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ABSTRACT Multivariate data sets (MDSs), with enormous size and certain ratio of noise/outliers, are
generated routinely in various application domains. A major issue, tightly coupled with these MDSs, is how
to compute their similarity indexes with available resources in presence of noise/outliers - which is addressed
with the development of both classical and non-metric based approaches. However, classical techniques
are sensitive to outliers and most of the non-classical approaches are either problem/application specific
or overlay complex. Therefore, the development of an efficient and reliable algorithm for MDSs, with
minimum time and space complexity, is highly encouraged by the research community. In this paper,
a non-metric based similarity measure algorithm, for MDSs, is presented that solves the aforementioned
issues, particularly, noise and computational time, successfully. This technique finds the similarity indexes
of noisy MDSs, of both equal and variable sizes, through utilizing minimum possible resources i.e., space
and time. Experiments were conducted with both benchmark and real timeMDSs for evaluating the proposed
algorithm‘s performance against its rival algorithms, which are traditional dynamic programming based and
sequential similarity measure algorithms. Experimental results show that the proposed scheme performs
exceptionally well, in terms of time and space, than its counterpart algorithms and effectively tolerates a
considerable portion of noisy data.

INDEX TERMS Similarity index, multivariate data set, outliers, the longest common subsequence.

I. INTRODUCTION
Recent technological advancements, particularly in sensors
and actuators, lead to the generation of enormousmultivariate
data sets (MDSs) in different application areas i.e., wireless
sensor networks, internet of things (IoT), scientific experi-
ments, industrial control processes, educational purpose test-
beds, web and databases [1]. An MDS is defined as a set of
related numbers or values associated with a specific entity in
an organization. In other words, a group of univariate data
sets in columns form is known as MDS [2]. Mathematically,
it is represented as a matrix Xm,n, where m and n corresponds
to the rows and columns respectively. These MDSs are thor-
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oughly examined, using various classical and non-classical
approaches, to discover valuable information that is used to
determine the correlating or distinguishing factor of entities.
One of the major issue, closely linked with MDS, is to find
their similarity indexes in the presence of noise/outliers that is
not possible with existing techniques. Generally, two MDSs,
X i,j and Ym,n, are believed similar if most of their elements
are highly correlated [3].

MDSs similarity problem is an active research area, both
in computer science and mathematics, that is due to its
existence in different real world application environments
i.e., DNA analysis, sensors-based real-time decision support
systems (DSS), computational biology, pattern matching, file
comparison and etc. The LCSS problem is described as
follows.
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Definition 1: Given two MDSs S = Si,1, Si,2, Si,3, ....Si,n
and T = Ti,1,Ti,2,Ti,3, . . . ,Ti,m where i represents the
dimensionality, the LCSS problem is to find a substring or
subsequence of maximum length L such that L represents the
identical substrings in both S and T i.e., Si,n1 to Si,nL and
Ti,m1 to Ti,mL where Si,n1,...,i,nL and Ti,m1,...,i,mL are increasing
order. Moreover, any two strings in the same sequence do not
overlap with each other.
Definition 2: Given two MDSs S = Si,1, Si,2, Si,3, ....Si,n

and T = Ti,1,Ti,2,Ti,3, ....Ti,m where i represents the
dimensionality, any two elements of S and T, that is
Si,1, Si,2, Si,3, . . . , Si,n and Ti,1,Ti,2,Ti,3, . . . ,Ti,m are con-
sidered similar iff S1,1, S1,2, S1,3, . . . , S1,n = T1,1,T1,2,
T1,3, . . . ,T1,m where m = n.
Definition 3: Two MDs Si,n and Ti,m are considered data

sets with high similarity indexes iff their longest common
subsequence length is such that LCSSlength > S3×length/4
or T3×length/4.
In the literature, different techniques were presented,

specifically for univariate data sets and MDSs, to solve this
issue. Preliminary studies were focused on the idea of how to
use the existing techniques, known as classical approaches,
in solving the aforementioned problem. Euclidean distance
measure was used to find the similarity index of univariate
data sets but its results was trustworthy, particularly, in noise
free data sets [4], [5]. Due to its noise sensitivity, euclidean
distance measure is not a realistic solution for finding simi-
larity index of both MDSs and univariate data sets. Similarly,
due to the noise sensitive nature of the classical approaches,
their implementation in realistic environments of MDSs is
risky. Therefore, non-classical approaches (non-metric based
approaches) were addressed, in literature, to resolve similar-
ity issue of noisy MDSs and univariate data sets [6].

Non-metric based approaches, also known as longest com-
mon subsequence (LCSS), are ideal solutions for MDSs
in general, and particularly for noisy MDSs. It is due to
their non-sensitive nature to outliers or noise associated with
MDSs that is usually avoided, in LCSS, by finding similarity
index of the closest values only. In this regard, dynamic
programming based similarity measure was an exceptional
approach used to resolve this issue with available resources.
However, this approach was developed for uni-variate data
sets and is not suitable or ideal for finding similarity of
MDSs [7]. To address this issue, various extensions of the
tradition dynamic programming based algorithm (DPA) were
presented to make it a realistic solution for both univariate
data sets and MDSs, but most of these techniques were
either data specific or overlay complex. Moreover, DPA
based LCSS schemes were addressed to resolve the k-length
substring problems [8]. However, most of these algorithms
are designed specifically for uni-variate data sets and it is
a tedious and time-consuming task to extend their opera-
tional capabilities to the MDSs. Moreover, a non-metric base
approach for MDSs was presented in [9]. This approach
divides the MDS into uni-variate sequences and starts com-
puting their similarity in a sequential manner i.e., MDS

S and T are divided in to sequence S1, S2, S3, . . . , Si and
T1,T2,T3, . . . ,Tj respectively. Initially, LCSS of S1 and T1
is derived and stored with the location information of the
matching elements in MDS. To reduce the time and space
complexity, an element of sequence S2 is matched with that
of T2 iff it resides in one of the locations that are stored in
the previous step. This process is repeated for the remaining
sequences of both S and T. However, the computational cost
of this approach is higher than other field proven approaches
particularly in situations where dissimilar elements reside in
the last sequences or dimensions of the MDSs.

An alternative approach to the non-metric based solutions
was the dynamic time warping (DTW) that is used to stretch
the MDSs with respect to time [10]. DTW is used to find an
optimal match between two sequences Si and Tj subjected to
some restrictions and rules such as 1st element of S must be
matched with 1st element of T and the mapping of indices
must be monotonically increasing, where i and j represents
lengths of S and T respectively. Additionally, principal com-
ponent analysis (PCA) based techniques were addressed to
resolve the MDSs similarity problem by applying various
procedures to extract valuable components and discard sup-
plementary information [11]–[13]. Although, PCA and DTW
work fine in different realistic environments of MDSs, but
DTW and PCA have compromised on the noise sensitivity
and information loss respectively.

In this paper, a computationally efficient multivariate
similarity measure algorithm is presented to address the
aforementioned issues specifically outliers, information loss,
time and space complexities. The proposed scheme finds
the longest common subsequence (LCSS) of two MDSs
as follows.

1) Heuristic methodology is used to find similarity
indexes of MDSs.

2) δ is used to limit the matching region or space of an
individual element Si,n of an MDS in another MDS.

3) Similarity indexes of any two MDSs is subjugated to
the Definition 1

4) Similarity of an individual element in an MDS is sub-
jected to the Definition 2.

The rest of the paper is organized as follows. In section II,
a brief overview of the literature is presented. In section IV,
the pre-processing procedure is described. The proposed
algorithm and its working mechanism is presented in
section V followed by mathematical background. Section VI
describes the results of the proposed algorithm and several
field proven algorithms using benchmark data sets. Finally,
concluding remarks and future research recommendations are
given in section VII.

II. LITERATURE REVIEW
Due to the technological advances, MDSs are generated in
different application areas such as smart buildings, smart
cities, wireless sensor networks, Internet of things (IoTs),
scientific experiments, ECG signals and DNA analysis, stock
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markets, multimedia, and industrial domains etc., [14], [15].
A tightly coupled issue with these data sets is how to deter-
mine their similarity indexes with a minimum possible com-
putational time of the resources [16]–[18]. In the literature,
different methods were proposed to solve the longest com-
mon subsequence problem particularly for multivariate data
sets [19]. Some of these techniques are described below.

Euclidean distance measure was used by Chiu et al. [20] to
retrieve a one dimensional time series motifs, that is defined
as a region or subsequence of protein or DNA sequence that
has a specific structure, of the underlined MDSs. Similarly,
Mueen et al. [21] proposed a tractable exact algorithm to
discover these motifs with a three order of magnitude faster
speed than other existing approaches. Moreover, a series of
techniques were proposed in literature to speed up the motifs
discovery process [22]–[24]. A weighted function based sim-
ilarity measure algorithm is presented by Xun et al. [25].
Initially, a function f (x) is defined on the basis of a matrix
external structure such as number of samples and range of
the MDS. Then another function g(x) is defined on the inter-
nal factors of the MDSs such as column vector correlation
and weighted square norm. However, outliers sensitivity and
complexity, particularly with maximum dimensionality and
size of the MDSs, are among the closely linked issues with
these techniques.

Non-metric based similarity approach is an alternative
solution to find the similarity indexes of MDSs specifi-
cally in presence of outliers. A dynamic programming based
LCSS computation algorithm, specifically for the k-length
substring problems, was presented in literature to address
the aforementioned issue i.e., outliers sensitivity [26], [27].
Zhu et al. [28] presented two different approaches to solve
the LCSS problem with minimum possible time and space
complexities iff n = m, where n and m represent sequence
length. These algorithms perform well on uni-variate data
sets, but their efficiency is degraded drastically if the under-
lying data sets are MDSs. Similarly, Yohei et al. used the
LCSS concept to find similarity indexes in k-length order iso-
morphic substrings [29]. These techniques performed excep-
tionally well on smaller data sets, but their performance is
severely affected (negatively) by a slight increase either in
value of k or MDSs or both. A sequential LCCS computation
mechanism for multivariate data sets similarity indexes was
presented in [9] and claimed its exceptional performance
on both real time and benchmark MDSs in the presence
of outliers. This technique finds the LCSS of MDSs by
dividing them into a series of uni-variate data sets. Yet, this
algorithm suffers greatly in terms unnecessary computational
time, particularly in MDSs where the ratio of dissimilar
indexes of symbol is negligible at the starting dimensions,
i.e., row1, row2, row3, . . . , rowk , and quiet high at the last
i.e., rown−k+1, rown−k+2, rown where k < n.
In addition to the non-metric approaches, principal com-

ponent analysis (PCA) was introduced to reduce dimension-
ality of the MDS by omitting their unnecessary or useless
dimensions and concentrating on the adequate andmandatory

principal components (PCs) [30]. Bootstrap re-sampling is an
alternative approach which is used to determine mandatory
components or PCs of a PCA method [31]. PCA is applied in
a systematic way to preserve the overall integrity and authen-
ticity of the original MDS within minimum possible PCs.
Keogh et al. [32] addressed the potentials of PCAs partic-
ularly as a feature selection tool to compute the similarity
indexes of MDSs. Generally, PCA is used to find the appro-
priate column or PCs and then another distance measure,
i.e., Euclidean distance, is utilized to compute the desired
similarity. Yang et al. [33] proposed a novel similarity mea-
sure, that was a hybrid of extended frobenius norm eros and
PCA, to find the similarity indexes of MDSs. Although, this
method works exceptionally well on different MDSs but its
complexity analysis is the major issue. Outliers handling is
one the closely linked issues associated with PCA based simi-
laritymethods. To resolve this, a robust PCA technique, that is
a hybrid of l1 norm and nuclear norm, was proposed to enable
the recovery of a PCA method specifically situations where
fraction of MDSs is corrupt or missing [34]. However, over
and under estimation of an appropriate number of PCs for a
specific MDSs and information loss are still the challenging
task for the research community.

Vlachos et al. [35] presented an algorithm to find the
trajectories of objects, specifically up to three-dimensional
space, from MDSs. These trajectories are classified automat-
ically by using the K-Nearest Neighbour (KNN) classifica-
tion technique and then their similarity indexes is find by
utilizing a non metric based approach, LCSS. This algorithm
performs considerably well on uni-variate data sets, but its
complexity is directly proportional to the dimensionality of
the data sets. Similarly, handling of parallel movements is dif-
ficulty in higher dimensions. Likewise, A novel spatial index,
i.e., GridVoronoi, is used to find the spatial nearest neigh-
bour of two-dimensional datasets [36]. A similarity measure
algorithm, that is based on the idea of dynamic programming
algorithm proposed in [37], is presented to find similarity of
the MDSs [38]. However, its efficiency and applicability is
subjected to the heterogeneous parameters of MDSs and their
smaller time constrains.

A well-known technique, i.e., dynamic time warping
(DTW), is utilized to find the similarity indexes of MDSs
in [39]. DTW stretches the MDSs along time-axis and
restricts warping paths i.e., each point should be ordered
monotonically, warping windows, continuous, slope con-
straints and boundary conditions. Initially, DTW was used in
speech recognition area to mitigate the shortcomings which
are introduced by the inflexibility along time-axis and then,
used to find similarity of MDSs. Likewise, DTW based
algorithm was presented in [40] to compute similarity of
sequences, but its performance and efficiency on MDSs is
not explored yet. These techniques work fine, but complexity
and sensitivity to outliers are closely linked issued associ-
ated with DTW based techniques. Conclusively, various tech-
niques have been presented in literature to measure similarity
indexes of both uni-variate data sets and MDS, but similarity
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of MDSs particularly with minimum possible time and space
complexities is still an open research problem.

III. PROBLEM STATEMENT
Similarity of MDSs, both sequence and numeric based data
sets, is a challenging issue for the research community.
Existing approaches, which are specifically designed for
MDSs, do not take into account the core issue of unneces-
sary comparisons made to create similarity indexing table
as in dynamic programming based algorithms i.e., matching
1st element of MDS Si,d with last element of MDS Tj,d
and vice versa where i = 1, 2, 3, ...n, j = 1, 2, 3, ...m
and d represents their dimensions. Therefore, a non-metric
based approach will resolve this issue if a sliding window
based concept or time control parameter is adopted to shorten
matching space or region of every symbol i.e., limiting the
matching window of an element of MDS Si,d from i to δ,
a very small number, in another MDS Tj,d . For two MDSs
Si,d and Tj,d , an element S1,d ∈ Si,d is matched with elements
of Tj,d iff T1,d ∈ Tj,d and T1,d ∈ Windowmatched . Otherwise,
next element of Si,d is loaded and processed accordingly.

IV. PROPOSED METHODOLOGY: AN OVERVIEW
Generally in literature, solutions for the common LCSS prob-
lem is based on awell-known concept, i.e., dynamic program-
ming, which matches every symbol of a sequence, i.e., ai,
where ai ∈ Sn, with symbols of T, i.e., bj, where bj ∈ Tm,
to generate a similarity matrix of size m × n. This matrix
Mi,j contains information about symbols of both sequences,
i.e., Sn and Tm, which are matched in an increasing order and
thenMi,j is used to find their LCSS. A common problem asso-
ciated with existing dynamic programming based techniques
is their time and space complexities as LCSS, specifically for
MDSs, is an NP-hard problem [28]. In this paper, we have
focused on the specific issue, time and space complexity
of non-metric based approaches, and presented a computa-
tionally efficient algorithm to measure similarity indexes of
MDSs particularly in the presence of outliers. Additionally,
the proposed mechanism does not require equality, in terms
of length, of the MDSs.

A. NORMALIZATION OF MDSs
MDSs are sequences of observations which are generated
simultaneously in various application areas. These MDSs
have different range of values, specifically those belong to
the same application area. For example in stock market,
the stock prices for the month of January lie within the range
of 30 – 40 million PKRs whereas in December these prices
rise to the range of 60 – 70 million PKRs. Therefore,
to find similarity indexes other measures these MDS must be
normalized to streamline their operations. In the literature,
various normalization techniques were addressed, however,
we have utilized the following normalization process due to
its simplicity.

Ti =
Ti − Tmin
Tmax − Tmin

(1)

where, Ti represents time series and Tmax , Tmin represent
maximum and minimum values of Ti, respectively.

B. GENERAL PROCESS OF THE PROPOSED MECHANISM
Initially for given two MDSs as described in Definition 1,
the proposed approach defines the sliding window control
parameter δ that is used to bound the matching space or
window of a particular element of an MDS, i.e., ai ∈ Sn,
within another MDS, i.e., b1, b2, . . . , bk ∈ Tm, where k < m
and n ≤ m. Then in phase-I, the first symbol of S, i.e., a1 ∈
Sn, is matched with symbols of T, i.e., b1, b2, . . . , bk ∈ Tm,
such that a match is encountered or limit of the underlying
sliding window is reached i.e., bk is not matched. If a symbol
of S, i.e., ai ∈ Sn, matches an element of T,i.e., bj ∈ Tm, then
either ai or bj is stored in an array LCSSmatched with their
location information i.e., index or position in T. However,
if a symbol ai ∈ Sn does not match with any element of T,
i.e., b1, b2, . . . , bk ∈ Tm, within a defined window, then ai is
neglected and next symbol from S ai+1 ∈ Sn is selected. Next
element of S, i.e., a2 ∈ S, is loaded and matched with every
symbol of T such that thematching process starts exactly after
previously matched location in T i.e., bp, where p represent
previous matched position. Position information helps in the
implementation of various restrictions on the computed LCSS
i.e., increasing order as described inDefinition 1 of section I.
This mechanism is repeatedly applied to the remaining sym-
bols of S, a2, a3, . . . , an ∈ Sn, such that symbol is added to
LCSSmatched iff ai ∈ Sn == bj ∈ Tm and discarded otherwise.
In phase-II, MDS S is revised such that the first symbol of S,
i.e., a1 ∈ Sn, is discarded iff it is part of the LCSSmatched
and the remaining portion of S, i.e., a2, a3, . . . , an ∈ Sn,
is considered refined MDS. The aforementioned process,
i.e., computation of LCSSmatched , is repeated for the revised
MDS i.e., S. The length of current LCSSmatched is matched
with the previous LCSSmatched , the one LCSSmatched with
maximum length is retained while other is discarded. This
process is repeated until the desired LCSS is found, i.e., in
cases where length of the desired LCSS is known, or when
1/3 or 1/2 of the S is encountered.

To understand the proposed idea, let us assume two
sequences Sn and Tm such that Sn = AEBACFDADB and
Tm = CABDACDADB where n = m = 10 and δ = 3. First
symbol a1 ∈ Sn of S, that is A in this case, is matched with
every symbol of T , i.e., b1, b2..b3 ∈ T which is CAB, within
its bounded window, i.e., δ = 3 and adds symbol A to the
LCSSmatched class with its location information in MDS T
i.e., 2 in this case. Then next symbol of S a2 ∈ S, i.e., E,
is loaded and matched with every symbol of T just after the
previous matched location, i.e., b2 ∈ T that is A at position-2
in T, within specified range of the δ. Since, E does not match
any symbol of T with specified matching window, hence, it is
discarded and next element is selected from S i.e., a3 ∈ S
which is B. B is matched with elements of T after the previous
matched location i.e., 2. A match is encountered at position-3
in MDS T. B is stored in LCSSmatched with its location
information that is 3. Likewise, this process is repeated for
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FIGURE 1. Graphical Representation of the Proposed LCSS Computation
Mechanism for MDSs.

the remaining symbols of S until their LCSS is computed
i.e., ABACDADB. Phase-II is applicable in those scenarios
or MDSs where length of the computed LCSS, LCSSmatched ,
is less than length of shorter MDS/2 i.e., length(LCSSmatched )
< length(Shorter-MDS/2). A graphical representation of
the proposed LCSS computation mechanism is presented
in Figure. 1. For simplicity and understandability, the graph-
ical representation is limited to the matching process of two
sequence S and T.

V. PROPOSED METHODOLOGY
Non-metric based approaches, i.e., LCSS, are widely used
to find similarity indexes of both uni-variate and MDSs
specifically in the presence of outliers and noise. In liter-
ature, traditional dynamic programming based algorithm is
a legitimate way to describe the similarity indexes of the
underlying data sets. Although, this approach works fine on
various data sets, but it does not consider the properties of
MDSs i.e., if similarity index is 100% or 0%, same resources
are used. Assume that we have two MDSs S and T such
that S = a1, a2, a3, ...an and T = b1, b2, b3, . . . , bm where
a1 == b1, a2 == b2,. . . , an == bm, existing dynamic
programming based algorithms generate a similarity matrix
Mi,j where matching of symbol a1 of S with symbol bm of T,
an with b1 and so on are performed. Although, these matches
seem useless or wastage of resources to a naive user, but these
are mandatory steps to develop an appropriate matrix Mi,j.
Time and space complexities are the main issues which are
tightly coupled with existing non-metric based approaches.
To resolve these issue, a computationally efficient algorithm
is presented to compute LCSS of the MDS by mitigating the
unnecessary comparisons and hence their similarity.

A. PROPOSED HEURISTIC APPROACH FOR FINDING LCSS
WITH EXAMPLE
Consider MDs S10 and T10 given in Table. 1 and
Table. 2. The proposed algorithm finds their longest
common subsequence LCSSmatched by matching the

TABLE 1. Multivariate data set S.

TABLE 2. Multivariate data set T.

corresponding elements of S with those of T i.e., ai
(Temperature) is matched with bj (Temperature), ai+1
(Humidity) with bj+1 (Humidity),...ai+n (Moisture) with
bj+n (Moisture), where i = j = 1. In phase-I, row1 of
S, i.e., S1,temperature, S2,humidity and S3,moisture, is matched
with row1 tok of T, i.e., T1···k,temperature,T2···k,humidity and
T3···k,moisture where k == δ, until a match is encountered
or window control parameter, i.e., δ, terminates this process.
In scenarios where a match is encountered, a pointer pi to
the matched rowj of MDS T is stored in LCSSmatched and the
subsequent rowi+1 of S is selected. However, the matching
process does not start from the row1 of T, rather it is continued
from the previously matched location i.e., pj. Conversely, if a
rowi of S does match with any rowj · · · k of T, then next
rowi+1 is selected for processing. This process is repeated
for the remaining rows rowi of S and ends with a computed
LCSS that is stored in LCCSreq. In phase-II, rowi of S is
deleted temporarily iff it appears in the computed LCSSreq as
a first symbol to look for the alternative solutions i.e., LCSS.
After deleting rowi, the matching process is initiated with
the first row, rowi,new, of the updated S. The aforementioned
process to find LCSSmatched is repeated for the updated S and
then the computed LCSSmatched length is compared with that
of previous LCSSreq. LCSSreq holds LCSS with maximum
length. Phase-II is repeated for every rowi···M of S which
appeared in the LCSSreq until the desired LCSS is computed
or M is encountered, where M represents middle of S.

VOLUME 8, 2020 21763



R. Khan et al.: Heuristic Approach for Finding Similarity Indexes of Multivariate Data Sets

To understand this idea, consider MDSs S and T as
described above and assume that the window control param-
eter value is set to three i.e., δ = 3. Row1 of S is
matched with each rowj···j+3 of T until a match is encoun-
tered, i.e., row1 of S is matched with row2 of T at time
15/4/2011 22:00 and 16/4/2011 2:15 of S and T respec-
tively such that Stemperature(row1) = 350 = Ttemperature(row2),
Shumidity(row1) = 92 = Thumidity(row2) and Smoisture(row1) =

780 = Tmoisture(row2). A pointer to row2 of T is added to
the LCSSmatched and next row2 of S is loaded for further
processing. It is to be noted that row2 matching window does
not start with row1 of T, but it is continued from the previously
matched position i.e., row3.Row2 does not have amatch in the
T, therefore, next row3 of S is selected. It matches with row3
of T and a pointer to row3 of T is added to the LCSSmatched .
This process is repeatedly applied to the remaining rows
row3···n of S until the desired LCSSmatched is found or rown
of S is encountered, then the contents of LCSSmatched is
copied to LCSSreq. In phase-II, since row1 of S is part of
the LCSSmatched , therefore, it is temporarily deleted from S
to form a modified S such that rowS > rowSmodified . For the
modified S, the aforementioned process is repeatedly applied
to find another LCSSmatched that is matched with previously
stored LCSSreq. LCSSreq is updated iff length(LCSSmatched )
> length(LCSSreq). This process is repeated until required
LCSSreq is computed or M is encountered.

B. PROPOSED LCSS ALGORITHM SPECIFICALLY FOR
MDSS
Variable M represents the 3/4th value or index of the MDS
i.e., S in this case whereas TP is used to store the position
of matched elements in time series T, as it is necessary
to avoid unnecessary comparisons i.e., successor symbol of
an already matched Si with the predecessor of Tj such that
Si = Tj. Variables Count and Count1 are used to store length
information of the currently and previously computed LCSS
respectively. δ is sliding window control parameter that is
used to bound the matching window of a particular symbol
and LCSS is an array to store the computed LCSS.

C. ANALYSIS OF THE PROPOSED SCHEME
Multivariate data sets (MDSs) Sn,i is defined a set of related
values such that a1,1, a1,2, . . . , a1,i, a2,1, a2,2, . . . , a2,i, . . . ,
an,1, an,2, . . . , an,i ∈ Sn,i where n, i represent length and
dimension of the data sets respectively. The longest common
subsequence is represented by LCSS(k, l) where k ≤ n and
l ≤ i. Concatenation appending of two symbols is of the form
XY such that X ∈ S and Y ∈ S.
Definitions of the basic terms are as described below.
Definition 4: Any two symbols X ∈ S and Y ∈ T are equal

iff distance(X,Y) = 0.
Definition 5: The LCSS(0, 0) is the description of an

empty LCSS.
Definition 6: A rowi a1,p, a2,p, a3,p, . . . , an,p ∈ S is con-

sidered predecessor of another rowi+t a1,q, a2,q, a3,q, . . . , an,q
∈ S in an LCSSmatched , if index(p > q) and for both rowi and

Algorithm 1 Proposed LCSS Computational Algo-
rithm for MDSs
Input: Longest Common Subsequence of MDSs
Output: Return the Longest Common Subsequence

(LCSS)
1 LCSS(Sn,Tm);
2 Pre-LCSS← 0;
3 Cur-LCSS← 0;
4 TP← 0;
5 Count← 0;
6 Count1← 0;
7 for a←0 to M do
8 for i←a to Sn do
9 for j← TP to Tm AND ai ∈ δ do

10 if S or T = 0 then
11 LCSS← 0;
12 else
13 if ai,n == bj,m then
14 Class1←ai,n or bj,m;
15 TP← j+ 1;
16 Count ← Count + 1;
17 break;
18 else
19 if ai,n 6= bj,m then
20 Next element;
21 end if
22 end if
23 end if
24 end for
25 end for
26 if Count > Count1 then
27 Pre-LCSS← Cur-LCSS;
28 Count1← Count;
29 Count ←0;
30 end if
31 Delete the ath element from Sn;
32 TP←0;
33 end for
34 return LCSS of MDSs S and T

rowi+t , ∃ (rowj and rowj+r ) ∈ Tm such that rowi == rowj
and rowi+t == rowj+r ∀ i & j = 1, 2, 3, . . . , n where t and r
represent any number.
Definition 7: A rowi a1,p, a2,p, a3,p, . . . , an,p ∈ S is not

considered predecessor of another rowii a1,q, a2,q, a3,q, . . . ,
an,q ∈ S /∈ LCSSmatched , if index(p < q) that is i > ii and,
although, for both rowi and rowii, ∃ (rowj and rowj+r ) ∈ Tm
such that rowi == rowj and rowii == rowj+r ∀ i & j =
1, 2, 3, . . . , n where ii and r represent any number.
Definition 8: The LCSS(k, l) is the LCSS of MDSs S and

T if an,i == bm,j and there exist i′ < i and j′ < j such that
LCSS(k − i′, l − j′) is generated by i′ and j′.
Lemma 1: For k >= 1, LCSS(p, l) is the longest common

subsequence of MDSs S and T of length m and n respectively
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iff there exist some a1···p,l == b1···p,l ∵ a1···p,l ∈ S and
b1···p,l ∈ T where p ≤ n & m.

Proof: Applying mathematical induction on k . The
length(LCSS(1, l)) is equal to 1 iff a1,l = b1,l (According to
Definition 6), that finds LCSS of length 1. Hence, the lemma
is true for k = 1. Assume that the lemma holds for the value
of k − 1 and we need to prove that it holds true for the value
of k . If LCSS(i, j) is the LCSS of Si,l and Tj,l then there exists
i′ < i and j′ < j such that LCSS(i′, j′) is the LCSS of Si′,l and
Tj′,l for the value of k − 1. According to our assumption,
LCSS(i′, j′) = p′1,l, p

′

2,l, p
′

3,l, . . . , p
′
k,l such that p′ < p

and p′1,l, p
′

2,l, p
′

3,l, . . . , p
′
k,l ∈ S & T ∵ ai = bj ∵ i <

n and j < m. Therefore, LCSS of Sn,l and Tm,l is of
length k ∵length(LCSS(i′, j′)) + length(LCSS(i, j)) = k .
Hence, it proves that length(LCSS(p, l)) is k . Conversely,
if length(LCS(i, j)) ≥ k and ai = bj, where ai ∈ S and
bj ∈ T then there exist i′ < i and j′ < j such that ai′ = bj′
and length(LCSS(i′, j′)) = length(LCSS(i, j)) − 1 ≥ k − 1.
LCSS(i′, j′) is the LCSS of k − 1 length MDS (By inductive
Hypothesis). Hence, LCSS(p, l) is the desired LCSS. �
Theorem 1: The LCSS problem can be solved in O(n) time;

where n and m are the lengths of MDSs S and T respectively
(the best case such that S ad T are identical either completely
or nearly complete).

Proof:According to theDefinition 2, for any twoMDSs
such as S and T, any two elements of the underlying MDSs
are considered similar iff a1,1, a1,2, a1,3, . . . , a1,n ∈ S ==
b1,1, b1,2, b1,3, . . . , b1,m ∈ T where m,n represent MDSs
lengths and m = n. Therefore, an element or symbol of an
MD, i.e., a1,1, a1,2, a1,3, . . . , a1,n ∈ S that is a row, is added
to the LCSSmatched class only, if it fulfills the defined criteria
i.e., if b1, b2 ∈ LCSSmatched , then index(b1) < index(b2).
Since, symbols of both MDSs are identical completely, there-
fore, every entry in the desired LCSSmatched is performed after
a fixed number of matches i.e., one or two (possibly in rare
case). Outer loop of the proposed scheme, i.e., developed for
MDSs Sn, is executed once whereas inner loop, i.e., devel-
oped for MDSs Tm, executes m times. Hence, LCSSmathched
for the identical MDSs is computed in O(m) time. �
Theorem 2: The proposed MDSs algorithm solves the

LCSS problem in O(k×n× δ) time; where n and m represent
lengths of MDSs S and T respectively (the worst case such
that S ad T are different either totally or partially).

Proof: According to Definition 3, MDSs Sn and Tm
are considered highly similar iff LCSSk (Sn,Tm) > S3×n/4
or T3×n/4. Therefore, LCSSk (Sn,Tm) < S3×n/4 or T3×n/4 is
an indication of their dissimilarity metric. As a higher value
of this metric is directly proportional to the computational
complexity of the non-metric based approaches. ∴ for totally
different MDSs, a single value of outer loop results in com-
plete cycle, i.e., δ = suitablevalue, of the inner loop that is ∀
a ∈ Sn, the loop for Tm executes at-most δ times that is O(δ).
The outer loop will be executed n times ∀ (a1, a2, ...ak ) ∈ Sn.
∴ ∀ MDSs Sn and Tm the proposed algorithm solves it in
O(M × n× δ) such that a1,1, a1,2, a1,3, ...., a1,n ∈ S 6= b1,1,

b1,2, b1,3, . . . , b1,m ∈ T or simply @ any(ai ∈ S == bj ∈ T ),
where M and δ are very small numbers. �

VI. EXPERIMENTAL RESULTS AND EVALUATIONS
The proposed algorithm is tested on different evaluation met-
rics, i.e., complexity, running or execution time, comparisons
and variable length data sets, against field proven schemes.
Moreover, these algorithms are tested on both benchmark and
real time MDS that is collected through our deployed WSN.

A. COMPLEXITY ANALYSIS
Complexity analysis is necessary to elaborate the reliabil-
ity, applicability, maintainability and robustness of an algo-
rithm. In realistic scenario, complexity of an algorithm is
directly proportional to its performance in target applica-
tion areas particularly technological infrastructures. Hence,
mostly, algorithms with minimum complexity are preferred
over highly complex scheme, as it is evident from literature
that the algorithms’ selection criteria varies from application
to application. However, it is observed that algorithms or
schemeswithminimum complexity is appreciated in different
domains.
The best case, where both MDS such as S and T are either

similar completely or having maximum similarity indexes,
complexities of the proposed algorithm, sequential approach
based, and dynamic programming based algorithms for MDS
are O(m), O(m+ h) and O(m× n+ h) respectively where m
and n representMDS lengths and h is their dimensions or vari-
ables. The proposed scheme is an ideal solution particularly
in this case, because it computes the similarity indexes, that
is the longest common subsequence, of bothMDS in one iter-
ation where its rival schemes requires complete iterations of
both loops i.e., to generate similarity metric, both MDS must
be processed completely. Similarly, the worst case complex-
ities of the proposed algorithm, sequential approached based
and dynamic programming based algorithms are O(M × n×
δ), O(M × n × δ) + O(h) and O(m × n × h), respectively;
where δ is an application dependent constant andM is a small
number such as 1

4 ,
1
3 and 1

2 (S or T). Note that the time or
window control parameter δ plays a vital role in improving
the proposed scheme performance, specifically, in terms of
comparisons, time and space needed or utilized.

The average case complexity of the proposed scheme
is computed by dividing the problem into disjoint sets of
sub problems and then solve these sub-problems by start-
ing from the simplest one i.e., sub-problem with MDS of
length two only. The procedure requires n-steps to resolve
a particular sub-problem that is for j = 0 to n. Some
of these sub-problems are solved by negligible work while
other require maximum steps, i.e., n. Let‘s assume that the
probability of a sub-problem p1 which requires j steps for
its completion is represented by pj, then its average case
complexity is given by equation 2:

Tavg(Algorithm) =
m∑
j=0

m× pj (2)
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where m represents the length of the subproblem. Let‘s
assume that the probability of matched and not-matched
symbols in MDS S and T is given by equations 3 and 4,
respectively.

Pmtd = δ (3)

Pnmtd =
1
δ

(4)

Then, the total probability of a subproblem P1 is, as described
below.

P1 =
1
δ
+
δ − 1
δ

(5)

Likewise, total probability of the subproblems p2, p3,... pn of
MDS S and T are given by the following equations.

P2 =
1
2δ
+

2δ − 1
2δ

(6)

P3 =
1
3δ
+

3δ − 1
3δ

(7)

.

.

.

Pn =
1
nδ
+
nδ − 1
nδ

(8)

The average case complexity of the proposed algorithm is
given by

Tavg(Pro− Algo)=
M∑
k=0

m∑
i=0

δ∑
j=k

M × n× δ × Pk × Pi × Pj

(9)

putting values in equation 9, we get Eq. 10 and Eq. 11, as
shown at the bottom of this page.

By applying algebraic manipulation, the average complex-
ity of the proposed scheme is given by equation 12.

Tavg(Pro− Algo) = M × n× δ (12)

B. COMPUTATIONAL TIME AND SPACE
The proposed algorithm along with its rival schemes are
implemented in C++ development environment using sim-
ilar resources, i.e., processor power & memory, and data
sets, which are both real time and benchmark. A real time
data set was obtained through the deployment of an opera-
tional wireless sensor network in real agriculture environment
i.e., orange orchard [41]. Initially, these data sets were nor-
malized using equation 1 that changes the values of numeric

FIGURE 2. Computational Time of Proposed and Dynamic Programming
based Algorithms on MDSs having Constant Length and Dynamic
Variables.

columns to a common scale i.e., usually between 0 and 1,
without distorting differences in their ranges. Moreover,
in case of datasets with sequences, such as matching A with
A or B, an exact matching scenario is adopted i.e., A = A.
However, for data sets with numeric values, similarity of any
two values is subjected to a defined threshold value such
as 0.01 or 0.02.

C. RESULTS AND DISCUSSION
It is clearly evident from Figure. 2 that the proposed algo-
rithm requires the least possible computational time to com-
pute LCSS of any two data sets, with a constant length
and varying dimensionality, against field proven schemes
i.e., sequential approach [9] and dynamic programming based
algorithms [8], [27], [37]. Additionally, if similarity indexes
of any two data sets, both real and benchmark, is high then
performance of the proposed scheme is exceptionally well
as shown in Figure. 3 such as if Si and Tj are completely
similar then the proposed approach computes their LCSS in
O(m) time, where m represents the data set with maximum
length. An interesting feature of the proposed scheme is its
non-sensitivity to variable/dynamic length and dimension-
ality of the data sets and its performance is, largely, con-
sistent whereas dynamic programming based algorithms are
highly sensitive. Apart from data sets with varying length
and dimensionality, these schemes were also tested on fixed

Tavg(Pro− Algo) = M × n× δ × (
1
n
+

1
n
, . . . ,+

1
n
)× (

1
n
+

1
n
, . . . ,+

1
n
)× (

1
δ
+
δ − 1
δ
+

1
2δ
+

2δ − 1
2δ

, . . . ,+
1
nδ
+
nδ − 1
nδ

)

(10)

Tavg(Pro− Algo) = M × n× δ ×
1
n
(1+ 1, . . . ,+1)×

1
n
(1+ 1, . . . ,+1)×

1
δ
(1+ δ − 1+

1
2
+

2δ − 1
2

, . . . ,+
1
n
+
nδ − 1
n

)

(11)
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TABLE 3. Computational time (in seconds) of proposed, sequential and dynamic programming based algorithms on benchmark MDSs.

FIGURE 3. Computational Time of Proposed, sequential and Dynamic
Programming based Algorithms on MDSs having Constant Variables and
Dynamic Length.

length and dimensionality as well as, usually, benchmark data
sets are of constant or fixed length and dimensionality as
shown in Figure. 5. Moreover, the proposed scheme performs
better than the sequential approach on larger data sets with
fixed length and dimensionality as shown in Figure. 4. Per-
formance of the sequential approach is directly proportional
to similarity indexes of the data sets and more importantly
if those indexes reside in ending/last columns or dimensions
whereas dynamic programming based algorithm performs
unnecessary comparisons, i.e., matching first element S1 of
Si with last element of Tj, to create similarity indexes table.
The proposed scheme resolves both of these issues such as it
incorporates a time control parameter δ to avoid unnecessary
comparisons. Likewise, a row-wise methodology is used to
resolve the problem associated with sequential approach.

In order to verify the exceptional performance of our
proposed scheme, these algorithms were tested on several
publicly available benchmark data sets such as National Cen-
ter for Biotechnology Information (NCBI) viral genomes
[42], UCR time series repository [43], UCI (UCI KDD
Archive, 2019) [44], American Stock Exchange and theOnset
Computer Corporation live data feeds (HOBO U30 Remote
Monitoring Systems 2015-16). The name of every data set
is concatenated with its size such as Hobolink-500; where
means that Hobolink data set with length of 500. Initially,

FIGURE 4. Computation Time of Proposed and Sequential Algorithms on
larger MDSs.

FIGURE 5. Computational Time of Proposed and Sequential
Algorithms on MDSs of Constant Length and Dimensionality.

these data sets were normalized and then used to verify our
claims i.e., non-sensitivity andminimum computational time.
It is evident from Table.3, that the proposed scheme has
shown the consistency and superiority over sequential and
dynamic programming based algorithms on different data
sets. We have observed that the computational time of these
algorithms is directly proportional to the similarity indexes in
the underlined MDS as shown in Table. 3.
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Although, the proposed scheme showed excellent perfor-
mance on different MDSs but its efficiency and reliability is
subjected to the proper selection of δ.

VII. CONCLUSION AND FUTURE WORK
Due to the non-sensitive nature to outliers, non-metric based
approaches are most widely used methodologies to find sim-
ilarity indexes of both uni-variate and multivariate data sets.
However, existing approaches were either overly complex
or require excessive computational and storage resources to
accomplish this task i.e., finding similarity indexes of MDSs.
To address this issue, a computationally efficient algorithm,
that is developed for data sets in general and, particularly, for
MDSs, is presented to depict how similar two MDSs are?
A time or window control parameter δ is used to limit the
matching region of an element or symbol in another data set.
Therefore, unlike traditional dynamic programming based
schemes, where first element of a data set is compared with
the last element of another data set, the proposed scheme
matches elements within a specific window. Matching in a
limited region not only avoids unnecessary comparisons but
also saves computational resources needed to accomplish this
task, that is processor and memory. The proposed algorithm
along with field proven algorithms were tested and evaluated
on real data sets, both real-time and benchmark, of differ-
ent sizes and dimensionality; because real-time MDSs are
not always of the same size and dimensionality. Simulation
results have verified the exceptional performance of the pro-
posed scheme against its closest rival algorithms on several
real and publicly available benchmark data sets.

In the future, we are eager in applying the proposed scheme
to reduce noise, either at node or cluster head level, in an
operational constraint oriented network such as wireless sen-
sor networks or Internet of Things (IoTs). Moreover, we will
extend our work to develop a reliable algorithm to compute
gap-free LCSS specifically for both sequence oriented and
numeric MDS.
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