control IoT devices to excute binding,
unbinding, opening, closing, adjusting and other operations.
Generally, clients can send requests to the server through
restful API based on HTTP (s). After the server verifies the
permissions, it can send control signals back to the device
through MQTT or other protocols. Table 1 shows the URL
formats for several different types of resource. To sum up,
this paper defines a device resource model: {Device} —
{resource} — {url}.

TABLE 1. Examples of resource URL.

URL Meaning
https://www.xxx.com/live/test_video.m3u8 | URL of HLS video re-
source

URL of RTMP video re-
source

Real time data URL with
topic as "test_topic"

rtmp:// www.xxx.com/live/test_video.flv

tep://Www.Xxx.com/mqtt/test_topic

The access rights of the subject (user) to the object
(resource) are defined by the access policy. Instead of request-
ing resources from the device directly, users get the resource
data according to the URL from the blockchain system with
permission verification.

The connection between device resources and users is
shown in Fig.2. The brief workflow is shown in the 1-5 serial
number in the figure.

1) The device distributes the resource to the Internet and
generates the resource URL.

VOLUME 8, 2020

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

IEEE Access

User Block chain I

[}
=
Database -
==

FIGURE 2. Connections between users and resources.

2) The device saves the resource URL to the blockchain
system.

3) Users request the blockchain system by attributes to get
authorization.

4) Blockchain sends URL to the authorized users.

5) Users download or pull resource data on the Internet
according to the URL.

Combined with ABAC model and the characteristics of
data generated by the IoT devices, the device access controll
policy model is defined as follows:

P = {AS, AO, AP, AE} (1
AS = {userld, role, group} 2)
AO = {deviceld, MAC} 3)
AP — {1, allow @)

0, deney
AE = {createTime, endTime, allowedIP} (@)

P (Policy): It represents a policy of attributed access con-
trol. This set contains four elements: AS, AO, AP, and AE.

AS (Attribute of Subject): It represents the attributes of
a subject (user) and includes three types: userID (unique
identification user), role (user role), and group (user group).

AO (Attribute of Object): It represents the attributes of
an object (resource), which consist of a device ID or a MAC
address of device. In this model, we do not regard the resource
URL as an attribute directly. Instead, we use the unique
identifications as attributes of a device. Because in reality,
the network of the device is variable and the data produced
by the device is dynamic. We assume that the function of a
device in the system is single, and each ID or MAC can only
correspond to one resource URL at one time.

AP (Attribute of Permission): It indicates whether user
have access to resources. The value 1 stands for “allow”” and
2 stands for ““deny”’. When AP is initialized, the default value
is 1. Admin can revoke access authorization according to the
situation by setting the value of AP to 0.

VOLUME 8, 2020

AE (Attribute of Environment): It indicates the attributes
of environment which required for access control. AE has
three kinds of attributes: time, end time, and allowed IP. Time
stands for the creation time of policy. End time stands for the
expiration time of policy. The policy will be invalid when
current time is later than end time. Allowed IP is aimed to
prevent the IP address outside the network segment from
accessing the system.

B. SYSTEM STRUCTURE

Fabric-iot, a blockchain-based access control system for IoT,
consists of four parts: users, blockchain, smart gateway, and
devices, which are shown in Fig.3.

B -,
¢
@
o

smart gateway device

000

L

)
hY
o 1) Rl

admin fabric blockchain

FIGURE 3. Architecture of fabric-iot.

1) USERS
This system divides users into two types: admin, and common
user.

The admin is responsible for managing the blockchain
system and maintaining the program of smart gateway. The
admin needs to provide a certificate to access the blockchain
system. The specific operation allowed are as follows.

1) Add new smart contracts. Admin can deploy new smart
contracts on the blockchain through API.

2) Upgrade contracts. The admin can upload a new smart
contract to nodes and install it, while the old one will be
upgraded to a new version.

The common user, which means the owner of the device,
gets the resource URL by sending attributed based authoriza-
tion request to the blockchain system.

2) BLOCKCHAIN
It is the core of system. All nodes need to obtain CA authenti-
cation before joining the blockchain system. The blockchain
is developed based on Hyperledger Fabric, which implements
access control by smart contracts. Blockchain system exposes
API for users and smart gateway to access. It mainly imple-
ments three functions as follows.

1) Device resource URL data storage.

2) Attribute-based user rights management.

3) Authentication of user access to resources.

3) SMART GATEWAY
As the bridge between devices and blockchain system, it can
receive the message from the device and put the URL it

18211

IEEE Access

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

contained to blockchain, avoiding the pressure on blockchain
system caused by direct access of devices.

4) loT DEVICES

As the largest group, the IoT devices generally do not have
strong computing ability, enough storage, and durable battery.
Therefore, it is impossible to deploy IoT devices as peer
nodes of blockchain directly. IoT devices has a unique MAC
address or product ID, which can be distinguished from other
devices. Generally, the devices may belong to both some
users or groups. Whenever a new resource is generated by
the device, a message contains the URL of resource is sent to
the smart gateway. In this system, MQTT protocol is used as
the message transmission protocol.

C. WORKFLOW

As shown in Fig.4, the whole system workflow mainly
includes four parts. This section details the intermediate steps
of each part. The used symbols are described in Table 2.

e 0
o': @ AD

admin user blockchain smart gateway devices

1.1 setup
1.2 install chaincode
(smart contract) L
1.3 init chaincode

2.1 init attributed access
policy
2.2 add policy

2.3 save policy to DB
3.1 send resource URL
3.2 translate msg to blockchain action
[=—3.3 run action—|

3.4 save resource URL to DB

4.1 request resource-{

4.2 run chaincode , do attributed access control

4.3 response URL or 403

FIGURE 4. Workflow of fabric-iot.

Part1 The blockchain network initialization and the chain-
code installation are the basis process of the system. These
operations require the admin to work in the intranet. Flow 1
mainly including three steps.

Stepl Before setting up a Hyperledger Fabric network,
we need to create certificates for all members such as peer
nodes, orderer nodes, channels, users, etc. All certificates are
generated by CA.

CA — {Certpeeh Certorger, Certenannel , Certyser} (6)

The peer node and the order node run in the docker con-
tainer. The certificate needs to be packaged into their docker
image before running.

Build(conf , Cert) uild, Image 2 Container ©)

After all the peer nodes and orderer nodes are set up
successfully, we start to create the channel. Every channel

18212

TABLE 2. Symbol descriptions.

Name Meaning

CA Certificate Authority

Cert Certificate file

conf Conlfig file of the node

F(x)... Functions defined in source code

cC Chaincode in Hyperledger Fabric

AC Access Contract

PC Policy Contract

DC Device Contract

Image Docker Image

Container Docker Container

TX Transaction in blockchain

AS, AO, AE, AP| Attributes of subject, object, permission, and envi-
ronment

Ledger Ledger in Hyperledger Fabric

SDB State Database in Hyperledger Fabric

SG Smart Gateway

BA Blockchain Action

Cli Blockchain system client

ABACP Attribute based Access Control Policy

joined an independent blockchain and ledger.

{blockchain, ledger} j—om—> Channel (8)

Step2 So far, a basic Hyperledger Fabric network is set up.
In order to build applications, we need to design chaincode.
Our source code of chaincode is written in Golang.

Code(F(x)...) — CC ©)]

Admin uses Hyperledger Fabric SDK or client to install
CC (chaincode). All CC will be installed to peer nodes.

Install(CC) 2K/, pooy (10)

Step3 Once the chaincode is installed, it needs to be initial-
ized. Invoke function is used to initialize chaincode. Every
instantiated chaincode will be saved in the container as an
endorsement.

SDK /Cli
Invoke(Init) ﬂ) Peer 11

Part2 Develop access control policy and save them to
blockchain system. This process requires the user and admin
work together to decide and customize the access policy
in advance and uploads them to the blockchain system by
admin.

Stepl Admins and users jointly make access policies,
which are defined based on the attributes of subject (user),
object (device resource), operation, and environment.

Decide(AS, AO, AE, AP) — ABACP (12)

Step2 After the access policy is defined, the admin uploads
it to the blockchain network.

Upload(ABACP) — contract 13)

Step3 Admin connects to blockchain to add, modify and
delete the policy by running the PolicyContract. The value

VOLUME 8, 2020

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

IEEE Access

of the policy is saved in the SDB and the record of action is
written into the ledger.

PolicyContract(ABACP) — {Ledger, SDB} 14)

Part3 Device reports resource URL to smart gateway, and
after that, smart gateway uploads it to blockchain system.

Stepl The device generates a message included device ID
and URL and sends it to smart gateway by MQTT.

{deviceld, URL} — Msg 22, sG (15)

Step2 Smart gateway parses messages and generates an
action for blockchain.

Translate(Msg) — BA (16)

Step3 Smart gateway connects to blockchain client to run
the action.

Run(BA) ﬂ) DeviceContract (17)

Step4 Blockchain saves the URL of device resource by
invoking functions of DC.

DeviceContract(deviceld, URL) — {Ledger, SDB} (18)

Part4 The process of acquiring resources based on
attributes is the core of system. It has three steps as follows:
Stepl User initiates attributed based requests.

userld — Request{AS N AO N AP} (19)

Step2 Invoking the functions of AC after receiving the
requests.

1, OK

. (20)
0, Forbidden

AccessContract(Request) — {
Step3 If the validation passes, blockchain system query
URL by invoking the function in DC and return it to users. If
it failed, 403 error (403 stands for forbidden in HTTP status
codes) will be returned to users.

1. 25 ure

2D
0, — 403

result = [

D. SMART CONTRACT DESIGN.

Smart contract is the core of access control implementation.
There are three kinds of smart contracts in this system:
Policy Contract(PC), Device Contract(DC), and Access
Contract(AC).

1) POLICY CONTRACT
It provides the following methods to operate ABACP.
Auth(): Admin defines the ABACP for users, and sends
the request for adding ABACP to the blockchain system. An
example of ABACPR(attributed based access control policy
request) is shown in Table 3. Admin encrypts the data with the
public key of the PC node, and then signs the request with the
private key. PC invokes Auth() to verify the identity of admin

VOLUME 8, 2020

TABLE 3. An example of ABACPR.

ABACPR.json

{7 Action” ?add”,” Data” {7AS” : {TuserId’
7100017, " role” : "manager”,” group” : "g1”},” AO”
{"deviceld” : ”?B230011001zzxz01”,” MAC” : 748 : €2 :
zx : xx : 5f ¢ f9},VAP” : 1,7AE” : {"createTime” :

”1572607208”,”endTime” : ”1575199208”,” allowed P :
”10.10.100. * /10.10.255. " }}}

with its public key and decrypts the data with self’s private
key.

CheckPolicy(): As shown in Algorithm 1. PC needs to
check the validity of ABACP. A legal ABACP needs to
contain the above four attributes, and the type of each attribute
also needs to meet the requirements.

Algorithm 1 PolicyContract.CheckPolicy(): Check ABAC
Policy Before Putting it Into DB

Input: ABACP

Output: True or False

1: < AS,AO, AE, AP >« ABACP

2: IsOK = True

3: for item in AS do:

4: if item ¢ < userld, role, group > then
5: IsOK = False

6: endif

7: end for

8

: for item in AO do:

9: ifitem ¢ < deviceld, MAC > then
10: IsOK = False
11: endif
12: end for

13:if Val(AE)! = 1 or0

14: IsOK = False

15: end if

16: for item in AP do:

17: if item ¢< createTime, endTime, allowedIP > then
18: IsOK = Fulse

19: endif

20: end for

21: return IsOK

AddPolicy(): As shown in Algorithm 2. After ABACP is
verified to be legal by CheckPolicy(), the PC invokes AddPol-
icy () to add ABACP to the SDB, at the same time, all the
action records will be written to the ledger.

UpdatePolicy(): In some cases, admin needs to modify
ABACP. The function UpdatePolicy() implements the inter-
face of updating SDB, and the operation record of updating
will also be written to the blockchain. UpdatePolicy() is
similar to AddPolicy(), which also invokes the put method
of the application interface to overwrite the old value.

DeletePolicy(): ABACP has an expiration time and it can
be canceled by admin. There are two cases where deletion
occurs. One occurs when admin actively delete a policy by

18213

IEEE Access

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

Algorithm 2 PolicyContract. AddPolicy(): Add ABAC Policy
to Blockchain

Input: ABACP

Output: Error or null

: @implement SmartContract Interface
: APIstub ChaincodeStub < Invoke()

: if CheckPolicy(ABACP) == False
return Error('BadPolicy’)

rend if

: Id < Sha256(ABACP.AS + ABACP.AO)
: err < APIstub.PutState(Id, ABACP)
:if err! = null then

return Error(err.Text)

rend if

: renturn null

—_

invoking this function. And the other occurs when the Check-
Access() method is executing, if the attribute “endTime” is
expired, then it will invoke this function in PC to delete the
related policy. As shown in Algorithm 3.

Algorithm 3 PolicyContract.DeletePolicy(): Delete ABAC
Policy From Blockchain

Input: AS, AO
Output: Error or null

: @implement SmartContract Interface
: APIstubChaincodeStub < Invoke()
1 1d < Sha256(AS + AO)

: err < APIstub.GetState(Id)

:if err! = null then

return Error(err.Text)

:end if

: APIstub.DelState(Id)

:if err! = null then

10: return Error(err.Text)

11: end if

12: renturn null

Nel

QueryPolicy(): Tt implements the interface of database
querying which provides a function to get ABACP for other
chaincode. We choose CouchDB as SDB. Although it is a
key-value document database, CouchDB supports complex
queries similar to mongoDB. In that case, QueryPolicy()
supports querying ABACP by AS or AO.

2) DEVICE CONTRACT
DC is mainly responsible for storing the resource URL
of the device into SDB. DC has 2 input parameters
{Deviceld, URL}. The functions provided are as follows.
AddURL(): 1t uses Deviceld as a key and URL as a value
to store in SDB.
GetURL(): It queries the corresponding URL value from
SDB according to Deviceld.

18214

3) ACCESS CONTRACT

It verifies whether the user’s ABACR matches the ABAC
policy. Like PC, the request data is signed by the user’s private
key, after that, AC verifies the signature to check the user’s
identity by public key of user. The methods provided are as
follows.

Auth(): Similar to the PC method of the same name, it ver-
ifies the request with the user’s public key and check the
authenticity of its identity.

GetAttrs(): It parses the property data field after the signa-
ture is verified. Only part of ABAC attributes are included in
ABACR:{AS, AO}, while AE needs to be determined by AC.
Finally, these attributes are combined as {AS, AO, AE}.

CheckAccess(): It is the core function to achieve access
control management, as shown in Algorithm 4. Firstly, it gets
the attribute set by GetAttrs(). Secondly, it invokes the Query-
Policy() method of PC to query the corresponding ABACP
according to AS and AO. If the returned result is empty,
which means that there is no policy to support the request,
it will return a 403 error directly (indicating that there is no
permission). If the returned result is not empty, it indicates
that one or more ABACP will be obtained. Thirdly, it starts
to judge one by one whether the AE of request matches the
AE of ABACP and whether the value of AP is 1 (stands
for allow). If all attributes match the policy, the verification
passes. Finally, it invokes the GetURL() function of DC to get
the URL of the resource and return it to the user, otherwise
403 error will be returned.

Algorithm 4 AccessContract.CheckAccess(): Check User’s
Access

Input: ABAC_Request

Output: URL or Error

1: < A,S,A,0, A E > < GetAttrs(ABAC_Request)

2:P =< Py, P, ...P, >« PC.QueryPolicy(A,S, A,0O)
3:if P == Null then
4: return Error(403)
5: endif
6:for Pin < P1,P;,...P, > do
7. <...,A)P,A)E >< P
8: if Value(A,P) == ‘deney’ then
9: continue
10: ifA,E NA,E == then
11: continue
12: URL < DC.GetURL(A,0)
13: end for

14: if URL! = Null then
15: return URL

16: else

17: return Error(403)
18: end if

V. EXPERIMENT AND COMPARISON
This section introduces the experiment process and the result
comparison to demonstrate the function and performance of

VOLUME 8, 2020

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

IEEE Access

fabric-iot we proposed. In first part, we list the hardware and
software used in this experiment. In second part, we show the
process of setting up the system and the realization of access
control based on it. In last part, we give the performance test,
comparative experiment, and results analysis.

The source code of fabric-iot project is open-source on
GitHub: https://github.com/newham/fabric-iot.

A. ENVIRONMENTS
The experiment of this paper is carried out on two PCs. The
hardware and software environments are listed in Table 4.

TABLE 4. Hardware and software environments.

Hardware

CPU 17 7500u 2.9GHz, i7 8700k 3.7GHz
Memory 8G.8G

Hard Disk 256G, 1T

Software

OS Mac OS 10.14.6, Deepin Linux 15.11
docker v19.03.2

docker-compose v1.24.1

node v12.12.0

golang v1.12.9

hyperledger fabric v14.3

B. SYSTEM BUILDING PROCESS AND REALIZATION

The experiment is divided into three parts. The first part
mainly introduces the structure of fabric-iot, as well as ini-
tialize configuration and start-up steps. The second part intro-
duces the process of chaincode installation. The third part
describes how to implement the IoT resource access control
method based on ABAC by invoking three kinds of smart
contracts(PC, AC, and DC).

1) STRUCTURE AND INITIALIZATION OF FABRIC-loT
Fabric-iot consists of eight kinds of docker nodes which are
shown in Table 5. The steps of system initialization are as
follows.

TABLE 5. Docker images of nodes.

Node Name Description Number
fabric-iot/couchdb database node 4
fabric-iot/ca CA node 2
fabric-iot/peer peer node 4
fabric-iot/orderer orderer node 1
hyperledger/fabric-tools | tools of hyperledger 1
fabric-iot/chaincode/PC | PolicyContract node 4
fabric-iot/chaincode/DC | DeviceContract node 4
fabric-iot/chaincode/AC | AccessContract node 4

Stepl: Use the Hyperledger cryptogenic tool to generate
root certificates and secret key pairs for nodes (peer,
orderer, etc.).

Step2: Move those certificates and secret key pairs to the
directory specified, which will be mounted by a docker image
of CA and take effect when the container running. Other
nodes can authenticate their identity to the CA with their
signatures.

VOLUME 8, 2020

Step3: Use the configtxgen tool to generate a genesis
block, which is used to package transactions contains the
configuration of nodes and channels. When fabric-iot is up,
the genesis block is written into the blockchain, ensuring that
the identity information of each node in the whole system
can’t be tampered with. After that, the image of other nodes
will be started according to the initialization configuration
of docker compose. When all containers run successfully,
the peer nodes will be added to a channel.

2) INSTALLATION AND UPGRADE OF CHAINCODE

After the network is successfully set up, we start to install
chaincodes. The chaincodes are installed by executing com-
mands with the hyperledger client. The steps are as follows.

Step1: Copy the source code of chaincodes to a directory
the client node mounted.

Step2: Run the command to package the chaincodes to a
peer node in a channel.

Step3: Transport each compiled chaincode to other peer
nodes and instantiate it. A copy of each chaincode is saved
to a separate container as an endorsement.

The upgrade process is similar to installation. However,
only the node which first installed chaincode will be upgraded
to the new version immediately, the other peer nodes will
be upgraded synchronously only when a transaction is
generated.

3) IMPLEMENT OF ABAC

There are some ways to invoke chaincode in Hyperledger
Fabric platform. The outsiders can use client or SDK(support
Java, golang, node) to invoke chaincode in Hyperledger
Fabric platform.

Fabric-iot uses the client written by node SDK to invoke
chaincode. The steps are as follows.

Step1: CA node generates secret key pairs for client, which
are saved in a wallet of user.

Step2: Admin runs a client to connect to the peer node to
submit or evaluate (corresponding write and read operations)
a transaction.

Step3: Peer node queries or updates the SDB by making a
consensus with other peer nodes under the service of orderer
node.

To add ABAC policy, the AddPolicy() method of PC is
invoked, which is shown in Fig.5.

FIGURE 5. Result of invoking AddPolicy() in PC.

To verify whether the policy is added successfully,
we invoke the PC.QueryPolicy() method to query. The key
used in the query is obtained according to the formula:
sha256(Userld, Deviceld) — key. A query is shown in Fig.6.

18215

IEEE Access

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

e0e nodejs — -bash — 103x55

FIGURE 6. Result of invoking QueryPolicy() in PC.

If the properties in the real environment are changed or the
policy needs to be updated, the PC.UpdatePolicy() function
could be invoked, as shown in Fig.7. Delete operation can
be realized through PC.DeletePolicy() method, as shown
in Fig.8.

FIGURE 8. Result of invoking DeletePolicy() in PC.

As shown in Fig.9, the device can report the resource
address by invoking DC.AddUrl(), the URL is associated
with the policy by Deviceld or MAC address.

FIGURE 9. Result of invoking AddURL() in DC.

The URL can be queried by invoking DC.GetURLY(),
as shown in Fig.10.

FIGURE 10. Result of invoking GetURL() in DC.

After receiving the user’s request, AC invokes the Check-
Access() method. It first invokes the PC to query the relevant
policy according to the AO and AS, and then checks whether
the AE and AP attribute meet the conditions. If the condition
is met, it is proved that the property constraint of ABAC is
met. Finally, the GetURL() method of DC is invoked to get
the device resource URL. If the property condition is not met,
an error will be returned, as shown in Fig.11.

C. RESULT AND COMPARISON

In order to test the performance of fabric-iot system, two
groups of comparative experiments are designed by simu-
lating concurrent access to the system with multithreaded

18216

FIGURE 11. Result of invoking CheckAccess() in AC.

clients. In the first group of experiments, we count the pro-
cessing time of PC, AC and DC with different numbers of
concurrent requests. The numbers of virtual clients are set
to 50, 100, 200, 500, 1000. The statistical results are shown
in Fig.12-17. It can be seen from the figures:

100 +

AddPolicy

UpdatePolicy
DeletePolicy
80 4 QueryPolicy

cost time/second

50 100 200 500 1000
number of concurrent requests

FIGURE 12. Cost time of PC at different numbers of concurrent requests.

—e— AddPolicy

UpdatePolicy
—e— DeletePolicy
QueryPolicy

cost time/second

0.04 1

— T T T
50100 200 500 1000
number of concurrent requests

FIGURE 13. The trend of average cost time of PC at different numbers of
concurrent requests.

1) Write (such as ““add”, “update’”) operations cost longer
time than read (such as “get”, “query’’) operations.

2) The throughput of the system grows up with the increase
of the requests’ number. When the throughput reaches a cer-
tain value, it tends to be stable. And with the further increase
of the clients’ number, there is no obvious downward trend of
throughput.

In the second group of experiments, we use MQTT
message queue to sort transactions according to the prin-
ciple of consensus mechanism in Hyperledger Fabric,

VOLUME 8, 2020

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

IEEE Access

s AddURL
GetURL

cost time/second
(= N w B (%4 =]
o o o S S I=] =3
! L | | | L L

100 200 500 1000
number of concurrent requests

FIGURE 14. Cost time of DC at different numbers of concurrent requests.

—8— AddURL
0.12 4 @— GetURL

0.10

0.08 4

average cost time/second

0.04

— T T T
50100 200 500 1000
number of concurrent requests

FIGURE 15. The trend of average cost time of DC at different numbers of
concurrent requests.

mmm CheckAccess
60 +

50 4

B
=]
L

cost time/second
w
o
|

N
=1
!

o
'

] I I
50 100 200 500

number of concurrent requests

1000

FIGURE 16. Cost time of AC at different numbers of concurrent requests.

simulating the consensus algorithm of fabric-iot. We imple-
ment PoW consensus algorithm in golang language, and set
reasonable difficulty to fit the experimental environment. We
test the efficiency of data consistency of distributed system
by comparing the cost time of fabric-iot and PoW consensus
mechanism under different node numbers. The numbers of
nodes in the experiment are set from 5 to 100. The results
are shown in Fig.18. It can be seen from the figure that under
the difficulty of ensuring the PoW security, the cost time of
consensus in fabric-iot is far less than the PoW.

The above two groups of experiments can prove that
fabric-iot can maintain high throughput in large-scale request

VOLUME 8, 2020

0.12 4 —e— CheckAccess

0.11 4

0.10

0.09 4

average cost time/second

0.07 4

0.06 4

5‘0 160 2[‘)0 560 10:00
number of concurrent requests
FIGURE 17. The trend of average cost time of AC at different numbers of
concurrent requests.

—e— fabric-iot
67 —e— pow/difficulty=15
—e— PoW/difficulty=20

cost time/second

2

L S e e e e e S
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
number of node

FIGURE 18. Comparison of the consensus speed between fabric-iot and
PoW.

environment, and can effectively reach consensus in dis-
tributed system to ensure data consistency.

VI. CONCLUSION AND FURTHER WORK
This paper combines the blockchain technology with the
ABAC model, takes advantages of the blockchain technol-
ogy such as decentralization, tamper-proof and trace-ability,
solves the problem that the traditional access control method
based on the centralized designs is difficult to meet the access
control requirements in IoT. Firstly, according to the actual
production data of the IoT devices, we proposes a device
authority model. Secondly, according to the ABAC model,
we implements the ABAC policy management and ensures
the access security of the device resources by implementing
the smart contract application. Furthermore, an open-source
access control system named fabric-iot based on Hyperledger
Fabric is designed and implemented. This system adopts
distributed architecture, which can provide fine-grained and
dynamic access control management for the physical net-
work. Finally, the steps of blockchain network building,
chaincode installation, smart contract invoking are described
in detail, and the experiments show a convincible results.
Above all, this paper provides a practical reference for other
researchers to carry out relevant research.

Future works can be improved in the following aspects:

1) The experiments in this paper is carried out on two PCs.
In the future, we consider using the cluster or the edge

18217

IEEE Access

H. Liu et al.: Fabric-iot: A Blockchain-Based Access Control System in loT

computing service to deploy, and further verify the distributed
performance of this system.

2) In the future, more physical devices can be used to test
the reliability and throughput of the system.

3) Future research can try to improve the scalability of
fabric-iot and to support more IoT application integration.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1125-1142, Oct. 2017.

K. Chopra, K. Gupta, and A. Lambora, “Future Internet: The Internet of
Things—a literature review,” in Proc. Int. Conf. Mach. Learn., Big Data,
Cloud Parallel Comput. (COMITCon), Feb. 2019, pp. 135-139.

J. Wang, H. Wang, H. Zhang, and N. Cao, “Trust and attribute-based
dynamic access control model for Internet of Things,” in Proc. Int. Conf.
Cyber-Enabled Distrib. Comput. Knowl. Discovery (CyberC), Oct. 2017,
pp. 342-345.

V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access con-
trol,” Computer, vol. 48, no. 2, pp. 85-88, Feb. 2015.

N. Satoshi. (Nov. 2019). Bitcoin—Open Source P2P Money. [Online].
Available: https://bitcoin.org/en/

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, and Y. Manevich,
“Hyperledger fabric: A distributed operating system for permissioned
blockchains,” in Proc. 13th EuroSys Conf., 2018, p. 30.

W. Liang, M. Tang, J. Long, X. Peng, J. Xu, and K.-C. Li, ‘A secure fabric
blockchain-based data transmission technique for industrial Internet-of-
Things,” IEEE Trans. Ind. Inf., vol. 15, no. 6, pp. 3582-3592, Jun. 2019.
O. Novo, “Blockchain meets IoT: An architecture for scalable access
management in IoT,” IEEE Internet Things J., vol. 5, no. 2, pp. 1184-1195,
Apr. 2018.

Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the Internet of Things,” IEEE Internet Things
J., vol. 6, no. 2, pp. 1594-1605, Apr. 2019.

G. Papadodimas, G. Palaiokrasas, A. Litke, and T. Varvarigou, “Implemen-
tation of smart contracts for blockchain based IoT applications,” in Proc.
9th Int. Conf. Netw. Future (NOF), Nov. 2018, pp. 60-67.

K. Kost’dl, P. Helebrandt, M. Bellus, M. Ries, and I. Kotuliak, “Manage-
ment and monitoring of iot devices using blockchain,” Sensors, vol. 19,
no. 4, p. 856, Feb. 2019.

J. Yang, S. He, Y. Xu, L. Chen, and J. Ren, ““A trusted routing scheme using
blockchain and reinforcement learning for wireless sensor networks,”
Sensors, vol. 19, no. 4, p. 970, Feb. 2019.

S. Ding, J. Cao, C. Li, K. Fan, and H. Li, “A novel attribute-based
access control scheme using blockchain for IoT,” IEEE Access, vol. 7,
pp. 38431-38441, 2019.

M. Ma, G. Shi, and F. Li, “Privacy-oriented blockchain-based distributed
key management architecture for hierarchical access control in the IoT
scenario,” IEEE Access, vol. 7, pp. 34045-34059, 2019.

Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain-
based decentralized trust management in vehicular networks,” IEEE Inter-
net Things J., vol. 6, no. 2, pp. 1495-1505, Apr. 2019.

M. Cui, D. Han, and J. Wang, “An efficient and safe road condition
monitoring authentication scheme based on fog computing,” IEEE Internet
Things J., vol. 6, no. 5, pp. 9076-9084, Oct. 2019.

J. Pan, J. Wang, A. Hester, 1. Algerm, Y. Liu, and Y. Zhao, “EdgeChain:
An edge-1oT framework and prototype based on blockchain and smart con-
tracts,” IEEE Internet Things J., vol. 6, no. 3, pp. 47194732, Jun. 2019.
0. Novo, “Scalable access management in IoT using blockchain: A perfor-
mance evaluation,” IEEE Internet Things J., vol. 6, no. 3, pp. 4694-4701,
Jun. 2019.

18218

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

D. D. E. Maesa, P. Mori, and L. Ricci, “Blockchain based access control,”
in Proc. IFIP Int. Conf. Distrib. Appl. Interoperable Syst. Springer, 2017,
pp. 206-220.

J. P. Cruz, Y. Kaji, and N. Yanai, “RBAC-SC: Role-based access control
using smart contract,” IEEE Access, vol. 6, pp. 12240-12251, 2018.

A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, ‘“FairAccess: A new
blockchain-based access control framework for the Internet of Things,”
Security Commun. Netw., vol. 9, no. 18, pp. 5943-5964, Dec. 2016.

H. Li and D. Han, “EduRSS: A blockchain-based educational
records secure storage and sharing scheme,” [EEE Access, vol. 7,
pp. 179273-179289, 2019.

W. Liang, J. Long, T.-H. Weng, X. Chen, K.-C. Li, and A. Y. Zomaya,
“TBRS: A trust based recommendation scheme for vehicular CPS net-
work,” Future Gener. Comput. Syst., vol. 92, pp. 383-398, Mar. 2019.

C. Qu, M. Tao, and R. Yuan, “A hypergraph-based blockchain model and
application in Internet of Things-enabled smart homes,” Sensors, vol. 18,
no. 9, p. 2784, Aug. 2018.

W. Liang, K.-C. Li, J. Long, X. Kui, and A. Y. Zomaya, “An industrial net-
work intrusion detection algorithm based on multi-feature data clustering
optimization model,” IEEE Trans. Ind. Informat., to be published.

N. Tantitharanukul, K. Osathanunkul, K. Hantrakul, P. Pramokchon, and
P. Khoenkaw, “MQTT-topics management system for sharing of open
data,” in Proc. Int. Conf. Digit. Arts, Media Technol. (ICDAMT),
Mar. 2017, pp. 62-65.

HAN LIU received the M.S. degree from Shanghai
Maritime University, where he is currently pur-
suing the Ph.D. degree. His main research inter-
ests include big data, cloud computing, distributed
computing, cloud security, machine learning, the
IoT, and blockchain.

DEZHI HAN received the Ph.D. degree from the
Huazhong University of Science and Technology.
He is currently a Professor of computer science
and engineering with Shanghai Maritime Univer-
sity. His research interests include cloud comput-
ing, mobile networking, wireless communication,
and cloud security.

DUN LI received the M.S. degree from the Macau
University of Science and Technology. He is cur-
rently pursuing the Ph.D. degree with Shanghai
Maritime University. His main research interests
include smart finance, big data, machine learning,
the IoT, and blockchain.

VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	HYPERLEDGER FABRIC
	MAIN COMPONENTS: CA, CLIENT, PEER, ORDERER
	CHANNEL
	LEDGER
	CHAINCODE

	ABAC MODEL

	SYSTEM MODEL AND DESIGN
	RESOURCE AND POLICY MODEL
	SYSTEM STRUCTURE
	USERS
	BLOCKCHAIN
	SMART GATEWAY
	IoT DEVICES

	WORKFLOW
	SMART CONTRACT DESIGN.
	POLICY CONTRACT
	DEVICE CONTRACT
	ACCESS CONTRACT

	EXPERIMENT AND COMPARISON
	ENVIRONMENTS
	SYSTEM BUILDING PROCESS AND REALIZATION
	STRUCTURE AND INITIALIZATION OF FABRIC-IoT
	INSTALLATION AND UPGRADE OF CHAINCODE
	IMPLEMENT OF ABAC

	RESULT AND COMPARISON

	CONCLUSION AND FURTHER WORK
	REFERENCES
	Biographies
	HAN LIU
	DEZHI HAN
	DUN LI

