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ABSTRACT A globally consistent map is the basis of indoor robot localization and navigation. However,
map built by Rao-Blackwellized Particle Filter (RBPF) doesn’t have high global consistency which is not
suitable for long-term application in large scene. To address the problem, we present an improved RBPF
Lidar SLAM system with loop detection and correction named LCPF. The efficiency and accuracy of
loop detection depend on the segmentation of submaps. Instead of dividing the submap at fixed number
of laser scan like existing method, Dynamic Submap Segmentation is proposed in LCPF. This segmentation
algorithm decreases the error inside the submap by splitting the submap where there is high scan match error
and later rectifies the error by an improved pose graph optimization between submaps. In order to segment
the submap at appropriate point, when to create a new submap is determined by both the accumulation of
scan match error and the particle distribution. Furthermore, LCPF uses branch and bound algorithm as basic
detector for loop detection and multiple criteria to judge the reliability of a loop. In the criteria, a novel
parameter called usable ratio was proposed to measure the useful information that a laser scan containing.
Finally, comparisons to existing 2D-Lidar mapping algorithm are performed with a series of open dataset
simulations and real robot experiments to demonstrate the effectiveness of LCPF.

INDEX TERMS Simultaneous localization and mapping, mobile robots, indoor navigation, particle filter,
loop detection, dynamic submap segementation.

I. INTRODUCTION
Indoor service robots localization and navigation have
recently attracted much research interest. Most indoor local-
ization is realized by Simultaneous Localization And Map-
ping (SLAM). In an unknown environment, the robot localize
itself and build a map according to the information (2D or 3D
lidar ranging readings [1] [2], infrared ranging readings [3],
video data streams [4] [5], etc.) about the environment.
An accurate map is the basis of localization and navigation.
Generally speaking, mapping according to pose and observa-
tion is easy to realize. Therefore, researchers mainly focus on
localization, videlicet, pose estimation.

The accumulative error of the pose obtained from the
encoder odometer will increase in long-term running sit-
uation. Several methods were proposed to cope with
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this problem. Firstly, EKF-SLAM [6]–[8] represents the
state uncertainty by an approximate mean and variance.
The system noise is presumed Gaussian and the non-linear
models are linearized by first-order Jacobian approximation.
However, linear Gaussian system is a strong assumption in
indoor robot localization environment. When the local lin-
earity is not ideal, the irrational linearization will cause error
in both motion model and observation model. Considering
these states are estimated by linearization may not accu-
rately match the real states, and the noise of real system
mostly doesn’t follow theGaussian distribution strictly. Then,
Rao-Blackwellizd particle filter are introduced in SLAM,
such as [9], [9], [10]. In RBPF SLAM, each particle carries
an individual map of the whole environment that has already
been explored. Therefore, in RBPF, the previous built map
carried by a particle cannot be changed in subsequent explo-
rations. In this case, the accumulative error can’t be rectified
in RBPF. Cartographer in [11] introduced loop closure in 2D
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Lidar SLAM and used branch and bound algorithm to com-
pute scan-to-map matches as constraints. This optimization
based algorithm provides space for further improvement.

In this manuscript, we focus on fusing Loop Closure and
RBPF SLAM to combine their advantages. To guarantee the
efficiency of loop detection, we need to divide the map at
appropriate breakpoint according to scan match error. For-
tunately, particle filter can provide robust scan match result
and the estimation error can be estimated according to the
standard variance of pose distribution and scan match error.
In this case, dynamic submap segmentation is proposed. This
segmentation reduces the error inside submap and allocates
the error between submaps, which minimizes the influence
of ignoring the internal errors of submaps. Then, the residual
error between submaps can be eliminated by global pose
graph optimization. In order to get a better local constraint
between adjacent submaps, we propose lag local constraint
rectification that uses branch and bound algorithm to avoid
falling into local maximum. To guarantee a robust loop detec-
tion, we propose a concept called usable ratio to measure
the reliability of a laser scan for global loop detection. The
usable ratio increases the reliability of loop detection and
reduce the cost of loop detection by avoiding unreliable laser
scan from joining global scan match. Our contributions can
be summarized as follows:

1) Loop Closure and Particle Filter are fused in our algo-
rithm, improving the global consistency of existing
RBPF SLAM system.

2) This paper proposed an algorithm to divide the submap
appropriately, decreasing the error inside the submaps.

3) Multiple criteria and branch and bound algorithm are
applied to improve the reliability of loop detection.

4) Experiment are carried out to verify the performance of
LCPF.

The paper is organized as follows. Section II describes
related work about SLAM and loop closure. Section III
presents the framework of LCPF, including RBPF lidar
SLAM system with loop detection and correction. Section IV
focuses on simulation, experiment and result analysis.
Finally, section V is the conclusion and our future work.

II. RELATED WORK
Simultaneous locallization and mapping (SLAM) is a key
issue in robotics [12], which has attracted great research
interests in recent decades. The most classical algorithm is
Extended Kalman Filter (EKF) based SLAM [6]–[8]. There
are various of EKF SLAM that proposed for diffirent task
and enviornment, such as [13]–[15]. EKF SLAM assume
the sensor noise satisfies the Gaussian distribution and the
nonlinearity of system is small locally [16].Most EKF SLAM
is a feature based system, and the map consists of fea-
tures [17]. Therefore, as the landmark points continue to
increase, the information matrix of the system increases in a
quadratic way [18], taking up more and more computational
source and storage space. In this way, EKF SLAM is not

suitable for large scale environments as discussed in this
paper.

To overcome the problem of nonlinearity and large scale,
particle filter based SLAM are proposed, repsresented by
RBPF SLAM [19]. Particle filter is a nonparametric esti-
mation algorithm [9], [20], [21], which means it can be
used to estimate any distribution. In these algorithm, each
particle carries an individual map of the environment and
an individual trajectory. The key idea is to estimate a pos-
terior p(x1:|z1:t , u0:t ) about potential trajectroys x1:t of the
robot given its observation z1:t and its odometry measure-
ments u0:t . This posterior trajectroy is used to compute a
posterior maps. By introducing the improved proposal dis-
tribution and the adaptive resampling, [19] and [9] reduce
the number of particles and resampling, and the resampling
is performed only when needed. However, RBPF SLAM
has no global information of particle. In long-term running,
although it has good local continuity, the global consis-
tency will decline over time and the map will be gradually
misplaced.

In this case, graph SLAM [22]–[24], represneted by Car-
tographer in [11] was proposed to solve the problem of
real-time loop detection and loop closure. This algorithm
inserts fixed number of laser scan (range finder reading) into
a submap at the best estimated position, which assumed to
be sufficiently accurate for short periods of time. When a
submap is finished, it takes part in the global loop detection.
The detection are implemented by a branch and bound scan
match method. All finished submaps and laser scans are
considered for loop detection and closure. If a loop is founded
around the currently pose, it is added to the pose graph as an
edge for optimization. Cartographer has been proved to be
an effective method for loop detection and closure. However,
to enhance the accuracy and efficiency of loop detection is
still one of the research focuses.

III. PROPOSED METHOD
As is mentioned in Section I, LCPF is a particle filter
lidar SLAM system with loop detection and correction. The
method in this paper consists of front-end and back-end.
The front-end of LCPF mainly focus on map-building and
dividing the global map into submaps with our dynamic
submap segmentation algorithm, which minimize the error in
a submap and leave the error between submaps for later opti-
mization. When building a map, the front-end also provide a
constraint between adjacent submap. And the back-end con-
sists of loop detection and correction thread and lag local con-
straint rectify thread. Lag local constraint rectify means using
branch and bound scan matcher to rectify local constraint
generated by local scan matcher. The framework of the RBPF
lidar SLAM system with loop closure is shown in Fig. 1.
The input of LCPF are 2D laser-scan and odometry informa-
tion, and the output is the optimal global map consisting of
submaps. The left area represents front-end, including RBPF
and submap builder, which is realized by dynamic submap
segmentation (DMS). The right area represents back-end
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FIGURE 1. Framework of LCPF proposed in this manuscript. The left area
represents front-end, and the right area represents back-end.

of LCPF, including banch and bound scan matcher and global
pose graph optimizer.

A. DYNAMIC SUBMAP SEGMENTATION
Considering the computational cost and space occupancy of
loop detection, it is unrealistic to search for possible loops
on the full map. So loop detection needs to be performed on
smaller units. And the whole map is not suitable for pose
graph optimization. Therefore, it is necessary to divide the
whole map into some smaller map, that is, submap, as the
basic unit for loop detection and loop closure.

Cartographer in [11] assumes that the error within the
submap is small enough to be ignored. Our method also
uses the same assumption. However, this method introduce
a new way of submaps segmentation while Cartographer
insert fixed number of laser scan into submap. The new way
take matching error estimation into consideration during the
buiding of submap. Cause only error between submap will
be minimized, it aims to decrease error inside submap and
allocate more scan match error between submaps. However,
the error of the local scan match is irregular and determined
by local environment. If some laser scans inside submap are
inserted at a wrong position, the loop closure cannot rectify
these errors. Considering the computational source and the
storage is limited, it is difficult to optimize all pose of laser
scans that are inserted into the submap. However, in our
algorithm, error inside the submap can be decreased by allo-
cating more scan match error between submaps, which is the
essence of dynamic submap segmentation. To achieve this,
we use matching error e(x, y, θ) as the criterion for dynamic
submap segmentation. And the matching error of laser scan is

FIGURE 2. Illustration of the criterion for dynamic submap. (Occupancy
grid maps and the corresponding actual scenes).

evaluated by the score of the best partilce and the distribution
of all particle:

e(x, y, θ) = s(x) ∗ ξx + s(y) ∗ ξy + s(θ ) ∗ ξθ (1)

When inserting a laser scan, we uses (1) to calculate the
estimation of matching error. ξx , ξy and ξθ represents the
weight of translation and rotation error estimation, where x, y
and θ represent the pose of robot. High weight means low
tolerance in a variable, and this tolerance is determined by
the score of the best particle. However, the score of the
best particle can’t always fully reflect the reliability of cur-
rent pose. In Fig. 2, all the particles are with high score
of matching, which means the laser scan match well with
map at the pose of all particles. Points at the intersection of
laser beams indicate the particles with highest score and the
other points are suboptimal particles with scores close behind.
In featureless environment like (a), particles are dispersed
along the corridor, which can cause larger error than (b). As is
shown in Fig. 2(a), when robot is in a long corridor like in (a),
the pose of the best particle gets high matching score. But the
map of corridor is long and straight, the likelihood laser scans
of suboptimal points are not much different from the scan of
best particle. Therefore, all the particles along the direction of
corridor get high scores, and the pose uncertainty along the
direction of corridor is high even though the best particle’s
score is high enough. So we need to take the distribution
of particles into consideration to avoid the uncertainty under
circumstance like this. And the matching error on each state
variable depends on the dispersion of particles projected on
this direction:

s(x) =

√√√√[
n∑
i=1

(xi − x)2]/(n− 1)
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FIGURE 3. Example of fixed segmentation (a), and dynamic submap
segmentation (b).

s(y) =

√√√√[
n∑
i=1

(yi − y)2]/(n− 1)

s(θ ) =

√√√√[
n∑
i=1

(
θi − θ

)2
]/(n− 1) (2)

In situation like Fig. 2(a), the dispersion of the particles
is high which can lead to large error inside the submap,
so the matching error ξx , ξy increase when particles are more
dispersed. In situation like Fig. 2(b), the robot meets a corner
showing distinct feature and the uncertainty of pose is low,
the front-end continues to build the submap. Besides, when
the accumulation of scan match error is slow and the sum
of error exceeds a threshold, we also add a segmentation
point there to avoid the influence of slowly growing error.
As in Fig. 3, points represents laser scan and the pose that
insert them, and their connection represents the scan match
error between poses (longer connection means larger error
estimation). The vertical lines show where to split submaps.
Fig. 3(a) shows submap containing fixed number of laser
scans, and Fig. 3(b) shows dynamic submap segmentation.
When the matching error at certain pose exceeds the dynamic
segmentation threshold, a new submap are created and the
error was left between submaps rather than inside them.
In Fig. 3(a), the fixed submap segmentation divides the map
into submaps with fixed number of laser scans, regardless
of whether the breakpoint need optimization or not. The
dynamic submap segmentation in Fig. 3(b) divides the map
at breakpoints where there is high matching error between
submaps to be generated. Generally speaking, DMS allo-
cates the optimization computing resources to nodes with
high uncertainty and assemble the area with low uncertainty
into a submap without further optimization. In this way,
DMS decrease the error in mapping with higher computing
efficiency.

B. FRONT-END OF LCPF
The front-end is responsible for providing the map carried
by the best particle, as well as the initial value of the pose

FIGURE 4. Process of scan match. Red points represents laser scan and
the blue point represents the location of lidar.

graph optimization, and the relative pose between adjacent
submaps will be added as constraints to the pose graph.
The pose constraint between adjacent submaps is also called
local constraint, and the constraint between noncontiguous
submaps is also called global constraint. Global constraints
are added after loop detection, and pose graph are optimized
after adding global constraints. When create new submap in
front-end, our method choose the pose of current best particle
as the origin. And the submap will follow the particle till
the submap is finished. The best particle can change before
current submap finished, but in order to reduce internal error,
the particle that the submap followed will be unchanged. And
if the RBPF particle filter resampling, current submap will be
finished immediately and new submap will be created. The
concrete details of front-end model is as follows.

1) UPDATING CRITERIA
The front-end is based on an improved RBPF SLAM. It main-
tains a particle swarm, in which each particle represents a
possible trajectory of the robot and the corresponding map
of the trajectory. The frequency of laser scan is 15Hz, which
contains redundant information. After receiving one frame of
laser scan and its corresponding odometry data, to expurgate
the information that have high comparability, we control the
update frequency of submap by√

1x2 +1y2 > Ttran (3)

1θ > Trot (4)

If the translation 1x, 1y or the rotation 1θ exceeding the
threshold Ttran and Trot, the distant is considered to be suf-
ficiently large. This frame of laser scan will be added to
the submap of each particle, and their trajectory will be
updated too.

2) POSE UPDATE
When the motion of robot meets the updating condition,
we use particle filter to propagate the pose and update it
according to observation. We denote the robot pose at dif-
ferent times as:

x[i]0:t = x[i]0 , x
[i]
1 , . . . , x

[i]
t (5)

In (5), x[m]0:t is the pose of m-th particle from time 0 to t .
Sequence like this makes up a trajectory, and a map is
obtained by superimposing lidar observation on this trajec-
tory. To estimate the trajectory, we need a particle swarm that
containing many possible trajectories:

X0:t = x[1]0:t , x
[2]
0:t , . . . , x

[n]
0:t (6)
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FIGURE 5. Uncertainty distribution of two-dimensional lidar observation in beam projection model.

X0:t in (6) is a particle swarm containing n particles. Each
particle maintains a trajectory and a map. To estimate the
trajectory and build an accurate map with odometry informa-
tion u1:t and lidar observation z1:t , we need to compute the
posterior distribution of the trajectory:

p (x0:t |z1:t , u1:t)

= ηp (zt |x0:t , z1:t−1, u1:t) p (x0:t |z1:t−1, u1:t)

= ηp (zt |xt) p (x0:t |z1:t−1, u1:t)

= ηp (zt |xt) p (xt |x0:t−1, z1:t−1, u1:t) p (x0:t−1|z1:t−1, u1:t)

= ηp (zt |xt) p (xt |xt−1, ut) p (x0:t−1|z1:t−1, u1:t−1) (7)

The result in (7) shows the the relationship between posterior
and likelihood. The particles is update according to odom-
etry information. However, the difference between proposal
distribution and target distribution will increase after several
propagations. We need to adjust the distribution by resam-
pling according to the importance weight:

w[m]
=
f
(
x[m]

)
g
(
x[m]

) (8)

f (x[m]) is the target distribution and g(x[m]) is the pro-
posal distribution. Just as RBPF in [9], our algorithm also
uses improved proposal distribution and adaptive resam-
pling, which ensures good local continuity and computational
efficiency.

3) BEAM PROJECTION MODEL
Generally, the range reading data consists of the angle and
the corresponding distance. So, the error of range reading
data consists of angle error (tangential error) and distant error
(radial error). We assume both of them follows Gaussian
distribution and are independent of another.

ρ ∼ N
(
µρ, σρ

)
(9)

θ ∼ N (µθ , σθ ) (10)

θ means the real angle, ρ means the real distance, µρ means
the distant reading and µθ means the angle. And the variance
σρ and σtheta are determind by the lidar. The range readings
are represent in polar coordinates. The coordinates in the

polar coordinate system is convert to the Cartesian coordinate
system by (11-14), where x and y are the coordinate of point
in the field, fρ and fθ are the probability distribution function
corresponding to the Gaussian distribution in (9-10).

x = ρ ∗ sin(θ ) (11)

y = ρ ∗ cos(θ ) (12)

p(x, y) = fρ(ρ) ∗ fθ (θ ) (13)∫∫
p(x, y)dxdy = 1 (14)

In general, the variance of the two Gaussian distribution is
constant when the lidar work. So as the distance to obstacle
increase, the projection of the beam in the tangential direction
will become more scattered, as shown in Fig. 5. So the proba-
bility field model is not suite for short range indoor lidar, but
for long range lidar. The model project the probability field
into the probability grid map, rather than just project a point
into map.

4) SCAN MATCHER ERROR ESTIMATE
Many incremental map building methods use local scan
match to get better pose estimation. When given an inital
pose, a laser scan and local map, the local scan matcher
outputs a new pose maximizing the probabilities that observe
the laser scan frommap, as shown in Fig. 4. This is a nonlinear
least squares problem, as shown in (15).

ζ ∗ = argmin
ζ

n∑
i=1

[1−M (Si(ζ ))]2 (15)

Si(ζ ) =
(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)(
si,x
si,y

)
+

(
x
y

)
(16)

In (15) and (16), ζ = (x, y, ψ) indicates the pose of the lidar
in theworld coordinate system; n indicates the number of scan
points; and Si(ζ ) is a function of ζ (Equation (16)), which
converts a laser scan point si = (si,x , si,y) from lidar coor-
dinate system to the world coordinate system. M (Si(ζ )) will
return the distance to nearst occupied grid as the coordinates
given by Si(ζ ).

So considering the local environment is unknown, we can-
not propose a distribution to estimate scan match error. So we
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FIGURE 6. Example of usable ratio. The green area is unusable and the
red is usable area.

construct a particle swarm around the initial value by Gaus-
sian distribution, perform scan match for each particle, and
calculate the standard variance of pose deviation of each
particle. The the standard variance reveals the degree of
particle dispersion after scan match. The more local maxi-
mum, the bigger the standard variance. In our implementa-
tion, the Gaussian distribution is realized by sample from
motion model.

C. BACK-END OF LCPF
The back-end of LCPF consists of loop detection and cor-
rection, lag local constraint rectification. Lag local constraint
rectification means use branch and bound scan match to
rectify local constraint generated by local scan matcher. The
constraint between two submaps means the relative pose
between them. Considering it costs much time to initialize
the branch and bound scanmatcher, the rectification is always
later than local scan matcher. We use multi-criterion to deter-
mine whether a loop is true or false.

1) MULTI-CRITERION LOOP DETECTION
In order to increase the reliability of loop detection and reduce
the cost of loop detection, we need to avoid unreliable laser
scan join the global scan match. Therefore, we propose a
parameter called usable ratio to measure the reliability of a
laser scan for global loop detection:

R (li) =
rangevalid

rangemax − rangemin
(17)

The usable ratio R (li) is the proportion of valid range reading
of lidar. Generally, the higher the ratio, the more information
the laser scan contains. As shown in Fig. 6, the figure shows
the observation of the lidar in the different areas of the map
with the same parameters (max range: 5 m, angle range:
180 degrees), the red area indicates the lidar data in the effec-
tive range, and the green area indicates the lidar data outside
the effective range. The observation in Fig. 6(a) contain more
information about local environment and has higher usable
ratio. The usable ratio of laser scan that joins loop detection
must be bigger than the threshold τR.

score (li,m, xi) ∗ R (li) ≥ τscore (18)

R (li) ≥ τR (19)

FIGURE 7. Example of global pose graph optimization with different
constraints.

The smaller the threshold, the more chance global loop detec-
tion finds a false loop. So the score is weighted by usable
ratio and compared to the score threshold τscore. Only when
the score and usable ratio satisfy (18) and (19), will the loop
closure be added as a global constrain. In the case of indoor
localization and mapping, the further the maximum distance
a lidar has, the higher the usable ratio.

2) LAG LOCAL CONSTRAINT RECTIFICATION
We uses local scan matcher to calculate the relative pose
between two adjacent submaps. As mentioned above, local
scan matcher cannot always find the right answer. And the
branch and bound method can search the entire space of
plausible solutions, so it is not affected by local maximum.
If we apply branch and bound method to calculate relative
pose between two adjacent submaps, we can get more reliable
result. However, it always costs lots of time to finish the
precomputation of branch and bound scan matcher. So we
first use local scan matcher to calculate local constraint,
then use branch and bound scan matcher to rectify it when
the precomputation finished. When creating a new submap,
we uses the first laser scan that inserted to new submap to
match (local scan match) the previous submap to get relative
pose between two submaps. After several seconds, we uses
the same laser scan to match (branch and bound scan match)
the same submap.

3) GLOBAL POSE GRAPH OPTIMIZATION
A typical pose graph are shown in Fig. 7. This figure shows
a typical pose graph, where the circle represents the node,
each node corresponds to the origin of a submap in the global
coordinate system, and the number in the circle represents the
order the submap was created, ’1’ means the first submap.
The lines represent the constraints between the submaps. The
blue dotted lines represent the global constraints, the thin
orange lines represent local constraints with low weight,
and red thick lines represent the local constraints with high
weight. There are two kinds local constraint in the pose
graph, the one with high weight means it gets high score
after local scan matching while another doesn’t. The larger
the weight of constraint, the more complete the constraint
is retained after loop closure. Generally, loop closure is a
over-constraint problem. Loop closure is implemented by
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pose graph optimization, which is defined as adjusting the
pose of submaps and laser scans to minimize the residuals
established by both local and global constraints. So it is also
formulated as a nonlinear least squares problem in (20).

argmin
4m,4s

1
2

∑
ij

ρ
(
E2
(
ξmi , ξ

s
j ;6ij, ξij

))
(20)

The submap poses 4m
=
{
ξmi

}
i=1,...,m and the laser scan

poses 4s
=

{
ξ sj

}
j=1,...,n

under the global coordinate are

optimized given some constraints. Given a pair of submap
i and laser scan (j), the pose ξij is pose where the laser
scan matched under the submap coordinate. The residual
E for such a constraint is computed by (21) and (22). The
covariance 6ij defines the proportion of translation error and
rotation error in E2, can be evaluated by [25].

E2
(
ξmi , ζ

s
j ;6ij, ξij

)
= e

(
ξmi , ξ

s
j ; ξij

)T
6−1ij e

(
ξmi , ξ

s
j ; ξij

)
(21)

e
(
ξmi , ξ

s
j ; ξij

)
= ξij −

(
R−1
ξmi

(
tξmi − tζ sj

)
ζmi;θ − ζ

s
j;θ

)
(22)

For pose graph optimization, it is vital to add correct loop
closure constraints to the pose graph. So we introduce
multi-criterion in loop detection to ensure only true loops will
be added. And lag local constraint rectification is applied to
avoid local scan match from fall into local maximum.

4) ADAPTABILITY TO SCALE
The submap segmentation parameters of this algorithm do not
add the constraints corresponding to the size of the environ-
ment. A large environment mostly consists of several smaller
environments. If the same submap segmentation threshold
is used in both large and small environment, it will cause
that a parameter suitable for a small environment generates a
large number of extra submaps in a large environment, which
will certainly lead to the low efficiency of loop correction
and global pose optimization. But in fact, every algorithm is
faced with the tradeoff between absolute error and calculation
efficiency. Besides, in LCPF, if we set the segmentation
threshold of submap as an adaptive parameter for environ-
ment scale instead of a run-time fixed but off-line adjustable
parameter, this is only to fix the relative error of the algorithm.
In large environment, the number of segmentations will be
reduced if the adaptive threshold is applied. In this way,
the absolute error will still increase with the scale expansion
of environment. In practical application, in order to complete
a specific task, we need to know the absolute error instead of
the relative error of the algorithm under the limited computing
resources to control the performance. Because we need to
know the absolute distance that the robot may deviate from
the true value. In addition, the experiment in this paper is
carried out in two scenes with large scale difference, where
our algorithm shows good performance in overall map error
and loop detection.

FIGURE 8. The influence of environment scale and lidar maximum range
on usable ratio. (a) and (b) use different lidars in the same large
environment. (a) and (c) use the same lidar in environments with
different scale.

Fig. 8(a)(c) are the data acquired by the same lidar in
environments of different scale. During loop detection, with
lidar range fixed, when the environment is large, the usable
ratio is often very low (shown in Fig. 8(c)), and the absolute
pose uncertainty is very high. On the contrary, when the
environment is small, the usable ratio will be closer to 1
(shown in Fig. 8(c)), and the uncertainty of absolute pose
is low. Therefore, the verification of loop detection with
usable ratio has already considered the uncertainty brought
by large scale of environment. Then we discuss the case that
the lidar’s maximum range changes with environment size
(shown in Fig. 8(a)(b)). In other word, lidar with short range
is used in small scenes (Fig. 8(a)) and lidar with large range
is used in large scenes (Fig. 8(b)). In large scenes, the larger
distance measurement will lead to higher uncertainty accord-
ing to the beam projection model. In this way, the projection
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FIGURE 9. Score distribution in different situation. The left represents
real maps and laser scan information, the right shows scores on different
pixels.

model has also considered the adaptability to the scale of
scenes.

IV. EXPERIMENT
A. LOCAL OPTIMAL EXPERIMENT
Existing method such as [9] uses hill-climbing to search for
the best match. So the local maximummay cause the result far
from global maximum. Serveral possible situations are shown
in Fig. 9. Diffirent local environment leads to diffirent local
maximum situation. As is shown in Fig. 9 (c), the lidar faces
the wall and the point cloud shapes like a straight line, so the
point cloud has a higher matching score for the same wall in
the direction along the wall. In the image on the right, it is
embodied as a long ridged area. In Fig. 9 (b), the area has
obvious symmetry, so there are two peaks. One of them is
lower than the other, because the left and right environments
are not totally the same, and the higher peak on the left
corresponds to the real lidar position. In Fig. 9 (a), the area
illuminated by the laser radar is significantly different from
the surrounding environment, so the matching score shows a
single peak, and the peak corresponding to the actual position
of the lidar, which is an ideal situation.

TABLE 1. Dynamic submap segmentation experiment result.

FIGURE 10. Experiment on scan match error relative to the segmentation
threshold. In the figure, the horizontal axis is the index of the laser scan,
which increases with time, and the vertical axis is the scan matching error
estimate corresponding to the laser scan.

In Fig. 9, all the blue points in the left picture are the
real position of the lidar. The red point is the laser scan
provided by the lidar, the white area represents the passable
area (the laser beam can pass), the black indicates the obsta-
cle (the laser beam is blocked) and the gray indicates the
unknown area (obstructing the laser beam passing). All the
right pictures represent the values of matching scores (0∼1.0)
in the neighborhood of 60*60 pixels near the real position
corresponding to the left image. When the prior pose pre-
dicted by odometry is not accurate, the optimization result
can converge to a wrong local optimal. When the scan match
error is large and the particles are difficult to converge after
many iterations, our algorithm can divide the map at this pose
and leave the error for later optimization. Thus better global
consistency can be obtained.

B. DYNAMIC SUBMAP SEGMENTATION EXPERIMENT
In order to verify that the dynamic submap segmentation
can reduce the scan matching error inside the submaps,
dynamic submap segmentation and fixed submap segmen-
tation (submap consists of a fixed number of laser scan)
are used under the same two dataset. The scan matching
error and the error inside the submap are recorded, as shown
in Fig. 10. For fixed submap segmentation, each submap con-
tains 10 laser scans. For dynamic segmentation, the segmen-
tation threshold corresponding to Fig. 10(a) is 0.03, Fig. 10(b)
is 0.2.

20408 VOLUME 8, 2020



F. Nie et al.: LCPF: Particle Filter Lidar SLAM System With Loop Detection and Correction

FIGURE 11. Scan match error gradually accumulates, and the score for
segmentation increases rapidly when the error of front-end is large.
When the score exceeds the threshold, segmentation is applied, and the
cumulative score is reset.

In Fig. 10(a), the average scan match error inside submap
for fixed segmentation is 0.0495 (orange dotted line), while
the dynamic segmentation is 0.0437 (blue dotted line). Our
algorithm decrease the scan match error to 80% of fixed
segmentation.

In Fig. 10(b), the average scan match error for fixed
segmentation is 0.1636, while the dynamic segmenta-
tion is 0.1418 (86.67% of fixed segmentation). Therefore,
the dynamic submap segmentation leads to less scan match
error inside submap than fixed submap segmentation. Com-
paring Fig. 10(a) and Fig. 10(b), a high threshold leads to
high scan match error. For a map with detailed geometric
features, a low threshold is suitable for higher precision divi-
sion, but causes more computational cost. High threshold can
guarantee a quick global pose graph optimization, but the
small number of submaps can lose the global consistency.
In Fig. 11, when the accumulation score (different from the
scanmatch error threshold in Fig. 10) exceed a predetermined
threshold, a breakpoint is added to the map. Dynamic submap
segmentation has better division flexibility and helps to add
the breakpoint to where there really needs one instead of
using a fixed frame segmentation.

C. MAP BUILDING EXPERIMENT ON DATASETS
In this experiment, we compare our algorithm with RBPF on
Intel Research Lab raw dataset in order to reflect the effect of
dynamic submap segmentation and loop closure. As is shown
in Fig. 12, (a) is built by RBPF, and (b) is built by LCPF.
The dataset record laser scan and odometry information about
40 minutes. After long-term running with odometry noise,
accumulative error makes the latest map overlap the old
ones without correction. The dislocation of map makes the
map unusable for localization or later navigation. Our algo-
rithm performs better after global pose graph optimization.

FIGURE 12. When the error of front-end is large, map built by RBPF
(a) gradually rotated a certain angle for lack of global consistency.

By adding loop detection and loop correction, the LCPF can
correct the accumulative error and build a map with better
global consistency. Maps merge in places that trigger loop
correction, making the map available for localization and
navigation.

Generally speaking, map built by RBPF has better
local continuity, which means the map already built by
a particle will not change in the future. This leads to
a smoother map but the accumulative error can result in
global shifting. After adding loop detection and correction,
the local continuity can decline, which is characterized by
local ghosting and dislocation. However, the global consis-
tency is guaranteed after global pose graph optimization.
As in Fig. 12(a), the map rotates after the robot’s long-term
running. In Fig. 12(b), we rectify the rotation by loop
correction.

In Fig. 13, we test our algorithm and RBPF on the same
Intel Reserach Lab dataset when the front-end error is low.
Both algorithms naturally perform better than in Fig. 12.
However, the rotation of the map in Fig. 13(a) still reflect the
accumulative error in RBPF, which is effectively solved in
LCPF by loop correction.
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FIGURE 13. When the front-end is accurate enough, LCPF (b) still has
better global consistency than RBPF (a).

D. REAL ROBOT MAPPING EXPERIMENT
In order to prove the practicability of our algorithm, we test
LCPF on a real robot. Equipped with coded disk and
two-dimensional lidar, our robot can build map with LCPF
in an indoor environment. The robot is shown in Fig. 14.
The CPU used for experiment is an Intel Core i7-6700HQ
2.60GHz. The system is built on Robot Operating System
(ROS). In order to reflect the effect of loop closure, we choose
a large closed-loop scene with a long corridor as the experi-
mental scene. The robot moves at walking speed about 0.5m/s
in the corridor and builds the map in real time using the
collected odometry and laser scan data. In the experiment,
as is shown in Fig. 15(a), the accumulative error occurs
after long translation along the corridor, and dislocation
happens at the upper-right corner of the map. As expected,
when the robot arrives at the corner again, loop detection of
LCPF finds the loop at the corner. The accumulative error
is rectified by later loop correction and global pose graph
optimization.

FIGURE 14. Our robot platform carries a two-dimensional lidar on the
front and encoder on wheels.

FIGURE 15. Experiment on loop closure. A loop is detected in (a) and
corrected in (b).

V. CONCLUSION
We proposed a particle filter lidar SLAM system with loop
detection and correction. The proposed method has improved
the performance of loop detection and the global consistency
of map by adding loop closure to traditional RBPF. On the
one hand, comparing with the existing particle filter SLAM,
LCPF can eliminate the accumulated error through loop
detection and correction. On the other hand, LCPF makes the
error inside the submap smaller by dynamic submap segmen-
tation compared with the traditional fixed submap segmen-
tation. To testify the validity of our algorithm, we analysis
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the scan match error of fixed segmentation and dynamic
segmentation, and find the error inside the submap decreases
by about 10%. Map building experiments on open datasets
and our real robot prove that our algorithm have better global
consistency and can rectify the accumulative error and build
a better map.

The proposed method can be improved by parallel com-
puting technique and more efficient retrieval algorithm
in front end such as DBoW or structural unit encoding.
Higher computing efficiency can ensure the real-time perfor-
mance and accuracy of loop detection, which is our future
work.
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