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ABSTRACT This paper investigates the velocity and altitude tracking control problem for air-breathing
hypersonic vehicle (AHV) under external disturbances and uncertainties. An improved smooth super-
twisting based disturbance observer (SSTDOB) is proposed to estimate the unknown external disturbances.
With the assistance of SSTDOB, an effective fixed-time sliding mode backstepping control (FSMBC) is
designed to guarantee the tracking errors converge to a small neighbor of the origin. Meanwhile, a fixed-
time tracking differentiator (FTD) is employed to estimate the virtual control inputs, which can eliminate
the differential explosion problem. The overall stability of the closed-loop system is analyzed by utilizing
Lyapunov stability theory. Simulation results demonstrate the effectiveness of the composite method.

INDEX TERMS Air-breathing hypersonic vehicle, backstepping control, disturbance observer, fixed-time
sliding mode control, super twisting algorithm.

I. INTRODUCTION
Air-breathing hypersonic vehicle (AHV) usually flies at more
than 5 Mach numbers in the near space region [1]. It has
attracted tremendous attentions and numbers of researches
due to the advantages of global response, strong penetration
ability and great potential in military and civilian applica-
tions [2]. Compared with the conventional aircrafts, AHV
can adopt scramjet engine as its main power and combine it
with the body to realize the propulsion-airframe integration
configuration [3]. Consequently, this integration would lead
to heavy couplings among the elastic airframe, the propulsion
system and the structural dynamics [4].Moreover, the unman-
ageable nonlinear dynamics, the uncertainty of flight aerody-
namic parameters and the severe external disturbances during
the flight envelope would make the control of AHV more
challenging [5]. Therefore, stability and robustness are still
a focus issue of AHV.
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In previous literatures, control approaches for the lon-
gitudinal dynamics of AHV can usually be divided into
two parts: linear approaches and nonlinear approaches. The
linearization technique plays an important role in classical
flight control. With this technique, the linearized model of
AHV about a specific trim condition can be obtained [6].
Sigthorsson et al. [7] proposed a robust linear output-
feedback controller for AHV in the presence of model
uncertainties and varying flight conditions. Gibson et al. [8]
designed a control architecture containing gain-scheduling
and integral control based nominal controller with adaptive
strategy for AHV model under thrust and actuator uncertain-
ties, which had shown the superior tracking performance of
this controller. Besides, an improved linear-quadratic regula-
tor (LQR) with fractional-order sliding mode control based
tracking controller presented in [9] also exhibited excellent
robustness for AHV under uncertainties.

However, the traditional linear control methods may show
poor capability of providing desired control effect when the
flight condition deviates far from the given trimming point.
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This drawback can be overcome by some advanced nonlinear
control methods, include fuzzy control [10]–[14], neural net-
work control [15]–[21], sliding mode control [22]–[30] and
backstepping control [18], [23], [24], [27], [38].

A T-S fuzzy model was adopted by Li et al. [10] to
approximate the nonlinear dynamics of AHV. Then a robust
adaptive fuzzy based tracking controller for HFV was devel-
oped to guarantee the stability of whole system with param-
eter uncertainty and unmodeled dynamics [11]. Furthermore,
the mixedH2/H∞ robust fuzzy controller [13] and prescribed
performance guaranteed cost fuzzy tracking control [14] for
AHV were also investigated. In addition, Xu and Bu pro-
posed a series of neural based controller for the longitudi-
nal dynamics of hypersonic flight vehicle (HFV) [15]–[18].
With the help of these researches, many scholars extend this
approximation technique to the controller design of HFV.
For example, Xu et al. [20] combined the global neural con-
trol with dynamic surface control to achieve the stability of
closed-loopHFV system and effectiveness of control scheme,
where nonlinear functions of the HFV were approximated
by the neural networks. Both fuzzy based controllers and
neural based controllers can exhibit excellent approximation
strength for unknown nonlinear functions.

Sliding mode control possesses excellent performance
in convergence time and disturbance rejection. Thus,
Xu et al. [23] combined the adaptive control strategies
with sliding mode control, which can provide good track-
ing performance for the HFV under parametric uncertainty.
In Zong et al. [24], a quasi-continuous high-order sliding
mode controller based on full state feedback was designed
for the longitudinal dynamics of flexible air-breathing hyper-
sonic vehicles (FAHV), where the chattering problem was
alleviated by introducing the quasi-continuous high-order
sliding mode. To achieve the finite time stability of the con-
trol system, Sun et al. [27] proposed a finite time sliding
mode control with disturbance observer for AHV. Besides,
Yang et al. [28] developed a new nonsingular terminal slid-
ing mode control (NTSMC) with backstepping strategy for
FAHV, which can guarantee the finite time convergence and
the steady-state precision. Moreover, since Polyakov [31]
raised the fixed-time stability, this topic has been rigorously
studied [32]–[34]. Zuo and Tie [35] addressed the fixed-time
stable of first-order multi-agent systems. Basin et al. [36]
considered the application of super-twisting based controller
with fixed-time stability. Wang et al. [37] adopted the fixed-
time backstepping scheme for AHV with external distur-
bances. For now, few literatures consider the fixed-time
stability of AHV [38], [39], which would lead such problem
still challenging.

Backstepping control (BC) is another effective nonlin-
ear control design scheme. A series of aforesaid methods
and the BC logic can be merged into an integral control
framework with excellent ability to handle AHV’s higher
order nonlinear system. However, we cannot ignore the
weak robustness and ‘‘explosion of complexity’’ of conven-
tional BC. To enhance the robustness of controller, many

disturbance observer (DOB) based techniques were inves-
tigated, such as fuzzy-based observer [12], [14], nonlinear
disturbance observer [26], [40], [41], super twisting algo-
rithm based observer [29], [30], extend state observer (ESO)
[42], [43], etc. Li and Li [12] utilized a novel fuzzy-based
approximator to estimate the total uncertainties of velocity
subsystem and altitude system. Wu et al. [26] proposed a
strictly-lower-convex-function constructing nonlinear distur-
bance observer (SDOB) based backstepping controller for
HFV. Wang et al. [29] developed a conventional super-
twisting algorithm to estimate the composite disturbances
and uncertainties. An active disturbance rejection control
(ADRC) based robust controller was employed for the AHV
autopilot, where the ESO [42] was applied to estimate
the parametric perturbations and atmospheric disturbances.
In order to handle the differential explosion problem in
BC, the dynamic surface control strategy was adopted by
Xu et al. [20]. Bu et al. [21], [44] utilized a low-pass fil-
ter to transform the non-affine system to affine system so
as to avoid the virtual control laws complexity involved in
traditional BC strategy. Besides, some filter-based algorithms
and differentiator-based algorithms [45], [46] can also get
introduced to estimate the derivatives of virtual controls.
Yu et al. [46] presented a novel finite-time command filter
for the backstepping scheme, which can guarantee the finite
time convergence property. Compared with conventional BC,
these improved BC methods possess both higher tracking
accuracy and better disturbance rejection ability.

Motivated by the above analysis, this study proposes a
composite controller which consists of smooth super-twisting
algorithm based disturbance observer (SSTDOB) and fixed-
time sliding mode backstepping control (FSMBC) for AHV.
Compared with the above literatures, the key innovative
points of this paper are summarized as follows:

(1) The proposed SSTDOB is introduced for the equivalent
disturbances of AHV, which has more general formulation
for slow varying disturbance estimation and smoother outputs
than that of conventional super twisting algorithms.

(2) The FSMBC has the merits of both fixed-time sliding
mode control and dynamics surface control. The improved
sliding surface can strength the states convergence speed
and the bound of convergence time will be independent of
AHV’s initial conditions. The singularity problem caused by
the derivative of virtual control is avoided by introducing a
switching logic. Besides, all the system states are bounded
and the ‘‘explosion of complexity’’ problem is avoided by
utilizing a fixed-time tracking differentiator (FTD).

(3) The SSTDOB based FSMBC (SSTDOB-FSMBC) can
guarantee the overall fixed-time stability of closed-loop sys-
tem with faster response and higher tracking precision in the
presence of external disturbances and uncertainties.

The remainder of this paper is organized as follows. Prob-
lem description section presents the longitudinal dynamics of
AHV and the decomposed altitude subsystem and velocity
subsystem. Then the SSTDOB is developed for the AHV sys-
tem with the relevant stability analyzation at the same time.
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The next section shows the main design process of
SSTDOB-FSMBC, and the stability of composite method is
also analyzed in detail. Besides, we implement two groups of
simulation comparisons on an AHV. Eventually, the conclu-
sion and future works are provided.

FIGURE 1. Schematic diagram for the longitudinal model of AHV.

II. PROBLEM DESCRIPTION
A. LONGITUDINAL DYNAMIC MODEL OF AHV
As is shown in Figure 1, the longitudinal dynamic model of a
generic AHV [26], [29] consists of the following differential
equations

ḣ = V sin θ (1)

θ̇ =
L + T sinα

mV
−

(
µ− V 2 (h+ RE )

)
cos θ

V (h+ RE )2
+ d2 (2)

ϑ̇ = ωz (3)

ω̇z =
Mz

Jz
+ d4 (4)

V̇ =
T cosα − D

m
−

µ sin θ

(h+ RE )2
+ d5 (5)

α = ϑ − θ (6)

where h, θ , ϑ , ωz and V represent the altitude, path angle,
pitch angle, pitch rate and velocity of the AHV respectively.
µ, α, m, RE and Jz denote the gravitation constant, angle of
attack, mass of the AHV, radius of the earth and moment of
inertia around AHV z axis, respectively. Besides, the terms
di, i = 2, 4, 5, will indicate the external disturbances of each
corresponding channel.

The thrust T , drag D, lift L and pitching moment Mz are
expressed as follows

T = CT qS (7)

D = CDqS (8)

L = CLqS (9)

Mz = CmzqSl (10)

where ρ, q = 1
2ρV

2, S and l represent the density of air,
dynamics pressure, reference area and mean aerodynamic
chord, respectively.

The atmospheric force and moment coefficients are
given by

CT = cT0 + c
β
Tβ (11)

CD = cD0 + cαDα + c
α2

D α
2 (12)

CL = cαLα (13)

Cmz = mz0 + mαz α + m
α2

z α
2
+ mωzz ωz + m

δe
z δe (14)

where β is the throttle setting, δe is the elevator deflection
angle.

In addition, the second-order engine dynamics can be
described as

β̈ = −2ξωnβ̇ − ω2
nβ + ω

2
nβc + d7, (15)

where βc is the demand of throttle setting, ξ is the damping
ratio of the engine dynamics, ωn is the undamped natural
frequency, d7 is the external disturbance of the throttle.
Remark 1: In fact, the disturbances of ḣ, ϑ̇ and β̇ are

not concerned in this study for the reason of their accurate
mathematics deduction. Besides, the disturbance terms di,
i = 2, 4, 5, 7, can be regarded as the equivalent disturbances
consisting of external disturbances, internal uncertainties and
model errors which can be well tackled by the disturbance
observers.

B. MODEL TRANSFORMATION
In the process of controller designing, the AHV system is
required to be expressed in the strict feedback formulations.
Before the model transformation, following assumptions are
introduced.
Assumption 1 [26], [29], [40]: The thrust term T sinα

in (2) can be omitted, since it is commonly much smaller
than L.
Assumption 2 [26], [29], [40]: The flight path angle θ

maintains a small value, which means sin θ ≈ θ .
To depict the AHV longitudinal model (1)-(6) and (15)

more explicitly, the system states and the control inputs are
defined as x1 = h, x2 = θ, x3 = ϑ, x4 = ωz, x5 = V ,
x6 = β, x7 = β̇, u1 = δe, u2 = βc, respectively.
Thus, considering Assumption 1 and 2, the AHV longitu-

dinal system can be divided into the altitude subsystem and
the velocity subsystem as follows.

ẋ1 = g1x2,

ẋ2 = g2x3 + f2 + d2,

ẋ3 = g3x4,

ẋ4 = g4u1 + f4 + d4, (16)

ẋ5 = g5x6 + f5 + d5

ẋ6 = g6x7

ẋ7 = g7u2 + f7 + d7 (17)

where fj, j = 2, 4, 5, 7, and gi, i = 1, 2, . . . , 7, represent the
dynamics of relevant channels for AHV longitudinal model

VOLUME 8, 2020 17569



Y. Wu et al.: Super Twisting Disturbance Observer-Based Fixed-Time Sliding Mode BC

which can be expressed as

g1 = x5, g2 =
cαLρSx5
2m

,

f2 = −
(µ− x25 (x1 + RE )) cos x2

x25 (x1 + RE )
2 − g2x2,

g3 = 1, g4 =
mδez ρSlx25

2Jz
,

f4 =
ρSlx25
2Jz

(mz0 + mαz (x3 − x2)+ m
α2

z (x3 − x2)
2

+mωzz x4),

g5 =
cβTρSx

2
5 cos (x3 − x2)

2m
,

f5 = −
ρSx25
2m

(cD0 + cαD(x3 − x2)+ c
α2

D (x3 − x2)2)

+
cT0ρSx25 cos(x3 − x2)

2m
−

µ sin x2
(x1 + RE )2

,

g6 = 1, g7 = ω2
n, f7 = −2ξωnx7 − ω

2
nx6. (18)

Assumption 3 [37], [47]: The functions gi, i = 1,
2, . . . , 7, satisfy |gi| < ḡi, where ḡi > 0.
This assumption can ensure that the control inputs are

nonsingular and bounded.

III. SMOOTH SUPER TWISTING ALGORITHM BASED
DISTURBANCE OBSERVER DESIGN
In this section, the smooth super twisting algorithm based
disturbance observer (SSTDOB) is developed for the AHV
system, which can compensate the equivalent disturbances.
Besides, the convergence time of the disturbance observation
error is also analyzed.

A. OBSERVER DESIGN
It is shown that disturbances di, i = 2, 4, 5, 7, are respectively
involved in the differential equation for x2, x4, x5 and x7
without couplings. Thus, observer for di can be designed
independently. Before the design of this SSTDOB, the fol-
lowing assumption is made.
Assumption 4: [26], [29], [40] The disturbances di, i =

2, 4, 5, 7, are considered to be bounded, that is to say |di| ≤
d̄i, |ḋi| ≤ δi, where d̄i > 0 and δi ≥ 0.

Considering the observer for di, the relevant auxiliary vari-
ables yi, i = 2, 4, 5, 7, can be constructed as

ẏi = ψi + d̂i (19)

where ψi can be expressed as

ψi =


g2x3 + f2 i = 2
g4u1 + f4 i = 4
g5x6 + f5 i = 5
g7u2 + f7 i = 7

(20)

Errors between xi and yi are defined as ei1 = xi − yi. With
the assistance of ei1, observer for di can be designed as

d̂i = ki1sig(ei1)
pi−1
pi + ki2ei1

+

∫ t

0

(
ki3sig (ei1 (τ ))

pi−2
pi + ki4ei1 (τ )

)
dτ (21)

In (21), ki1, ki2, ki3, ki4 and pi, i = 2, 4, 5, 7 are all positive
constants and satisfy following conditions{

pi ≥ 2, ki1 > 2
√
δi, ki2 > 0,

ki3 > δi, ki4 > k�i4
(22)

where k�i4 =
( pi−1pi

ki1ki2+ki1ki2)
2
( pi−1pi

(k2i1+4ki3)−(ki3−δi))

Ni
−

pi−1
pi
k2i2 − 2k2i2 with Ni = ( pi−1pi (k4i1 + 4k2i1ki3) − k2i1(ki3 −

δi))(
pi−1
pi (−k2i1 − 2ki3)+ (ki3 − δi)).

B. STABILITY ANALYZATION FOR SSTDOB
With Assumption 4, the following Theorem 1 of proposed
SSTDOB for AHV can be established.
Theorem 1: With the proposed SSTDOB (21), observation

errors of xi, i = 2, 4, 5, 7, can converge to 0 in finite time.
Proof: Combining (19) and the differential equations for

xi, i = 2, 4, 5, 7, in (16) and (17), it can be easily acquired that

ėi1 = di − d̂i (23)

Substituting (21) into (23), we have

ėi1 = di − ki1sig (ei1)
pi−1
pi − ki2ei1

−

∫ t

0

(
ki3sig (ei1 (τ ))

pi−2
pi + ki4ei1 (τ )

)
dτ (24)

To facilitate the following deduction, we define ei2 = di−∫ t
0

(
ki3sig (ei1 (τ ))

pi−2
pi + ki4ei1 (τ )

)
dτ . Evidently, (24) can

be reformed as the following second-order system. ėi1 = −ki1sig (ei1)
pi−1
pi − ki2ei1 + ei2

ėi2 = −ki3sig (ei1)
pi−2
pi − ki4ei1 + ḋi

(25)

Consider the Lyapunov candidate function

Vi = 2ki3|ei1|
2pi−2
pi + ki4e2i1 +

1
2
e2i2

+
1
2

(
ki1sig (ei1)

pi−1
pi + ki2ei1 − ei2

)2

= ξTi Piξi ≤ λmax (Pi) ‖ξi‖22 (26)

where

ξi =

 sig (ei1)
pi−1
pi

ei1
ei2

 (27)

Pi =


2ki3 +

1
2
k2i1

1
2
ki1ki2 −

1
2
ki1

1
2
ki1ki2 ki4 +

1
2
k2i2 −

1
2
ki2

−
1
2
ki1 −

1
2
ki2 1

 (28)
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We note that the derivative of ξi can be expressed as

ξ̇i =


pi − 1
pi
|ei1|
−

1
pi ėi1

ėi1
ėi2



=


pi − 1
pi
|ei1|
−

1
pi

(
−ki1sig (ei1)

pi−1
pi − ki2ei1 + ei2

)
−ki1sig (ei1)

pi−1
pi − ki2ei1 + ei2

−ki3sig (ei1)
pi−2
pi − ki4ei1 + ḋi


= |ei1|

−
1
pi Aiξi + Biξi +

 0
0
ḋi

 (29)

where

Ai =

 −
pi − 1
pi

ki1 −
pi − 1
pi

ki2
pi − 1
pi

0 0 0
−ki3 0 0


Bi =

 0 0 0
−ki1 −ki2 1
0 −ki4 0


Using Assumption 4 and setting κi(t) = sign (ei1)

|ei1|
2−pi
pi ḋi, the time derivative of Vi can become

V̇i = ξ̇Ti Piξi + ξ
T
i Piξ̇i

= |ei1|
−

1
pi ξTi

(
PiAi + ATi Pi

)
ξi + ξ

T
i

(
PiBi + BTi Pi

)
ξi

+ 2|ei1|
−

1
pi

[
0 0 |ei1|

1
pi ḋ
]
PiξTi

= |ei1|
−

1
pi ξTi

(
PiAi + ATi Pi

)
ξi + ξ

T
i

(
PiBi + BTi Pi

)
ξi

+|ei1|
−

1
pi ξTi

(
PiMi(t)+Mi(t)TPi

)
ξi

= |ei1|
−

1
pi ξTi

(
Pi(Ai +Mi(t))+ (Ai +Mi(t))TPi

)
ξi

+ξTi

(
PiBi + BTi Pi

)
ξi

= −|ei1|
−

1
pi ξTi Qiξi − ξ

T
i Riξi (30)

where

Mi(t) =

 0 0 0
0 0 0
κi(t) 0 0

 (31)

Qi =

 Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 (32)

Ri =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 (33)

with their elements

Q11 =
pi − 1
pi

(
k3i1 + 4ki1ki3

)
− ki1(ki3 − κi(t)),

Q12 =
pi − 1
p

(2ki2ki3 + k2i1ki2)−
1
2
ki2(ki3 − κi(t)),

Q13 = −
pi − 1
pi

(k2i1 + 2ki3)+ (ki3− κi(t)),

Q22 =
pi − 1
pi

ki1k2i2, Q23 = −
pi − 1
pi

ki1ki2,

Q21 = Q12, Q31 = Q13, Q32 = Q23,

Q33 =
pi − 1
pi

ki1,

R11 = k2i1ki2, R12 = ki1k2i2 +
1
2
ki1ki4,

R13 = −ki1ki2, R22 = k3i2 + ki2ki4,

R23 = k2i2, R33 = ki2,

R21 = R12, R31 = R13, R32 = R23

Obviously, the following relations hold.

sig (ei1)
pi−1
pi · ei1 = |ei1|

−
1
pi · e2i1 (34)

sig (ei1)
pi−1
pi · ei2 = |ei1|

−
1
pi · ei1 · ei2 (35)

|ei1|
−

1
pi · sig (ei1)

pi−1
pi · ei1 = sig (ei1)

2(pi−1)
pi (36)

Thus, substituting (34)-(36) into (30), we have

V̇i = −|ei1|
−

1
pi ξTi Q̄iξi − ξ

T
i R̄iξi (37)

where

Q̄i =

 Q11 0 Q13

0 Q22 − 2R12 Q23 + R13
Q31 Q32 + R31 Q33

 (38)

R̄i =

 R11 − 2Q12 0 0
0 R22 R23
0 R32 R33

 (39)

Due to the fact that kij, i = 2, 4, 5, 7, j = 1, 2, 3, 4 are all
positive constants with conditions (22) hold, Q̄i and R̄i are all
positive definite matrices. Therefore, (37) can be reformed as

V̇i ≤ −λmin
(
Q̄i
)
|ei1|
−

1
pi ‖ξi‖

2
2 − λmin

(
R̄i
)
‖ξi‖

2
2

= −λmin
(
Q̄i
) (
|ei1|

pi−1
pi

)− 1
pi−1

‖ξi‖
2
2 − λmin

(
R̄i
)
‖ξi‖

2
2

≤ −λmin
(
Q̄i
)
‖ξi‖

−
1

pi−1

2 ‖ξi‖
2
2 − λmin

(
R̄i
)
‖ξi‖

2
2

= −λmin
(
Q̄i
)
‖ξi‖

2pi−3
pi−1

2 − λmin
(
R̄i
)
‖ξi‖

2
2 (40)

Combining (26) and (40), it can be acquired that

V̇i + αiV
γi
i + βiVi ≤ 0 (41)

where αi =
λmin(Q̄i)

λmax(Pi)
2pi−3
2pi−2

, γi =
2pi−3
2pi−2

, βi =
λmin(R̄i)
λmax(Pi)

, i =

2, 4, 5, 7.
Thus, according to Yu et al. [46], Vi will converge to 0 in

finite time, that is, ei1 and ei2 converge to 0 in finite time.
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In addition, the convergence time ti can be evaluated by

ti =
∫ 0

Vi(0)

1

V̇i
dVi ≤

∫ Vi(0)

0

1

αiV
γi
i + βiVi

dVi

=
1

βi (1− γi)
ln
βiVi(0)1−γi + αi

αi
(42)

Since (ei1 = 0, ei2 = 0) is the equilibrium point of (25),
ei1 (t) = 0 is satisfied for all t > ti, which indicates that
ėi1 (t) = 0 for any t > ti. According to (23), it can be obtained
that

d̃i (t) = di (t)− d̂i (t) = 0,∀t > ti (43)

Therefore, observation errors of di, i = 2, 4, 5, 7, can
converge to 0 in finite time, which means the equivalent
disturbances can be exactly estimated in finite time. The proof
of SSTDOB’s stability is complete.
Remark 2: When δi = 0, i = 2, 4, 5, 7, pi can be chosen as

pi ≥ 2, then the disturbance observation errors can converge
to the origin in finite time. When δi > 0, two cases can be
discussed.

Case A: 0 < δi < ςi, where the terms ςi are small enough
positive constants. This indicates that the disturbances are
slow varying, that is, ḋi ≈ 0. Then, (29) becomes

ẋi ≈ |ei1|
−

1
pi Aiξi + Biξi (44)

The finite time stability of proposed SSTDOB won’t rely on
the boundedness of κi(t). Therefore, the disturbance observer
can still work well when 0 < δi < ςi and pi ≥ 2.
Case B: δi ≥ ςi. In this situation, the disturbances have

higher frequency or larger amplitude. The finite time stability
of proposed SSTDOB will depend on the boundedness of
κi(t). Then, setting pi = 2, we yield

|κi(t)| =
∣∣sign(ei1)ḋi∣∣ ≤ δi (45)

With (45), the boundedness of κi(t) can be guaranteed, which
will maintain the finite time performance of the observer.
Accordingly, the newly proposed observer will revert to the
following equation [48]

d̂i = ki1sig (ei1)
1
2 + ki2ei1

+

∫ t

0
(ki3sign (ei1 (τ ))+ ki4ei1 (τ )) dτ (46)

Therefore, case A will explain the simulation results with
slow varying disturbances, that is, 0 < δi < ςi and
pi ≥ 2. Compared with super twisting algorithm-based
observer designed in Nagesh and Edwards [48], the selection
of pi are more flexible, which means that this SSTDOB
have more generic formulation for slow varying disturbance
estimation. Besides, it will be illustrated that the proposed
SSTDOB can achieve excellent estimation ability if we
choose pi = 2 for both case A and case B.
Remark 3: As mentioned in Nagesh and Edwards [48],

the Filippov solution of (21) cannot stay on (ei1 = 0, ei2 = 0).
There exists some small time interval To containing ti ei1

will monotonically pass through zero. Therefore, (40) holds
almost everywhere and the observer will converge to the
equilibrium point (ei1 = 0, ei2 = 0) in finite time.
Remark 4: Since the possible discontinuous function

sig(ei1)
pi−2
pi is hidden in the integral item, d̂i will be con-

tinuous (non-Lipschitzian) and the chattering is eliminated.
Besides, calculating the derivative of d̂i we can yield

˙̂d i = ki1
pi − 1
pi

sign(ei1)
−

1
pi ėi1 + ki2ėi1

+ki3sig(ei1)
pi−2
pi + ki4ei1 (47)

With (25), it is apparent that ei1, ei2, ėi1 and sig(ei1)
pi−2
pi are

continuous. Thus, the continuity of (47) will depend on the

terms 2i = sign(ei1)
−

1
pi ėi1. Substituting the first formula of

(25) into 2i, we have

2i = −ki1sign (ei1)
pi−1
pi |ei1|

pi−1
pi − ki2sign (ei1)

−
1
pi ei1

+sign (ei1)
−

1
pi ei2 (48)

When ei1 → 0+, we have limei1→0+ = 0; when ei1 → 0−,
we have limei1→0− = 0. Therefore, 2i is continuous and
it follows that ḋi is continuous. Finally, the smoothness of
d̂i can be guaranteed. Besides, it will be illustrated in the
simulation results that the proposed SSTDOB can exhibit
smoother outputs.
Remark 5: When ei1 and ei2 converge to zero after finite

time ti, (25) becomes{
ėi1 = ei2 = 0
ėi2 = ḋi

(49)

With the first formula of (49) and (23), we can make a
conclusion that the observation errors of di will also converge
to zero. As for the second formula of (49), the following
inequality holds

|ėi2| =
∣∣ḋi∣∣ ≤ δi (50)

Therefore, the result of (50) is consistent with the bounded-
ness of ḋi in Assumption 4.

IV. SSTDOB BASED FSMBC FOR AHV SYSTEM
The main objective of this paper is to design a good per-
formance of controller which can track the desired alti-
tude x1d and desired velocity x5d respectively. Thus, the
SSTDOB based fixed-time sliding mode backstepping con-
trol (FSMBC) strategy is proposed for the AHV longitudinal
system. The block diagram of this composite controller is
shown in Figure 2.
Before the controller designing, some lemmas and assump-

tions are given as follows
Lemma 1 [37], [47], [49]: Consider a scalar system is

expressed as follow

ẏ = −asig(y)α − bsig(y)β , y(0) = y0 (51)
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FIGURE 2. The block diagram of proposed composite controller.

where a > 0, b > 0, α > 1, 0 < β < 1. System (51)
has globally fixed-time stability with convergence time T
bounded by

T ≤
1
a

1
α − 1

+
1
b

1
1− β

(52)

Besides, when system (51) becomes

ẏ = −asig(y)α − bsig(y)β +Φ, y(0) = y0 (53)

where Φ is a small positive real number. Then the system
(53) will converge to an arbitrarily small neighbor of the
origin, i.e. y ≤ 2Π with Φ = asig(Π )α + bsig(Π )β , within
a fixed-time bounded by

T <
1
a

1
α − 1

+
1

b(2β − 1)
1

1− β
(54)

Lemma 2 [37], [47], [49]: For ξ1, ξ2, . . . , ξn ≥ 0 and
p > 0, the following inequality can hold

max(np−1, 1)(ξp1 + ξ
p
2 + · · · + ξ

p
n ) ≥ (ξ1 + ξ2 + · · · + ξn)p

(55)

Lemma 3 [45]: Consider the differentiators are
expressed as{
σ̇i1 = σi2 − λi1sig(σi1 − xid )αi − κi1sig(σi1 − xid )βi

σ̇i2 = −λi2sig(σi1 − xid )ᾱi − κi2sig(σi1 − xid )β̄i
(56)

where ei = σi1 − xid , i = 2, 3, 4, 6, 7, σi1 and σi2 are
the estimation of xid and ẋid , respectively. αi > 1, 0 <

βi < 1, ᾱi = 2αi − 1, β̄i = 2βi − 1, λi1, λi2, κi1 and

κi2 are positive constants such that the matrices Ãi1 and Ãi
are Hurwitz.

Ãi1 =
[
−λi1 1
−λi2 0

]
(57)

Ãi =
[
−κi1 1
−κi2 0

]
(58)

With (56) satisfying above conditions, the errors ei can con-
verge to the origin and σi2 will converge to the derivative of
virtual control xid in a fixed-time bounded by

tFTDi ≤
λmax

(
P̃i1
)

λmin

(
Q̃i1
)
(αi − 1) 0αi−1

+

λ
2−βi
max

(
P̃i
)

λmin (Qi) (1− βi)

(59)

where 0 < 0 ≤ λmin(P̃i1), the symmetric positive matrices
P̃i1 and Q̃i1 satisfy

P̃i1Ãi1 + ÃTi1P̃i1 = −Q̃i1 (60)

The symmetric positive matrices P̃i and Q̃i satisfy

P̃iÃi + ÃTi P̃i = −Q̃i (61)

Remark 6: According to Lemma 3, when t > tFTDi,
the fixed-time tracking differentiator (FTD) (56) will exhibit
an exact estimation of xid and ẋid ,that is,{

ei = 0
ėi = 0

⇒

{
xid = σi1
ẋid = σ̇i1 = σi2

(62)
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Assumption 5 [40]: The initial tracking errors zi(0), i =
1, 2, . . . , 7, are bounded satisfying

zi(0) ≤ |zi(0)| < ηi (i = 1, 2, . . . , 7) (63)

where η1, η2, . . . , η7 are positive constants.

A. SSTDOB-FSMBC DESIGN FOR ALTITUDE SUBSYSTEM
Step 1.1 (virtual control input for altitude): Define the track-
ing error of altitude x1 as z1 = x1 − x1d . Then we select a
sliding surface

s1 = l1 (z1 − z1 (0) exp (−ϕ1t)) (64)

where l1 ≥ 1, ϕ1 > 0, z1(0) is the initial error of x1.
Computing the time derivative of (64) we yield

ṡ1 = l1 (g1x2 − ẋ1d + ϕ1z1 (0) exp (−ϕ1t)) (65)

Thus, the virtual control input x2d adopted by backstepping
control can be given as

x2d = −
1
g1

(−ẋ1d + ϕ1z1 (0) exp (−ϕ1t)

+a1sig(s1)α1 + b1F1(s1)+ c1s1) (66)

where a1, b1 and c1 are positive constants, α1 > 1. F1(s1) is
constructed as

F1(s1) =

{
sig(s1)β1 , |s1| ≥ ε1
τ11s1 + τ12s21sign (s1) , |s1| < ε1

(67)

where 0 < β1 < 1, ε1 is a small enough positive constant,

τ11 = (2− β1) ε
β1−1
1 , τ12 = (β1 − 1) εβ1−21 .

To avoid the ‘‘explosion of complexity’’ involved in con-
trol law, a fixed-time tracking differentiator (FTD) is intro-
duced as{
σ̇21 = σ22 − λ21sig(σ21 − x2d )α2 − κ21sig(σ21 − x2d )β2

σ̇22 = −λ22sig(σ21 − x2d )ᾱ2 − κi2sig(σ21 − x2d )β̄2

(68)

where α2 > 1, 0 < β2 < 1, ᾱ2 = 2α2 − 1, β̄2 = 2β2 − 1.
The selection conditions of λ21, λ22, κ21 and κ22 are same to
Lemma 3.
Define z2 = x2 − σ21, e2 = σ21 − x2d , (65) becomes

ṡ1 = l1 (g1 (z2 + e2 + x2d )− ẋ1d + ϕ1z1 (0) exp (−ϕ1t))

= l1(g1z2 + g1e2 − a1sig(s1)α1 − b1F1(s1)− c1s1)

(69)

Remark 7: Inspired by Zhou et al. [49], we introduce this
switching logic in F1(s1) to avoid the singularity problem
in ẋ2d . When |s1| ≥ ε1 calculating the derivative of x2d
yields the term Ḟ1(s1) = β1|s1|β1−1ṡ1. Since |s1| ≥ ε1 > 0,
the singularity problem cannot appear in this situation. When
|s1| < ε1, calculating the derivative of x2d , we have the term
Ḟ1(s1) = τ11ṡ1 + 2τ12|s1|ṡ1. It is apparent that this term
will not turn to singular when s = 0 and ṡ 6= 0. However,
the switching effect from sig(s1)β1 to τ11s1 + τ12s21sign(s1)
may degrade the fixed-time convergence property. Thus, we

should select a small enough ε1 to maintain this convergence
property and avoid the singular problem. Besides, the design
of τ11 and τ11 can make F1(s1) and its derivative continuous.
Step 1.2 (virtual control input for flight path angle): The
sliding surface s2 is selected as

s2 = l2 (z2 − z2 (0) exp (−ϕ2t)) (70)

where l2 ≥ 1, ϕ2 > 0, z2(0) is the initial error of x2.
The time derivative of s2 is

ṡ2 = l2 (g2x3 + f2 + d2 − σ̇21 + ϕ2z2 (0) exp (−ϕ2t)) (71)

The virtual control input x3d can be obtained as

x3d = −
1
g2

(f2 + d̂2 − σ22 + ϕ2z2 (0) exp (−ϕ2t)

+ a2sig(s2)α2 + b2F2(s2)+ c2s2 + g1s1) (72)

where a2, b2 and c2 are positive constants, α2 > 1, d2 is
estimated by SSTDOB. F2(s2) is constructed as

F2(s2) =

{
sig(s2)β2 , |s2| ≥ ε2
τ21s2 + τ22s22sign (s2) , |s2| < ε2

(73)

where 0 < β2 < 1, ε2 is a small enough positive constant,

τ21 = (2− β2) ε
β2−1
2 , τ22 = (β2 − 1) εβ2−22 .

The FTD is designed as{
σ̇31 = σ32 − λ31sig(σ31 − x3d )α3 − κ31sig(σ31 − x3d )β3

σ̇32 = −λ32sig(σ31 − x3d )ᾱ3 − κ32sig(σ31 − x3d )β̄3

(74)

where the selection conditions of λ31, λ32, κ31 and κ32 are
same to Lemma 3, α3 > 1, 0 < β3 < 1, ᾱ3 = 2α3 − 1,
β̄3 = 2β3 − 1, σ31 is the virtual control estimated by (74).

Similarly, define z3 = x3−σ31, e3 = σ31− x3d . Then (71)
is written as

ṡ2 = l2(g2 (z3 + e3 + x3d )+ f2 + d2 − σ̇21
+ϕ2z2 (0) exp (−ϕ2t))

= l2(g2z3 + g2e3 + d̃2 − a2sig(s2)α2 − b2F2(s2)

− c2s2 − g1s1 + σ22 − σ̇21) (75)

where d̃2 = d2 − d̂2.
Step 1.3(virtual control input for pitching angle): The slid-

ing surface s3 and its time derivative ṡ3 are expressed as
follows

s3 = l3 (z3 − z3 (0) exp (−ϕ3t)) (76)

ṡ3 = l3 (x4 − σ̇31 + ϕ3ż3 (0) exp (−ϕ3t)) (77)

where l3 ≥ 1, ϕ3 > 0, z3(0) is the initial error of x3.
The virtual control x4d is designed as

x4d = −
1
g3

(−σ32 + ϕ3z3 (0) exp (−ϕ3t)+ a3sig(s3)α3

+b3F3(s3)+ c3s3 + g2s2)

with

F3(s3) =

{
sig(s3)β3 , |s3| ≥ ε3
τ31s3 + τ32s23sign (s3) , |s3| < ε3

(78)
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And the FTD is expressed as{
σ̇41 = σ42 − λ41sig(σ41 − x4d )α4 − κ41sig(σ41 − x4d )β4

σ̇42 = −λ42sig(σ41 − x4d )ᾱ4 − κ42sig(σ41 − x4d )β̄4

(79)

In (78), (78) and (79), a4, b4 and c4 are positive constants,
α3, α4 > 1, 0 < β3, β4 < 1, ε3 is a small enough positive
constant, τ31 = (2− β3) ε

β3−1
3 , τ32 = (β3 − 1) εβ3−23 . The

selection conditions of λ41, λ42, κ41 and κ42 are same to
Lemma 3, ᾱ4 = 2α4 − 1, β̄4 = 2β4 − 1, σ41 is the virtual
control estimated by (74).

With the definition of z4 = x4 − σ41 and e4 = σ41 − x4d ,
(77) becomes

ṡ3 = l3 (g3 (z4 + e4 + x4d )− σ̇31 + ϕ3z3 (0) exp (−ϕ3t))

= l3(g3z4 + g3e4 − a3sig(s3)α3 − b3F3(s3)− c3s3
− g2s2 + σ32 − σ̇31) (80)

Step 1.4 (Actual Control Input for Pitching Rate Angle):
The sliding surface s4 and its time derivative ṡ4 are
designed as

s4 = l4 (z4 − z4 (0) exp (−ϕ4t)) (81)

ṡ4 = l4 (g4u1 + f4 + d4 − σ̇41 + ϕ4ż4 (0) exp (−ϕ4t)) (82)

where l4 ≥ 1, ϕ4 > 0, z4(0) is the initial error of x4.
Similar to the fore steps, the altitude subsystem actual

controller u1 can be designed as

u1 = −
1
g4

(f4 + d̂4 − σ42 + ϕ4z4 (0) exp (−ϕ4t)

+ a4sig(s4)α4 + b4F4(s4)+ c4s4 + g3s3) (83)

where a4, b4 and c4 are positive constants, α4 > 1, d4 is
estimated by SSTDOB. F4(s4) is constructed as

F4(s4) =

{
sig(s4)β4 , |s4| ≥ ε4
τ41s4 + τ42s24sign (s4) , |s4| < ε4

(84)

where 0 < β4 < 1, ε4 is a small enough positive constant,

τ41 = (2− β4) ε
β4−1
4 , τ42 = (β4 − 1) εβ4−24 .

Substituting (83) into (82), one gets

ṡ4 = l4(d̃4 − a4sig(s4)α4 − b4F4(s4)− c4s4
− g3s3 + σ42 − σ̇41) (85)

where d̃4 = d4 − d̂4.

B. SSTDOB-FSMBC DESIGN FOR VELOCITY SUBSYSTEM
The design process of velocity subsystem is analogous to
altitude subsystem.
Step 2.1 (virtual Control Input for Velocity): Define the

velocity tracking error as z5 = x5 − x5d , the sliding surface
s5 is designed as

s5 = l5 (z5 − z5 (0) exp (−ϕ5t)) (86)

where l5 ≥ 1, ϕ5 > 0, z5(0) is the initial error of x5.

The time derivative of s5 is obtained as

ṡ5 = l5 (g5x6 + f5 + d5 − ẋ5d + ϕ5z5 (0) exp (−ϕ5t)) (87)

The virtual control input x6d is designed as

x6d = −
1
g5

(f5 + d̂5 − ẋ5d + ϕ5z5 (0) exp (−ϕ5t)

+ a5sig(s5)α5 + b5F5(s5)+ c5s5) (88)

with

F5(s5) =

{
sig(s5)β5 , |s5| ≥ ε5
τ51s5 + τ52s25sign (s5) , |s5| < ε5

(89)

And the corresponding FTD is designed as{
σ̇61 = σ62 − λ61sig(σ61 − x6d )α6 − κ61sig(σ61 − x6d )β6

σ̇62 = −λ62sig(σ61 − x6d )ᾱ6 − κ62sig(σ61 − x6d )β̄6

(90)

where a5, b5 and c5 are positive constants, α5, α6 > 1,
0 < β5, β6 < 1, d5 is estimated by SSTDOB, ε5 is a
small enough positive constant, τ61 = (2− β6) ε

β6−1
6 , τ62 =

(β6 − 1) εβ6−26 . The selection conditions of λ61, λ62, κ61 and
κ62 are also same to Lemma 3, ᾱ6 = 2α6 − 1, β̄6 = 2β6 − 1,
σ61 is the virtual control estimated by (90).
Define z6 = x6 − σ61, e6 = σ61 − x6d , (87) becomes

ṡ5 = l5(g5 (z6 + e6 + x6d )+ f5 + d5 − ẋ5d
+ϕ5z5 (0) exp (−ϕ5t))

= l5(g5z6 + g5e6 + d̃5 − a5sig(s5)α5 − b5F5(s5)

− c5s5) (91)

where d̃5 = d5 − d̂5.
Step 2.2 (virtual control input for the derivative of throttle

setting): Similarly, the sliding surface s6 and its time deriva-
tive ṡ6 are expressed as

s6 = l6 (z6 − z6 (0) exp (−ϕ6t)) (92)

ṡ6 = l6 (g6x7 − σ̇61 + ϕ6z6 (0) exp (−ϕ6t)) (93)

where l6 ≥ 1, ϕ6 > 0, z6(0) is the initial error of x6.
The virtual control input x7d is obtained as

x7d = −
1
g6

(−σ62 + ϕ6z6 (0) exp (−ϕ6t)

+ a6sig(s6)α6 + b6F6(s6)+ c6s6 + g5s5)

with

F6(s6) =

{
sig(s6)β6 , |s6| ≥ ε6
τ61s6 + τ62s26sign (s6) , |s6| < ε6

(94)

And the FTD is defined as{
σ̇71 = σ72 − λ71sig(σ71 − x7d )α7 − κ71sig(σ71 − x7d )β7

σ̇72 = −λ72sig(σ71 − x7d )ᾱ7 − κ72sig(σ71 − x7d )β̄7

(95)

where a6, b6 and c6 are positive constants, α6, α7 > 1,
0 < β6, β7 < 1, ε6 is a small enough positive constant,
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τ71 = (2− β7) ε
β7−1
7 , τ72 = (β7 − 1) εβ7−27 . The selection

conditions of λ71, λ72, κ71 and κ72 are same to Lemma 3,
ᾱ7 = 2α7 − 1, β̄7 = 2β7 − 1, σ71 is the virtual control
estimated by (95).

Define z7 = x7 − σ71, e7 = σ71 − x7d , (93) becomes

ṡ6 = l6 (g6 (z7 + e7 + x7d )− σ̇61 + ϕ6z6 (0) exp (−ϕ6t))

= l6(g6z7 + g6e7 − a6sig(s6)α6 − b6F6(s6)− c6s6
− g5s5 + σ62 − σ̇61) (96)

Step 2.3 (Actual Control Input for the Throttle Setting):The
sliding surface s7 and its time derivative ṡ7 are expressed as
follows

s7 = l7 (z7 − z7 (0) exp (−ϕ7t)) (97)

ṡ7 = l7(g7u2 + f7 + d7 − σ̇71 + ϕ7z7 (0) exp (−ϕ7t)) (98)

where l7 ≥ 1, ϕ7 > 0, z7(0) is the initial error of x7.
Finally, the actual control input u2 is designed as

u2 = −
1
g7

(f7 + d̂7 − σ72 + ϕ7z7 (0) exp (−ϕ7t)

+ a7sig(s7)α7 + b7F7(s7)+ c7s7 + g6s6) (99)

where a7, b7 and c7 are positive constants, α7 >

1, 0 < β7 < 1, d7 is estimated by SSTDOB. F7(s7) is
constructed as

F7(s7) =

{
sig(s7)β7 , |s7| ≥ ε7
τ71s7 + τ72s27sign (s7) , |s7| < ε7

(100)

where 0 < β7 < 1, ε7 is a small enough positive constant,
τ71 = (2− β7) ε

β7−1
7 , τ72 = (1− β7) ε

β7−2
7 .

Substituting (99) into (98), we have

ṡ7= l7(d̃7−a7sig(s7)α7−b7F7(s7)−c7s7−g6s6+σ72−σ̇71)

(101)

where d̃7 = d7 − d̂7.

C. STABILITY ANALYZATION FOR SSTDOB-FSMC
In this section, the stability of the closed-loop system is
analyzed by the Lyapunov theory.
Theorem 2: Consider the AHV system (16) and (17) with

designed control inputs (66), (72), (78), (83), (88), (94), (99),
and FTD (68), (74), (79), (90), (95) as well as SSTDOB (21).
The closed-loop system is able to guarantee sliding surfaces
and tracking errors converge to a small neighborhood of
origin.

Proof: The Lyapunov function can be constructed as

L =
7∑
i=1

1
2li
s2i (102)

Taking the time derivative of L yields

L̇ =
7∑
i=1

1
li
siṡi (103)

Substituting (69), (75), (80), (85), (91), (96) and (101) into
(103), we obtain

L̇ = −
7∑
i=1

ai|si|αi+1 −
7∑
i=1

bisiFi(si)−
7∑
i=1

cis2i

+

∑
i=2,4,5,7

sid̃i +
6∑

i=1,i6=4

gisi(zi+1 − si+1)

+

6∑
i=1,i6=4

gisiei+1 +
6∑

i=1,i6=4

si(σi+1,2 − σ̇i+1,1) (104)

Since εi is small enough, the switching effect caused by
Fi(si) can be omitted. Thus, (104) can be reformed as

L̇ = −
7∑
i=1

ai|si|αi+1 −
7∑
i=1

bi|si|βi+1 −
7∑
i=1

cis2i

+

∑
i=2,4,5,7

sid̃i +
6∑

i=1,i6=4

gisi(zi+1 − si+1)

+

6∑
i=1,i6=4

gisiei+1 +
6∑

i=1,i6=4

si(σi+1,2 − σ̇i+1,1)

= −

7∑
i=1

ai|si|αi+1 −
7∑
i=1

bi|si|βi+1 −
7∑
i=1

cis2i

+

6∑
i=1,i6=4

gisi((
1
li+1
− 1)si+1 + zi+1(0) exp(−ϕi+1t))

+

6∑
i=1,i6=4

gisiei+1 +
∑

i=2,4,5,7

sid̃i

+

6∑
i=1,i6=4

si(σi+1,2 − σ̇i+1,1) (105)

Based on the left half side of inequalities in (63), one
can get

L̇ ≤ −
7∑
i=1

ais2i −
7∑
i=1

bi|si|αi+1 −
7∑
i=1

ci|si|βi+1

+

6∑
i=1,i6=4

gisi(
1
li+1
− 1)si+1

+

6∑
i=1,i6=4

gisi|zi+1(0)| exp(−ϕi+1t)

+

6∑
i=1,i6=4

gisiei+1 +
∑

i=2,4,5,7

sid̃i

+

6∑
i=1,i6=4

si(σi+1,2 − σ̇i+1,1) (106)
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Since ϕi > 0, we have |exp(−ϕit)| ≤ 1, and (106) becomes

L̇ ≤ −
7∑
i=1

ais2i −
7∑
i=1

bi|si|αi+1 −
7∑
i=1

ci|si|βi+1

+

6∑
i=1,i6=4

gisi(
1
li+1
− 1)si+1 +

6∑
i=1,i6=4

gisi|zi+1(0)|

+

6∑
i=1,i6=4

gisiei+1 +
∑

i=2,4,5,7

sid̃i

+

6∑
i=1,i6=4

si(σi+1,2 − σ̇i+1,1) (107)

According to (42), if t > max(ti), i = 2, 4, 5, 7,
d̃i = 0 are all satisfied. With Lemma 3 and its conclusion in
Remark 6,we have ej = 0, j = 2, 3, 4, 6, 7, and σ̇j+1,1 =
σj+1,2 when t > max(ti)+max(tFTDj). Thus, (107) becomes

L̇ ≤ −
7∑
i=1

ai|si|αi+1 −
7∑
i=1

bi|si|βi+1 −
7∑
i=1

cis2i

+

6∑
i=1,i6=4

|gi| (
1
li+1
− 1) |si| |si+1|

+

6∑
i=1,i6=4

|gi| |si| ηi+1 (108)

Using Young’s inequality and Assumption 3, we yield

L̇ ≤ −
7∑
i=1

ai
(
s2i
) αi+1

2
−

7∑
i=1

bi
(
s2i
) βi+1

2
−

7∑
i=1

cis2i

+

6∑
i=1,i6=4

ḡi(
1
li+1
− 1)

s2i + s
2
i+1

2
+

6∑
i=1,i6=4

ḡi
s2i + η

2
i+1

2

≤ −

7∑
i=1

ai
(
s2i
) αi+1

2
−

7∑
i=1

bi
(
s2i
) βi+1

2
−

7∑
i=1

cis2i

+

6∑
i=1,i6=4

ḡi(
1
li+1
− 1)

(
s2i + s

2
i+1

)

+

6∑
i=1,i6=4

ḡis2i +
6∑

i=1,i6=4

ḡiη2i+1 (109)

Merging all the same items of (109), we obtain

L̇ ≤ −
7∑
i=1

aili
αi+1
2 (

s2i
li
)

αi+1
2

−

7∑
i=1

bili
βi+1
2 (

s2i
li
)

βi+1
2

+ (
ḡ1
l2
− c1)l1

s21
l1
+ (

ḡ2
l3
+
ḡ1
l2
− ḡ1 − c2)l2

s22
l2

+ (
ḡ3
l4
+
ḡ2
l3
− ḡ2 − c3)l3

s23
l3

+ (
ḡ3
l4
− ḡ3 − c4)l4

s24
l4
+ (

ḡ5
l6
− c5)l5

s25
l5

+ (
ḡ6
l7
+
ḡ5
l6
− ḡ5 − c6)l6

s26
l6

+ (
ḡ6
l7
− ḡ6 − c7)l7

s27
l7
+

6∑
i=1,i6=4

ḡiη2i+1 (110)

Setting A = min(aili
αi+1
2 )(i = 1, 2, · · · , 7), B =

min(bili
βi+1
2 ), K = max(( ḡ1l2 − c1)l1, (

ḡ2
l3
+

ḡ1
l2
− ḡ1 −

c2)l2, (
ḡ3
l4
+

ḡ2
l3
− ḡ2−c3)l3, (

ḡ3
l4
− ḡ3−c4)l4, (

ḡ5
l6
−c5)l5, (

ḡ6
l7
+

ḡ5
l6
− ḡ5 − c6)l6, (

ḡ6
l7
− ḡ6 − c7)l7) and 00 =

6∑
i=1,i6=4

ḡiη2i+1,

(110) becomes

L̇ ≤ −A
7∑
i=1

(
s2i
li
)

αi+1
2

− B
7∑
i=1

(
s2i
li
)

β1+1
2

+ K
7∑
i=1

s2i
li
+ 00

(111)

By applying the inequality x ≤ xp + xq [38], where
x > 0, p > 1, 0 < q < 1, one gets

L̇ ≤ −A
7∑
i=1

(
s2i
li
)

αi+1
2

− B
7∑
i=1

(
s2i
li
)

βi+1
2

+ K
7∑
i=1

(
s2i
li
)

αi+1
2

+K
7∑
i=1

(
s2i
li
)

βi+1
2

+ 00

= −(A− K )
7∑
i=1

(
s2i
li
)

αi+1
2

− (B− K )
7∑
i=1

(
s2i
li
)

β1+1
2

+ 00

(112)

Setting αi = r1, βi = r2 (i = 1, 2, . . . , 7), we have

L̇ ≤ −(A− K )(
7∑
i=1

(
s2i
li
))

r1+1
2

− (B− K )(
7∑
i=1

(
s2i
li
))

r2+1
2

+00

≤ −01L
r1+1
2 − 02L

r2+1
2 + 00 (113)

where 01 = 2
r1+1
2 min(A,K ), 02 = 2

r2+1
2 min(B,K ).

It is apparent that A, B and 00 are positive, K > 0 is
satisfied by choosing appropriate parameters. Then we obtain
01 > 0, 02 > 0, r1+12 > 1, 0 < r2+1

2 < 1. According to
Lemma 1, the sliding surface will get close to a small region
of zero in fixed time.

The convergence region 2� and the convergence time T1
are calculated by

00 = 01�
r1+1
2 + 02�

r2+1
2 (114)

T1 <
1
01

2
r1 − 1

+
1

02(2
r2+1
2 )

2
1− r2

(115)

Therefore, the whole convergence time T evaluated by
(42), (59) and (115) is derived as

T < max(ti)+max(tFTDj)+ T1
(i = 2, 4, 5, 7; j = 2, 3, 4, 6, 7) (116)
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Besides, according to (114), the sliding surfaces si
(i = 1, 2, . . . , 7) will satisfy

|si| = |li(zi − zi(0) exp(−ϕit))| ≤ 2� (i = 1, 2, . . . , 7)

(117)

Calculating the limit of following equation yields

lim
t→∞

zi(0) exp(−ϕit) = 0 (i = 1, 2, . . . , 7) (118)

Then by substituting (118) into (117), the convergence region
of tracking errors zi can be transformed into

|zi| ≤
2�
li
≤ �̄ (i = 1, 2, . . . , 7) (119)

where �̄ = 2�
min(li,i=1,2,...,7)

.

The proof of Theorem 2 is completed.
Remark 8: In the fore designing process, we combine

BC strategy with tracking differentiator, sliding mode con-
trol, fixed-time control, as well as disturbance observer,
in an attempt to make the composite controller more robust
and effective. The explosion problem is solved by utiliz-
ing a fixed-time tracking differentiator and the disturbance
observer is employed at each corresponding step to com-
pensate the lumped disturbances. Compared with conven-
tional sliding mode backstepping control, the sliding surfaces
selected in each design steps can improve the convergence
speed and modify the state trajectories right from the begin-
ning by adding an exponential term. Besides, the convergence
time of proposed FSMBC is independent of initial condition
and the singularity problem in the derivative of virtual control
is improved by introducing a switching logic.
Remark 9: From the viewpoint of practical application,

the energy of each system is limited. Therefore, it is reason-
able to claim the boundedness mentioned in Assumption 3-5.

V. SIMULATION RESULTS
In this section, several simulations are conducted to demon-
strate the performance of proposed control scheme. The ini-
tial simulation conditions and model parameters are given
in Table 1 and Table 2. Besides, Earth related constants are
µ = 3.98842 × 1014N · m2/kg and RE = 6.371 × 106m.
The density of air can be defined as ρ = ρ0 exp(−h/Hs)
with ρ0 = 1.225kg/m3 is the density of air at sea level,
Hs = 7200m is the scale height.

TABLE 1. Initial state of AHV sytstem.

As a representative case study, the desired altitude com-
mand hd and desired velocity command Vd are generated
by the following low-pass filters with their initial values at
hd (0) = 33000, ḣd (0) = 0, Vd (0) = 4000, V̇d (0) = 0

hd (s) =
87.5

(s+ 0.05)2
,Vd (s) =

40.5

(s+ 0.1)2

TABLE 2. Model parameters of AHV system.

In addition, constraints of the actuators and the external
disturbances are listed as{

|δe| ≤ 30
◦

0 ≤ βc ≤ 1

d2 (t) =


0 0 ≤ t < 100
0.01 sin (0.1π t) 100 ≤ t < 325
0.01 325 ≤ t < 400

d4 (t) =


0 0 ≤ t < 80
0.005t − 0.4 80 ≤ t < 100
0.1 100 ≤ t < 250
0.1 sin (0.1π t) 250 ≤ t < 400

d5 (t) =

{
0 0 ≤ t < 150
0.5 sin(0.02π t) 150 ≤ t < 400

d7 (t) =


0 0 ≤ t < 100
0.001t − 0.1 100 ≤ t < 200
0.1+ 0.1 sin (0.1π t) 200 ≤ t < 400

To verify the performance of the proposed controller
(SSTDOB-FSMBC), the simulation results are divided into
two groups as follows:

Group 1: Simulation on the AHV longitudinal model with-
out aerodynamic uncertainties.

In this group, comparisons among SSTDOB-FSMBC, con-
ventional super twisting disturbance observer based sliding
mode control (CSTDOB-SMC)mentioned inWang et al. [29]
and a strictly-lower-convex-function based nonlinear distur-
bance observer based adaptive terminal sliding mode control
(SDOB-ATSMC) designed in Wu et al. [26] are given to
illustrate the robustness of proposed control approach.

Besides, the parameters of each control scheme are listed
as follows.
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SSTDOB-FSMBC:

p2 = p4 = p5 = p7 = 2,

k21 = 2, k22 = 3, k23 = 1.5, k24 = 6,

k41 = 1.5, k42 = 3, k43 = 1, k44 = 6,

k51 = 2, k52 = 4, k53 = 1, k54 = 7,

k71 = 2, k72 = 3, k73 = 1.7, k74 = 7,

λj1 = 4, λj2 = 10, κj1 = 4, κj2 = 10, j = 2, 3, 4, 6, 7,

li = 1, ϕi=10, αi=r1=1.2, βi=r2=0.8, i=1, · · · , 7,

a1 = 1.1, a2=2, a3=2, a4=1, a5=2, a6=2, a7=1,

b1 = 0.01, b2=0.3, b3=0.5, b4=0.5, b5=b6=b7=0.9,

c1 = c2 = c3 = c4 = c5 = c6 = c7 = 0.1.

CSTDOB-SMC:

ω11 = 0.1, ω21 = 0.01, ω12 = 0.1, ω22 = 0.02,

k1 = 0.2, k2 = 0.3, γ1 = 0.95, γ2 = 0.95.

SDOB-ATSMC:

u = (
5x42
6
+ 5x22 )+(

x64
3
+
5x44
6
+ 5x24 )+ 5x25+(

5x47
6
+5x27 ),

3 = 60I3, c1 = 1, c5 = 2,

τ1 = 1, τ2=0.7, τ3=1.7, τ4=0.65, τ5=12, τ6=6, τ7 = 1,

r1 = r2 = r3 = r4 =
7
9
, r5 = r6 = r7 = 0.95,

σ1 = 0.2, σ2 = 0.3, σ3 = 0.25, σ4 = 0.4,

σ5 = 0.3, σ6 = 0.4, σ7 = 0.7.

Group 2: Simulation on the AHV longitudinal model with
aerodynamic uncertainties.

In this scenario, the simulations of proposed scheme con-
sidering external disturbances and aerodynamic uncertainties
are performed. The control parameters of SSTDOB-FSMBC
are same to that of Group 1. Here, the atmospheric force and
moment coefficients can be rewritten as

CT = C∗T (1+1fT )CD = C∗D(1+1fD)

CL = C∗L (1+1fL)Cmz = C∗L (1+1fM )

where C∗· and1f · are the nominal value and fixed parameter
uncertainty, respectively.

A. SIMULATION ANALYSIS OF SSTDOB-FSMBC WITHOUT
AERODYNAMIC UNCERTAINTIES
Figures 3 and 4 show the tracking curves of altitude h and
velocity V , respectively. It can be observed that all these
controllers show satisfactory performances when the dis-
turbances are not involved in the first 100 seconds. In the
presence of external disturbances, the proposed SSTDOB-
FSMBC performs well in tracking of altitude and velocity
command, whereas the CSDOB-SMC and SDOB-ATSMC
exhibit worse because of their weaker disturbance rejec-
tion. Besides, Figures 3 and 4 also reveal that SSTDOB-
FSMBC has faster convergence rate without overshoot, and
other methods will produce slow convergence with unde-
sired large overshoot, which suggests that the proposed

FIGURE 3. Tracking curves of altitude h for Group 1.

FIGURE 4. Tracking curves of velocity V for Group 1.

FIGURE 5. Elevator deflection angle δe for Group 1.

SSTDOB-FSMBC is more effective than CSDOB-SMC and
SDOB-ATSMC.

Figures 5 and 6 represent the control inputs of eleva-
tor deflection angle δe and demand of throttle setting βc,
respectively. As shown in the simulation results, the control
inputs δe and βc vary in their constraints during the whole
process.
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FIGURE 6. Demand of throttle setting βc for Group 1.

FIGURE 7. Observation error of d2.

FIGURE 8. Observation error of d4.

The estimation results of proposed SSTDOB are depicted
in Figures 7-10. Since the sign function will directly appear
in the CSTDOB, serious chattering may exist when the obser-
vation errors vary in the neighbor of zero, which would
cause a variety of troubles in practical systems. As for the
SSTDOB, the possible sign function can be hidden in the
integral items, then the outputs of SSTDOBwill become con-
tinuous and the chattering phenomenon is well eliminated.

FIGURE 9. Observation error of d5.

FIGURE 10. Observation error of d7.

Therefore, the curves of SSTDOB are much smoother than
that of CSTDOB. The outputs of SDOB are also smoother
than CSTDOB because of the low-convex-function designed
in SDOB. Howbeit, we can see that the estimation errors
of SDOB are larger than that of SSTDOB. Besides, it is
shown in Figure 10 that CSTDOB exhibits poor observation
performance for disturbances with faster change rates. This
result will further explain the vibrations of CSTDOB-SMC’s
tracking curves in Figures 3 and 4. The above analysis also
indicates that SSTDOB do has a better disturbance observa-
tion ability than CSTDOB and SDOB. Thus, this SSTDOB
can enhance the robustness of proposed controller.

Figures 11 and 12 demonstrate the time response of sliding
surfaces s1, s2, . . . , s7. It is observed that the sliding surfaces
of s1, s2, s3 and s4 converge to the region of zero in about 20s,
s5, s6, and s7 converge to the region of zero in about 10s.

B. SIMULATION ANALYSIS OF SSTDOB-FSMBC WITH
AERODYNAMIC UNCERTAINTIES
In order to examine the control performance of proposed
SSTDOB-FSMBC under aerodynamic uncertainties, we
select the uncertainties as follows.
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FIGURE 11. Sliding surfaces of s1, s2, s3 and s4.

FIGURE 12. Sliding surfaces of s5, s6 and s7.

FIGURE 13. Tracking curves of altitude h for Group 2.

Case 1: 1fT = 20%, 1fD = 20%, 1fL = 20%,
1fM = 20%

Case 2: 1fT = −20%, 1fD = −20%, 1fL = −20%,
1fM = −20%.

The tracking curves of altitude h and velocity V are shown
in Figures 13 and 14. The simulation results demonstrate that
proposed control scheme can still present rapid convergence

FIGURE 14. Tracking curves of velocity V for Group 2.

FIGURE 15. Elevator deflection angle δe for Group 2.

FIGURE 16. Demand of throttle setting δe for Group 2.

rate and excellent tracking precision in the presence of exter-
nal disturbances and parameter uncertainties.

Figure 15 displays the curves of control inputs elevator
deflection angle δe. Figure 16 shows the demand of throttle
setting βc. It can be seen that when Case 1 and Case 2 are
introduced respectively, the control inputs δe and βc still
satisfy the constraints. Therefore, we can draw a conclusion
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that the proposed controller possesses fast convergence rate
and excellent anti-interference ability.

VI. CONCLUSION AND FUTURE WORK
In this paper, a robust composite control scheme SSTDOB-
FSMBC is developed to achieve the attitude and velocity
tracking of AHV. The SSTDOB is firstly designed to estimate
the disturbances exhibited in AHV, which can effectively
enhance the anti-interference performance of control system.
Moreover, the ‘‘explosion of complexity’’ inherent in conven-
tional BC is avoided by utilizing a fixed-time tracking differ-
entiator. In order to improve the singularity problem caused
by the derivative of virtual control in FSMBC, we introduce
a switching logic. Then, the stability of closed-loop system is
proven by Lyapunov method. Simulation results illustrate the
effectiveness of proposed SSTDOB-FSMBC. In this paper,
we just consider the amplitude limit of control inputs, which
is relatively simple. Future work will focus on the AHV’s
fixed-time control problem with input saturations and full
state constraints.
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