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ABSTRACT Bearings running state affects the normal operation of mechanical equipment. It is of great
theoretical and practical value to carry out bearing fault diagnosis. In bearing fault diagnosis research,
the extraction and selection of fault features can help improving the accuracy of bearing fault diagnosis.
However, these researches suffer from the following weaknesses. (1) High dimension of the selected features.
(2) Uncertainty of single sensor for data sampling. Therefore, in this paper, a feature selection feedback
network (FSFN) is proposed to overcome the first weakness. At the same time, we proposed an improved
Dempster—Shafer (IDS) evidence theory fusion method based on the kappa coefficient to deal with the
second weakness. Extensive evaluations of the proposed method on the CUT-2 experimental platform dataset
showed that FSFN can not only reduce the dimension of the final selected feature without decreasing the
diagnostic accuracy but also shorten the time of feature selection. Moreover, compared with the existing DS
evidence theory fusion method, IDS can achieve higher average fusion precision and improve the accuracy
and reliability of bearing fault diagnosis.

INDEX TERMS Bearing fault diagnosis, feature selection, feedback network, D-S evidence theory.

I. INTRODUCTION

Due to improvement of digitalization and network level of
manufacturing enterprises, a large amount of data of mechan-
ical equipment has been accumulated [1], [2]. Bearings are
usually one of the most common components of mechanical
equipments, and their operating conditions have a consider-
able impact on mechanical equipments [3], [4]. Therefore,
it is of great significance in theory and practice to carry out
bearing fault diagnosis. The effect of bearing fault diagnosis
is largely determined by fault features. The feature selection
of bearing fault diagnosis can shorten the model training time
and simplify fault diagnosis process by eliminating irrele-
vant features and reducing feature dimensions. In addition,
information of multi-sensors is beneficial to the reliability
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and accuracy of diagnosis results from the single sensor, and
ensures the authenticity of bearing fault diagnosis results.
Feature selection can effectively improve the diagnos-
tic accuracy and reduce the feature dimensions in bearing
fault diagnosis. Hui et al. [5] proposed an improved
WES technique before integration with a support vector
machine (SVM) model classifier as a complete fault diagnosis
system for a rolling element bearing case study. Liu ef al. [6]
used an SVM as the fault decision maker, adopted
wrapper-type feature subset evaluation criteria, and used the
evolutionary Monte Carlo method to search for optimal fea-
ture subsets to realize bearing fault diagnosis. Yu et al. [7]
proposed a novel feature extraction procedure incorporating
an improved feature dimensionality reduction method, and
the experimental results show that the proposed fault diagno-
sis model can serve as an effective and adaptive bearing fault
diagnosis system. Cui et al. [8] proposed a rolling bearing
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fault diagnosis method based on local and correlation analysis
and carried out feature selection by calculating intrinsic mode
function (IMF) correlations. Shi [9] proposed a new corre-
lation coefficient of simplified neutrosophic sets (SNSs) to
diagnose bearing fault types and extract the feature vector cor-
responding to the energy feature value of each frequency band
for fault feature extraction. Zheng et al. [10] proposed a new
rolling bearing fault diagnosis method based on multi-scale
fuzzy entropy (MFE), Laplacian score (LS) and variable
predictive model-based class discrimination (VPMCD).
However, there are several similar problems in the feature
selection work of the above researchers, that is, the dimension
of the feature selection is high.

With growth of the types and number of sensors, data from
huge amounts of sensors help people to be aware of the condi-
tion of equipments. The technique of combining information
from multiple sources to form a unified understanding is
called multi-sensor information fusion [11]. Currently, multi-
sensor information fusion technology has been applied in
many fields [11], [12], such as sensor networks, robotics,
video and image processing, intelligent system design, target
tracking, and automotive automation.

Multi-sensor information fusion is divided into data fusion,
feature fusion and decision fusion [13], in which decision
fusion is the highest level. First, a single decision is made
based on the data of each sensor; then, multiple single
decision results are combined to achieve the final fusion
results. Decision fusion is a fusion based on specific goals,
and the result of the fusion determines the accuracy of the
decision. Compared to other fusion level methods, deci-
sion fusion discards a large amount of data but uses the
fewest resources. Therefore, it has advantages in terms of
strong anti-interference ability and low cost. Common deci-
sion fusion methods include Bayesian inference, expert sys-
tems, Dempster-Shafer evidence theory, and fuzzy theory.
Coussement et al. [14] proposed a Bayesian decision sup-
port framework that formalizes subjective human expert
opinions with more objective organizational information.
Ren et al. [15] proposed a Bayesian inference system based
on a Gaussian process for realizing intelligent surface mea-
surements of multi-sensor instruments. Chen et al. [16]
proposed a hybrid expert system to simulate the decision-
making process of clinical sleep staging through symbol
fusion. Rikalovic and Cosic [17] proposed an expert sys-
tem for industrial location factor analysis based on a fuzzy
inference system, which solved the problem of nonlinear
optimization through available knowledge. Gong et al. [18]
proposed a fault diagnosis method for the primary cooling
system of nuclear power plants based on D-S evidence theory.
Chen and Feng [19] proposed a new method for addressing
conflicting evidence in the DS evidence theory and applied
an improved method to pulsed gas tungsten arc welding,
which combines the information obtained by arc, sound and
vision sensors in the process of GTAW. Liu et al. [20] pro-
posed an intelligent fault diagnosis method based on D-S
evidence theory that comprehensively analyzes vibration and
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temperature signals to diagnose bearing faults. Xie et al. [21]
proposed a stochastic decision-making intuitionistic fuzzy
method using applied foreground theory and gray relational
analysis, which verified the effectiveness and feasibility of an
example. Sadrykia et al. [22] proposed a new multi-criteria
decision-making (MCDM) method based on a geospatial
information system, which was applied to predict the extent
of building damage before a potential earthquake occurs.

Although DS evidence theory has certain advantages in
addressing multi-sensor information, with the gradual deep-
ening of DS evidence research and the expansion of its appli-
cation range, DS evidence theory has also revealed certain
disadvantages. For example, measuring the weight of evi-
dence by the distance function is not based on the precision
of the data; thus, it is not sufficiently accurate for weight
distribution. Additionally, the Delphi method [23] is used to
correct the sensor weight dependence expert experience; thus,
it is too subjective in terms of weight distribution.

Based on the above problems, a bearing fault feature selec-
tion feedback network and a bearing fault information fusion
method based on the kappa coefficient are proposed. The
main contributions of this paper are as follows:

(1) This paper proposes a feature selection network with a
feedback effect. The network takes the feature selection time
and the feature selection dimension as feedback conditions.
Then, comparing the number of feature selections with the
FF-FC-MIC (Feature-to-Feature and Feature-to-Category-
Maximum Information Coefficient) feature selection method,
it is verified that the network can select a smaller number
of features in a shorter time and achieve better diagnosis
results; with the diagnostic accuracy as the evaluation index,
the network and the current feature selection method are used
to verify the diagnostic accuracy of different feature selection
algorithms on SVM and KNN. The experimental results show
that the performance of the network is better than the current
feature selection method.

(2) Aiming at the uncertainty of single sensor data diag-
nosis results in bearing fault diagnosis, an improved DS
evidence fusion algorithm based on kappa coefficient is pro-
posed. The algorithm improves the traditional DS evidence
theory by data consistency check. By comparing with the
improved DS evidence theory based on the distance function,
the experimental results show that the performance of the
proposed algorithm is better than the currect improved DS
evidence theory method.

The remainder of this paper is structured as follows.
Section 2 introduces the basic theory and algorithm applied
in this paper. Section 3 provides the details of the proposed
method. Section 4 shows the experimental results. A conclu-
sion is presented at the end of this paper.

Il. RELATED BASIC THEORY AND ALGORITHM

A. FEATURE WEIGHT BASED ON A DECISION TREE

The decision tree (DT) method is a supervised machine learn-
ing method that is often used for classification and regression.
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Because of its high calculation speed and high precision, it is
often used in state-of-the-art research [24], [25]. The estab-
lishment of a decision tree model is to select a feature with the
best distinguishing ability based on a certain criterion, divide
the nodes of the tree, and repeat the feature selection to divide
new nodes until the maximum depth of the tree is reached.
This completes the establishment of the decision tree model.
The construction process of the model is to divide and deepen
the tree nodes by selecting features that exist in the feature
selection process, which allows the model to contain most of
the features that are strongly distinguishable [26]. According
to the different feature selection criteria in the decision tree
model, common decision tree algorithms are ID3, C4.5, and
CART (classification and regression tree).

The ID3 algorithm uses the information gain to select fea-
tures, and features with large information gains are preferred.
The C4.5 algorithm uses the information gain rate selection
feature to reduce the information gain and select features with
more eigenvalues. Therefore, ID3 and C4.5 are decision tree
algorithms based on the entropy model of information theory.
To simplify the model and not completely lose the advan-
tages of the entropy model, Breiman proposed the CART
algorithm [27], [28].

The CART algorithm uses the Gini index to measure the
purity of the sample data. The purity of a dataset D is defined
as:

Iyl Iyl

GiniD)=)_ Y pipw =1-) p} (1
k=1k'#k k=1
The Gini index of a is defined as:
Iyl DY|
Giiidex(D.a) = Y _ D Gini(D") 2)
v=1

The ability to distinguish features increases as the purity
decreases.

B. DEMPSTER-SHAFER EVIDENCE THRORY
D-S evidence theory consists of four important concepts: the
recognition framework, basic probability assignment, uncer-
tainty representation, and synthetic rules.

Recognition framework: In D-S evidence theory, the recog-
nition framework is represented by a finite nonempty set:

O ={61,02,...,6,} 3)

where 6; i =1, 2,...n) represents the ith hypothesis and
reflects the ith possible recognition result and n represents
the number of hypotheses.

Based on the recognition framework, the power set 2© can
be expressed as

29 = {2, {01}, {62}, ..., {6}, {61, 62} , .. {61, 6} ,
e (01,00, ..., 64}

where 6; € ©,0 C 29,
Basic probability assignment (BPA) [29]: The basic prob-
ability assignment is also known as the mass function,
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which is used to describe the degree of support for hypothe-
ses. The mass function can be expressed as m : 2 — [0, 1],
which satisfies the following two equations:

m@@) =0
Zm(A):l )

Ae®

where A is a proposition in 2€, which contains one or more
hypotheses; m(A) indicates the basic support of evidence to
proposition A.

Uncertain representation [20]: According to the mass func-
tion, the belief function (Bel) and the plausibility function (P1)
can be derived.

Bel (2) =0
Bel(A):Zm(A), A2 A+ &)
BCA
Pl(2)=0
PlA)= Y m(). Ae2° A#o (6)
A B£@

where Bel(A) is the sum of the probabilities of all subsets
of A, and PI(A) is the sum of the probabilities of B without
intersection with A. Bel(A) and P1(A) can be used as the lower
and upper bounds of A, respectively. [Bel(A), P1(A)] is called
the confidence interval of A, which is used to indicate the
uncertainty of A [30], as shown in Figure 1.

Plausibility interval Reject interval

Belief interval Uncertainty interval

0 Bel(4) Pi(4) 1

FIGURE 1. Certain representation of proposition A.

Synthetic Rule: Assume that there are n evidence bod-
ies mpy,my, ..., m, under the system framework ® =
{61, 62, ..., 6,}; then the D-S evidence theory synthetic rule
of my, my is defined as:

m em...Dmy,

1
Yo o miADm A)...my (A, if A#D

_J)J1-K
= AL A2 (A=A
ifA=0
)

where k is the collision factor, which reflects the degree of
collision between the evidence bodies.

k= ¥

A1NAy---NAL=L

=1- >

A1NAg--NAp#D

my (A1) my (Az) - - - my (Ay)

my (Ap)my (A2) - - - myp (Ap) (8)
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C. KAPPA TEST
The kappa test is a method used to assess consistency in
statistics and measures the consistency of two judgments
(e.g., the consistency of the test results of two diagnostic test
methods for the same sample or subject, where two medical
workers performed two observations of the same group of
patients to make a diagnosis) by the kappa coefficient. Its
value is between —1 and 1, and it is generally between 0 and 1
in practical applications.

The calculation of the kappa coefficient is based on the
confusion matrix obtained by two judgments. Assume that
there is a confusion matrix:

all aln “e a]n
any an) ... ay

Dj=| . ) ) )
anl an2 e Ann

The kappa coefficient is calculated as follows:

k = Po"Pe (10)
1 - Pe
where pg is the sum of the observations in the diagonal unit
of the confusion matrix:

221:1 aij
Po=<n ~n
§:ﬁ=1§:ﬁ=1av
Pe 1s the sum of the expected values in the diagonal unit as
follows:

(11)

d d d
pe=C1X 1+ Xdy+ +cp X dy (12)

nxn

where c; represents the number of real samples of the ith
category:

n
ci =) aj (13)
j=1

d; denotes the number of samples predicted by the ith
category:
n

d; = Zaij (14)

i=1

iIll. PROPOSED METHOD

In this section, we first improves the FF-FC-MIC feature
selection algorithm in the literature [31] and proposes a new
feature selection method, FSFN (feature selection feedback
network), for the feature dimension and feature selection time
feedback function, which can perform online fault diagnosis
feature selection. Then, a multi-sensor information fusion
method is proposed based on the kappa coefficient to improve
the accuracy and reliability of bearing fault diagnosis. The
method improves the traditional D-S evidence theory from
two aspects: evidence body weight and sensor weight. The
kappa coefficient is used as the similarity measure between
each evidence body to correct the weight of the evidence
body, and the sensor weight is corrected based on the diag-
nostic accuracy of different sensor data.
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A. FEATURE SELECTION FEEDBACK NETWORK(FSFN)
Although the FF-FC-MIC feature selection algorithm
achieves reduced complexity, it has a long running time and
cannot satisfy the requirements of online diagnosis. It is found
through experiments that the FF-FC-MIC feature selection
algorithm presents a phenomenon in which the dimension
of the feature selection is higher than that of the traditional
feature selection algorithm. Further analysis shows that the
correlation calculation time is long and accounts for the vast
majority of the algorithm’s running time. Therefore, this
paper proposes a feature selection network algorithm that
can feedback the feature selection dimension and feature
selection time to realize the intelligent features and real-time
selection mode in bearing fault diagnosis.

Figure 2 shows the feature selection feedback network
framework. First, we set the feature quantity threshold
and feature selection time threshold. Then, we use the
FF-FC-MIC algorithm proposed by [31] to select the feature
for which the selected feature dimension and feature time are
compared with the set two thresholds. When the feedback
condition is satisfied, the weight of each feature in the feature
set is calculated by CART, and features with a weight of zero
are eliminated. Next, the FF-FC-MIC algorithm is used in the
remaining features to complete the feature selection. Thus,
the selected feature dimension is reduced, and the feature
selection time is shortened. The entire process of FSFN fea-
ture selection is shown in Figure 3.

FF-FC-MIC

Number o
features>Number
threshold

Selection
time>Temporal
threshold

YES

FIGURE 2. Feature network framework.

B. DS EVIDENCE THEORY FUSION ALGORITHUM BASED
ON THE KAPPA COEFFICIENT

The kappa coefficient of different sensor data is obtained
by the consistency test, which is used as the weight of the
evidence. Because the fault diagnosis models based on dif-
ferent sensors have different decision diagnosis results for
different information sources of the same device state, kappa
coefficient can be used to measure the similarity of the two
judgments. Therefore, the weight of the different evidence
is determined by testing the consistency of the data, and
a similarity judgment can be made more scientifically and
accurately.
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FIGURE 3. Flowchart of the proposed method. (a) Data preprocessing: Features are obtained through the time
domain and frequency domain, forming a feature set (FS) matrix with a size of n x m. (b) Feature weight
calculation: The weight of each feature is calculated by CART, and features whose weight is not 0 are
selected.(c) MIC (maximum information coefficient) calculation: The relevance between features is calculated to
obtain the FF-MIC matrix with a size of / x / by MIC, and the relevance between features and fault categories is
calculated to obtain the FC-MIC matrix with a size of / x p by MIC.(d) Relevance calculation: An FF_threshold is
set to distinguish strong irrelevance features from FS, and an FF_threshold is set to distinguish strong relevance
features from FS. (e) Obtaining feature subsets: According to the thresholds, Subset1 and Subset2 are obtained.
(f) Merging feature subsets: An intersection operation is applied to merge Subset1 and Subset2, obtaining a

final F-Subset.
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FIGURE 4. The process of IDS fusion.

The IDS fusion method flowchart is shown in Figure 4.
First, the consistency of the two evidence bodies m; and m; is
tested to obtain the kappa coefficient k;;.

Taking k;; as the measure of similarity between the evi-
dence m; and my, the similarity matrix of the evidence is
obtained as follows:

kit kiz ... kin
k21 k22 “e an

Si=1 . : : (15)
ki ko ... kum
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Then, based on the similarity matrix, the Sup (m;) of the
evidence m; is calculated:
n
Sup (m) = Y Si(mi, m)) (16)
j=1,i#1
where Sup (m;) denotes the support between the evidence m;
and the other evidence bodies.
Moreover, based on the support, the Cred (m;) of the evi-
dence m; is calculated:

Sup (m;)
Y, Cred (m;)

where Cred (m;) C [0, 1]and )}, Cred (m;) = 1.

The kappa coefficient of the two evidence bodies is
obtained through a consistency test; the closer it is to 1,
the higher the degree of consistency between the two evidence
bodies. Specifically, the shorter the distance between the two
evidence bodies is, the higher the support between each bodys;
in addition, the higher the trust degree is, the greater the
weight of the final evidence.

Next, this paper uses the weighted average of the diagnos-
tic accuracy corresponding to each sensor data item to correct
the sensor weight. Compared with the commonly used Delphi
method, correcting the sensor weight by the weighted average
does not depend on expert experience, and the expression
result is more objective and accurate. The sensor weight w (s;)
is calculated as follows:

Cred (m;) = an

acc (s;)
Yoy ace (si)
where acc (s;) represents the diagnostic accuracy and
Y1y ace (s;) represents the sum of the diagnostic accuracy
of the sensor n.

Then, we use the kappa coefficient to modify the weights of
evidence and the weighted average of the diagnostic accuracy

o (si) = (18)
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to modify the common corrected BPA:

n
mf (A) = m; (A) * Cred (m;) * o (s;) (19)
i=1
Finally, the corrected BPA is normalized:
my (A)

#
A = — L7
i &) ZAngT(A)

(20)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENTAL SETUP AND DATASET

To validate the effectiveness of the proposed feature selec-
tion method, vibration signals were collected, and experi-
ments were conducted on the CUT-2 platform. As shown in
Figure 5, the test rig was composed of an oscilloscope, a data
acquisition system, a speed governor, the CUT-2 platform and
a computer. The test bearing was placed at the right end of
the test bench. The sampling frequency was 2 kHz, the motor
speed is 2,000, 2,500 and 3,000 rpm, and the bearing model
is a deep groove ball bearing 6,900 zz. The data acquisition
of the bearing vibration signal is completed without load. To
ensure the integrity of the bearing vibration signal, the sen-
sors are installed in the X, Y and Z directions, as shown in
Figure 6. In addition, an electric discharge machine was
utilized to set three different types of faults: outer race faults,

speed bearing
motor =

k computer
ZOVernor platform box

bearing
box

FIGURE 5. Experimental test rig: (a) CUT-2 data acquisition system;
(b) CUT-2 platform.

e

() (b) (© @

FIGURE 6. Locations of bearing faults: (a) outer race fault; (b) ball fault;
(c) inner race fault; and (d) combination of parts.
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ball faults, and inner race faults, as shown in Figure 6. The
fault diameters were 0.2 and 0.3 mm.

The vibration signal construction verification dataset was
collected by the CUT-2 bearing experimental platform. The
CUT-2 dataset contains four bearing states: normal, outer
ring fault, inner ring fault, and ball fault. Each class contains
200 samples, each consisting of 1,024 consecutive points. The
dataset of the same structure was constructed at 2,000, 2,500,
3,000 rpm, and the training and test processes were performed
on the dataset at the same speed. Table 1 shows the details of
the datasets. A training set with 560 samples is generated,
along with a test set of 240 samples.

TABLE 1. CUT-2 bearing data set at 2,000, 2,500, 3,000 rpm.

Conditions of the Bearing Fault Size Number of Class
(mm) Samples

Normal condition 200 0
0.2 100

Inner race fault 1
0.3 100
0.2 100

Outer race fault 2
0.3 100
0.2 100

Baller fault 3
0.3 100

B. ANALYSIS OF EXPERIMENTAL RESULTS OF THE FSFN
ALGORITHM ON THE CUT-2 DATASET

Table 2 shows the feature weights calculated by the CARTA
algorithm at 2,000, 2,500, and 3,000 rpm.

At 2,000 rpm, the FSFN feature selection algorithm calcu-
lates the feature weights through the CART algorithm. A total
of 13 features were selected under the X-direction sensor
dataset, and the feature numbers were 0, 1, 3, 8, 13, 14, 15,
17,20,21, 22,23, and 24. A total of 14 features were selected
under the Y-direction sensor dataset, and the feature numbers
were 0, 1, 3, 4, 6, 7, 10, 14, 15, 17, 18, 20, 23, and 24.
A total of 6 features were selected under the Z-direction
sensor dataset, and the feature numbers were 1, 5, 10, 13, 16,
and 21.

At 2,500 rpm, 9 features were selected under the
X-direction sensor dataset, and the feature numbers were 5,
6, 10, 13, 15, 17, 20, 21, and 22. A total of 8 features were
selected under the Y-direction sensor dataset, and the feature
numbers were 0, 1, 16, 17, 19, 20, 22, and 24. A total of
7 features were selected under the Z-direction sensor dataset,
and the feature numbers were 1, 3, 14, 15, 20, 21, and 24.

At 3,000 rpm, 14 features were selected under the
X-direction sensor dataset, and the feature numbers were 0, 1,
2,3,10,11,13,15,16, 18, 19,21, 22, and 24. A total of 8 fea-
tures were selected under the Y-direction sensor dataset, and
the feature numbers were 2, 5, 6,7, 15, 18, 20, and 23. A total
of 6 features were selected under the Z-direction sensor data
set, and the feature numbers were 1, 3, 7, 13, 20, and 21.

The effectiveness of the FSFN feature selection algorithm
was verified on the CUT-2 dataset. As shown in Table 3

VOLUME 8, 2020
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TABLE 2. The feature weight of the CUT-2 dataset.

2000 rpm 2500 rpm 3000 rpm
Feature
X Y z X Y z X Y z

0 0.01659 0.11152 0.00165
f1 0.01211 0.05767 0.02574 0.05117 0.02593 0.13194
2 0.00764 0.02175

0.00251 0.00206 0.18315 0.10014
4 0.0067
5 0.11344 0.17982 0.00999
fo 0.00256 0.00165 0.02767
7 0.21675 0.01322 0.09257

0.00125
9
f10 0.00228 0.00988 0.20033 0.01208
fl1 0.03014
f12
.
f17 0.00333 0.02488 0.02571 0.00984
f18 0.00889 0.00167
f19 0.00495
20 0.02348 0.01152 0.14489 0.10145
21 0.00942 0.10699 0.11239 0.01995
22 0.03248
23 0.00287 0.04871
24 0.00652 0.01182

(The figures are the visualization results for the correspond- Additionally, the number of features of the two types of
ing speed samples. The horizontal axis in the figure represents algorithms is compared, as shown in Figure 7. Compared with

the number of features and the vertical axis represents the the FF-FC-MIC feature selection algorithm, the algorithm
first 13 samples. For the sake of beauty, the first 13 samples proposed in this paper selects fewer features, thus the feature
are chosen), the FSFN feature selection algorithm selects selection time is also shortened.

the number of features in the CUT-2 datasets. From the For further analysis, the diagnostic accuracies of the dif-
three-sensor datasets for the three rotational speeds, the FSFN ferent feature selection algorithms are verified on the SVM
feature selection algorithm performs the feature selection and KNN methods, as shown in Table 4. The diagnostic
with fewer than six of the 25 features. accuracy of the classification model and the average

VOLUME 8, 2020
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TABLE 3. CUT-2 dataset feature selected by the proposed.

Motor Speed (rpm)  Sensor Position All Features l?:::;f::i ;‘:ﬁfﬁz‘:

) Jl- I o
2000 Y 1 H 3,10,15,20

V4 j I 1,5,10,13,15

X m 5,10, 15,17,20
2500 Y I 0,16,19,20

z I” 1,14,20,21,24

X I 0,3,15,16,19
3000 Y H 2,6,16,20

Z I 1, 7, 13, 20, 21

diagnostic accuracy of the FSFN feature selection algorithm algorithms. However, at 2,500 rpm, compared to the mRMR
are all above 95%, which are higher than the diagnostic accu- feature selection algorithm, the average diagnostic accuracy
racy of the FF-FC-MIC and SFS mRMR feature selection of the FSFN feature selection algorithm decreases by 1%,
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FIGURE 7. Comparison of feature numbers selected by two types of
algorithms.

TABLE 4. Comparison of classification accuracy of SVM and KNN at
motor speeds of 2,000, 2,500 and 3,000 rpm using different feature
selection methods.

Classification

Mot Feature
otor Selection Models Average Accuracy
Speed(rpm) Methods
SVM KNN
FF-FC-MIC 0.9225 09125 0.9175
2000 SFS 0.9425  0.9363 0.9394
mRMR 0.9833  0.9708 0.9775
FSFN 0.9917  0.9833 0.9875
FF-FC-MIC 0.9625  0.9313 0.9469
2500 SFS 0.9688  0.9525 0.9607
mRMR 0.9833  0.9799 0.9892
FSFN 0.9833  0.9625 0.9729
FF-FC-MIC 0.9938  0.9875 0.9907
SFS 0.9863  0.9763 0.9813
3000
mRMR 0.9958  0.9833 0.9896
FSFN 0.9958  0.9958 0.9958

which is possible because of the instability of the vibration
signal at 2,500 rpm. In other words, the FSFN algorithm
shows high precision.

C. EVALUATION OF THE IMPROVER D-S(IDS) EVIDENCE
FUSION ALGORITHM AND ITS PERFORMANCE IN
BEARING FAULT DIAGNOSIS

The proposed improved DS evidence theory algorithm (IDS)
is verified on the CUT-2 dataset in this paper. For the
CUT-2 dataset, the fusion verification is performed for the X,
Y directions, the Y,Z directions, the X,Z directions and the X,
Y, Z directions.

VOLUME 8, 2020

First, IDS fusion is performed based on the diagnostic
accuracy corresponding to the feature selected by the feature
network proposed in this paper. To eliminate the influence
of random factors, ten experiments were repeated, and the
average value was taken as the average fusion precision. The
average fusion precision of IDS is compared with the average
accuracy of single sensor diagnosis and traditional evidence
theory. The results are shown in Figure 8 (a)-(d).

Based on the analysis of Figure 8 (a)-(d), the average
fusion accuracy is approximately 1% higher than the diag-
nostic accuracy of a single sensor, regardless of the combina-
tion of two-sensors or three-sensor data diagnostic accuracy.
Specifically, the traditional DS evidence theory and IDS algo-
rithm perform the decision fusion. The reason for the small
improvement in fusion accuracy is that before the decision
fusion, the corresponding datasets of each sensor selected
the feature with the highest diagnostic accuracy by the fea-
ture network under the current conditions. The diagnostic
accuracy of single-sensor data is close to 100% at different
speeds. Therefore, when the decision fusion is performed
again, the average fusion precision is close to the maximum
value, and the effect of the decision fusion cannot be shown.

To highlight the advantages in this study with respect to the
improvement of D-S evidence theory and the accuracy and
effectiveness of the experiment, the control variables are used
to select the same features for all sensor-constructed datasets
for training and verification. Therefore, based on features in
the time domain and frequency domain, this study selected
0-1-2-3-4, i.e., a total of five features for verification.

In addition, we compare the proposed IDS algorithm with
other algorithms (traditional DS evidence theory, DS evi-
dence theory based on the Euclidean distance correction of
the weight of evidence (Euclidean distance DS), D-S evi-
dence theory based on the Minkowski distance correction of
the weight of evidence (Minkowski distance DS), and DS evi-
dence theory based on the Mahalanobis distance correction of
the weight of evidence (Mahalanobis distance DS)) in fusion
precision. Ten verifications were performed for each sensor
dataset and fusion method, and the average was taken as the
final result.

1) CONFUSION MATRIX VISUALIZATION

As shown in Table 5, the confusion matrix at each speed on
the CUT-2 dataset is visualized, and the kappa coefficient is
obtained by consistency testing of the two-sensor data at the
same speed.

In this study, the weight of evidence is corrected by
performing a consistency test on the diagnostic results of
two sensors at the same speed. First, the confusion matrix
corresponding to the diagnosis result of each sensor dataset is
calculated based on different sensor data diagnoses. Second,
the elements on the corresponding positions of different con-
fusion matrices are added to a summation confusion matrix,
which reflects the predicted and true values under the two sen-
sors. Different prediction conditions represent the diagnostic
accuracy of each sensor dataset. Through the consistency
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100.00%
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100.00%
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m=000rpm  98.71% 8.79% 98.75% 99.89% 99.91%
m2500rpm - 97.27% 97.31% 97.29% 99.54% 99.52%
3000rpm  99.50% 99.64% 99.58% 99.90% 99.99%
Average  98.49% 98.58% 98.54% 98.90% 99.95%
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FIGURE 8. (a) Comparison of diagnostic accuracy and fusion method
results of the X- and Y-direction sensors after the network
characterization. (b) Comparison of diagnostic accuracy and fusion
method results of X- and Z-direction sensors after the network
characterization. (c) Comparison of diagnostic accuracy and fusion
method results of Y- and Z-direction sensors after the network
characterization. (d) Comparison of diagnostic accuracy and fusion
method results of X-, Y- and Z-direction sensors after the network
characterization.

testing of the confusion matrix obtained from different sensor
data, the degree of difference in the diagnostic consistency
between the two sensors can be obtained. The degree of this
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difference is expressed by the kappa coefficient, which is
closer to 1, indicating that the difference between the two
diagnoses is smaller and that the two evidence bodies are
closer to each other. Thus, the calculation based on the kappa
coefficient can reflect the distance between different evidence
bodies and thus correct the weight of the evidence.

The kappa coefficient represents the similarity of the
two-sensor data diagnostic results. Therefore, regardless of
whether the sensor is in the X, Y, or Z directions, the similarity
between the diagnostic results is relatively high.

2) ANALYSIS OF EXPERIMENTAL RESULTS ON

CUT-2 DATASET

This study validated the applicability and stability of IDS
on the CUT-2 dataset. Because the CUT-2 experimental plat-
forms contain sensors in three positions, the IDS is verified
by a combination of four sensors, i.e., sensor combinations
in the X and Y directions, X and Z directions, Y and Z
directions, and X, Y, and Z directions. The SVM model is
used to diagnose data in the X, Y, and Z directions, and
the average accuracy is used as the corrected sensor weight,
as shown in Table 6.

Figure 9 shows that IDS improves the diagnostic accu-
racy by an average of 3.55% compared to the single X and
Y sensors. Compared with the other DS evidence theory,
the fusion accuracy increases by at least an average of approx-
imately 0.75% and by at most an average of approximately
1.36%. Overall, although IDS achieves a lesser improvement
in terms of fusion accuracy compared to the other improved
DS evidence theory, it demonstrates a certain effectiveness
and adaptability in the decision fusion of sensor data in the
X and Y directions.

97.00%
96.00%
95.00%

94.00%

93.00%
92.00%
91.00%
90.00%
89.00%
88.00%

Traditional ~ Euclidean  Minkowski Mahalanobis

DS distance DS distance DS distance DS
= 2000rpm  91.25% 91.14% 93.69% 93.34% 93.98% 93.76% 94.75%
= 2500rpm 92.30% 91.45% 93.74% 93.69% 94.87% 94.56% 95.23%
3000rpm  92.88% 92.04% 94.66% 94.49% 95.06% 95.09% 96.18%
Average 92.14% 91.54% 94.03% 93.84% 94.64% 94.47% 95.39%

= 2000rpm W 2500rpm 3000rpm Average

FIGURE 9. Comparison of diagnostic accuracy and fusion method results
for X, Y direction sensors.

Figure 10 shows that IDS improves the diagnostic accuracy
by an average of 2.65% compared to the single sensors in the
X and Z directions. Compared with the other improved DS
evidence theory, the fusion accuracy increases by at least an
average of approximately 0.53% and by at most an average of
approximately 1.18%. At 2,500 rpm, the fusion performances
of IDS and Mahalanobis DS are almost identical. Therefore,
the fusion precision of IDS is less than that of the other
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TABLE 5. Confusion matrix visualization of CUT-2 dataset diagnosis results.

Confusion Matrix Of Sensor Data Diagnosis Results In Different
Directions

Motor Speed (rpm) Summation Confusion Matrix Kappa Coefficient
X Y
0.9498
zZ
2000 0.9470
Y 4
0.9861
X Y
0.9164
X 4
2500 0.9220
Y V4
0.9387
baller 7
X Y
VOLUME 8, 2020 20533
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TABLE 5. (Continued.) Confusion matrix visualization of CUT-2 dataset diagnosis results.

0.9471
3000 0.8941
Y
0.9136
TABLE 6. Corrected sensor weights in X, Y, and Z directions. 96.00%
95.00%
— - 94.00% [ | -
Motor Speed (rpm) Sensor combination Sensor weight 53.00% -
X:0.59
X,Y ; 92.00%
Y:0.41 91.00% l
X:0.55 o
X,Z 90.00%
2000 7:0.45 89.00%
Y:0.56 88.00%
Yz Z7:0.44 87.00%
X:0.58 8600% radition: uclidean inkowski Mahalanobis
XY X0.58 x | o [led ] Decios Tntonkl i g
= 2000rpm  91.25% 89.56% 92.42% 92.10% 91.99% 92.87% 93.96%
2500 X7 X:0.53 B 2500rpm - 92.30% 92.39% 93.26% 93.18% 94.29% 94.10% 94.05%
> 7:0.47 3000rpm  92.88% 91.66% 9395%  94.13% 94.78% 94.39% 94.96%
Y() 52 Average 92.14% 91.20% 93.21% 93.14% 93.69% 93.79% 94.32%
Y,Z ZO 48 = 2000rpm == 2500rpm 3000rpm Average
X,Y XEO‘60 FIGURE 10. Comparison of diagnostic accuracy and fusion method results
Y:0.40 for X- and Z-direction sensors.
X:0.52
3000 X,Z 7:0.48
Y:0.54
YZ 7:0.46

improved DS evidence theory, and the decision fusion of
sensor data for the X and Z directions is not as good as the
decision fusion of sensor data for the X and Y directions.

It can be seen from Figure 11 that IDS improves the
diagnostic accuracy by an average of 2.84% in the sensor data
fusion for the Y and Z directions. Compared with the other
improved DS evidence theory, the average fusion accuracy
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increases by at least an average of approximately 0.42% and
by at most an average of approximately 0.95%. Therefore,
compared with the other improved DS evidence theory, IDS
achieves a lower fusion precision; however, it demonstrates
a certain effectiveness and adaptability in the decision fusion
of the sensor data of the Y and Z directions.

The improved DS evidence theory is fused on the diagnos-
tic results of the sensor data in the X, Y, and Z directions,
as shown in Figure 12. Compared to other fusion meth-
ods, IDS still achieves the highest average fusion accuracy.
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93.00%
92.00%
91.00%
90.00%
89.00%
88.00%
87.00%
86.00%

Traditional ~ Euclidean ~ Minkowski Mahalanobis
DS distance DS distance DS  distance DS

= 2000rpm  91.14% 89.56% 92.30% 92.64% 93.45% 92.73% 93.59%

e 25000pm - 91.45% 92.39% 93.59% 94.56% 94.16% 94.31% 94.75%

3000rpm  92.04% 91.66% 93.88% 93.97% 93.76% 94.10% 94.28%

Average  91.54% 91.20% 93.26% 93.72% 93.79% 93.71% 94.21%
= 2000rpm = 2500rpm 3000rpm Average

FIGURE 11. Comparison of diagnostic accuracy and fusion method results
for Y -and Z- direction sensors.

97.00%

95.00%

93.00%
91.00%
89.00%
87.00% I
85.00%

Traditional ~ Euclidean =~ Minkowski Mahalanobis

DS distance DS distance DS  distance DS
m—2000rpm  91.25% 91.14% 89.56% 93.69% 93.51% 94.11% 94.56% 95.81%
2500rpm 92.30% 91.45% 92.39% 93.87% 93.15% 94.97% 94.68% 95.87%
3000rpm  92.88% 92.04% 91.66% 93.56% 93.48% 94.84% 94.88% 95.99%
Average  92.14% 91.54% 91.20% 93.71% 93.38% 94.64% 94.71% 95.89%

—2000rpm === 2500rpm 3000rpm Average

FIGURE 12. Comparison of diagnostic accuracy and fusion method results
for X-, Y-, and Z- direction sensors.

Specifically, IDS is equally applicable and effective for the
fusion of three-sensor data.

As shown in Figure 9-Figure 12, the average accuracy
of the three-direction sensor information fusion reached
95.89%, which was higher than the two-direction sensor
information fusion because when the number of sensors
increases, the decision on the same sample also increases.
IDS weighs the similarity measure between multiple evidence
bodies by the kappa coefficient and corrects multiple weights
of evidence. Therefore, a higher average fusion accuracy is
achieved by integrating multiple sensor information fusions.
In addition, as shown in Figure 12, the IDS fusion accuracy
improves by an average of approximately 4.26% compared to
the X-, Y-, and Z-direction sensors.

Based on Figure 9 — Figure 12, the following conclusions
can be drawn: First, the IDS proposed in this paper can fuse
multi-sensor information effectively; then, compared with DS
evidence theory based on a corrected distance for evidence
bodies, IDS is superior in terms of average fusion precision;
finally, IDS demonstrates its validity and applicability on
the CUT-2 dataset. Therefore, IDS can integrate multi-sensor
information effectively, which provides a new idea for the
improvement of evidence theory.
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V. CONCLUSION

This paper proposes a bearing fault diagnosis method based
on a feature selection feedback network and multi-sensor
information fusion. The results can be summarized as
follows:

1) This study proposes a feature network algorithm with
a feedback effect. To realize the online selection of bearing
fault diagnosis features, this study constructs a feature selec-
tion network by setting the feedback conditions of the feature
quantity and feature selection time. The feature selection
feedback network can achieve the same diagnostic accuracy
as FF-FC-MIC; howeyver, the feature selection dimension is
lower.

2) To address the uncertainty and inaccuracy of single-
sensor data-diagnosis results, this paper proposes an
improved DS evidence theory based on the kappa coefficient.
By comparing with traditional DS evidence theory and three
DS evidence theories based on distance functions to correct
the weight of the evidence body, this study proposes that the
improved DS evidence theory can achieve higher average
diagnostic accuracy.

Given the increase in the number and types of sensors
in manufacturing, the amount of data has also increased
exponentially. Therefore, the quick and effective online anal-
ysis and processing of massive data have become important
research trends. Improving the fault diagnosis method in
terms of time, complexity and other indicators while also
realizing online fault detection, the online management and
scheduling of diagnostic resources, and the online update of
the diagnostic model are the focus of future research in online
fault diagnosis.
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