
Received December 16, 2019, accepted December 29, 2019, date of publication January 20, 2020, date of current version April 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968082

A Novel Active Learning Algorithm for Robust
Image Classification
XINGLIANG XIONG 1, MINGYU FAN 2, CHUANG YU 3, AND ZHENJIE HONG 4
1Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science and Medical Engineering, Southeast
University, Nanjing 210096, China
2College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
3School of Mechanical, China University of Mining and Technology, Xuzhou 221000, China
4College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China

Corresponding author: Zhenjie Hong (hong@wzu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant U1831116.

ABSTRACT Training samples need to be labeled before being used to train classification model, which usu-
ally takes too much labor and material resources. Recently, this problem has attracted widespread attention.
In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which
uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel
space. Comparing the new method with other sampling approaches on several real-world image datasets,
experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can
show higher classification accuracy under the condition that only a few samples are selected to train the
classifier model.

INDEX TERMS Active learning, experimental design, image classification, local linear reconstruction,
manifold learning.

I. INTRODUCTION
Improving the accuracy of image classification is one of the
most important and interesting problems in machine learning
field [1]–[3]. Many researchers carried out various image
studies in recent years, such as human face image classifi-
cation [4]–[6], handwritten digital image recognition [7]–[9],
remote sensing image classification [10], [11] and so on.
Traditional supervised data classification models almost all
based on statistical methodology [12], [13], which first need
a user to label numerous samples and then apply these labeled
sample points to train the classification model. However,
in a host of real-word applications of the image classifi-
cation, labeling unclassified data samples are costly and
time-consuming, especially for some special image recog-
nition problems that need prior professional knowledge. For
instance, people who label the samples that come from func-
tional magnetic resonance imaging need to master some
biomedicine knowledges. It is hard to obtain enough labeled
samples that are used for training the classifier model, while
in the case of training samples shortage possibly make
the classification ability of the classifier decrease severely.
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Consequently, how to collect the most representative sample
subset from the whole dataset, cut down the cost of labeling
samples, and train an excellent classifier has become one of
the most critical problems in data classification [14], [15].
In order to solve these issues efficiently, a lot of people try
to apply active learning in different kinds of classification
tasks [16], [17]. Many studies show that active learning algo-
rithm can greatly reduce theworkload of labeling samples and
successfully obtain higher classification accuracy. Thereby,
it has attracted wide attention in pattern recognition, data
mining, etc. [15]–[17]. With active learning, a learner can
actively select the unlabeled samples that contain the most
information and transmit them to an expert to label, and then
add these labeled samples to the training set to train the classi-
fier. This is very different from the previous passive learning
that passively labels and processes for all data samples.

The problem in active learning is to determine which sam-
ple contains the most information. According to the differ-
ence of selecting strategies, active learning algorithmsmainly
include three kinds of methods that based on uncertainty [18],
committee [19] and generalized error reduction [20], [21].
Many active learning techniques, such as Optimal Experi-
mental Design (OED) [22] and Transductive Experimental
Design (TED) [23], [24], have been proposed for image
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and text classification. Recently, the algorithm which bases
on the OED is very popular in machine learning due to its
good efficiency and the absence of priori knowledge of the
samples. OED is related to the experimental design of which
goal is to minimize measurement error. Three most famous
methodologies of OED include A-Option Design (AOD),
D-Option Design (DOD) and E-Option Design (EOD), which
optimize for trace, determinant, and eigenvalue of a matrix
respectively [22]. In the OED algorithm, each sample point
is viewed as an experiment, and its label is considered as a
measure. Selecting the best samples is thought to design an
experiment that allows one of the parameters in the measure-
ment model to have the least variance. However, this method
only let the optimization target focus on the variance of the
correlation parameters. It does not optimize the classifier’s
prediction error with the selected data directly. Considering
that there are some shortcomings in OED, related researchers
proposed TED algorithm on the basis of the OED. Although
TED basically comes from OED, it estimates the expected
prediction error on all examples, not only labeled but also
unlabeled. It is important to note that both OED and TED
algorithms are strictly correlated to statistics. Choosing the
samples that can minimize the expected prediction error is
equivalent to select the data points which can linear recon-
struct the rest samples optimally. However, TED only pays
close attention to the global and discriminant structure of data
space. The intrinsic geometric structure that is propitious to
increase the classification accuracy of the classifier is usually
discarded by TED [25], [26].

For studying the potential geometric structure properties of
the samples space, researchers have designed many different
manifold learning methodologies, e.g., ISOMAP [27], Local-
ity Preserving Projections (LPP) [28] and so on. Although
these methods have some incoherence differences between
each other, locally invariant conception is the most significant
common idea among them [29]. With regard to locally invari-
ant conception, all the neighbors have common properties,
i.e., the samples that are close together have the same class
attributes. Based on the TED and given consideration to the
locally invariant conception ofmanifold learning, D. Cai et al.
present a new method that named Manifold Adaptive Experi-
mental Design (MAED) by using graph Laplacian [30], [31].
It solves active learning problems by implementing the
data classification in manifold kernel space [32]. Classi-
fication accuracy of the MAED algorithm closely relates
to the selection strategy of the constructed graph. Hence,
how to obtain an efficient and effective neighbor graph is
the most important problem in the MAED approach. There
are many options for constructing the manifold structure
graph [31]. A new manifold adaptive active learning method-
ology which called Semi-Supervised Adaptive Experimental
Design (SSAED) for image active learning under the circum-
stance of semi-supervised learning [33]–[36] is proposed in
this study. By calculating the locally linear reconstruction
coefficients [37] of sample points with the semi-supervised
strategy and incorporating graph structure into the manifold

FIGURE 1. An example of the active learning process. U denotes the
unlabeled sample database that has never been tagged and E the expert
system that can correctly label the samples in U. L denotes the labeled
sample dataset which is used to train a classifier, C is a certain kind of
classifier, and H is a query function that is used to query information in
the pool of U.

kernel, the new manifold structure can be used in the learning
process. Then, the OED can be efficiently completed in the
manifold adaptive kernel space. It is noteworthy that many
active learning algorithms don’t pay attention to the class
information when building the intrinsic manifold structure.
Interestingly, the novel algorithm that proposed by us can
effectively solve this problem.

We make elaborative arrangements for the remainder of
our article with this type: details of method and materials that
are adopted in this study are described in section two. In the
third section, we present experimental results and discussion.
Finally, we summarize this study and give out the conclusion.

II. METHOD AND MATERIALS
In the process of human learning, people often first use
the existing experience to learn new knowledge, then rely
on the acquired knowledge to summarize and accumulate
the experience. Hence, these experience and knowledge are
constant interactive. Similarly, machine learning simulates
the process of human learning by using the knowledge of
existing to train model and obtain new knowledge firstly,
then correct the model with the accumulation of information.
By this way, a new model that is more accurate and useful
can be obtained. Active learning selectively acquires a small
number of samples that contain the largest amount of infor-
mation, which is different from previous passive learning
that passively labels and processes all data samples. In active
learning, the learner actively selects the most representative
unlabeled samples and transmits these samples to an expert
to label, then adds these labeled samples to training dataset
to train the classifier [15], [16].

Fig.1 shows the brief procedure of active learning. Learners
use a small amount of initial labeled samples L to learn,
the query function H first chooses one or a group of the most
useful samples from the unlabeled samples pool U, then asks
these samples’ labels from the supervisor E, finally uses the
new knowledge to train the classifier C and implements the
next round of inquiry. Active learning is a cyclic process that
does not stop until a certain criterion is reached.
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The fundamental purpose of active learning is to search
the most representative samples. In Euclidean space, given
a sample dataset S = {s1, s2, . . . , si, ...sn}, where si denotes
a sample that is represented by a vector of some dimension,
i ∈ [1, n], and n denotes the total number of samples. Search-
ing the most representative samples is to search a subset
Q =

{
q1, q2, ...qj, ...qm

}
⊂ S that contains the maximally

informative data samples, where m < n, j ∈ [1,m]. That is
to say, it can obtain the highest classification accuracy when
these subsamples are labeled to treat as training data. Seek-
ing the maximally informative samples to label is routinely
described as experimental design in statistics [22]. In the sam-
ple dataset S, each sample point is usually considered to be
an experiment and its corresponding class label is considered
to as a measurement.

A. THE METHOD OF OED
The research task of OED is strictly related to the exper-
imental design that is expected to minimize variance of a
parameterized model [22]. Take into account f (s) = wT s
from c = wT s + 1, where f (s) denotes the linear function,
c the measurement, and 1 the measurement noise that fol-
lows the zero mean normal distribution of which variance is
equal to σ 2. Assuming that there exist an array of labeled
samples {(q1 , c1 ), . . . , (qj , cj ), . . . , (qm , cm )}, where cj is the
class label of the j-th sample qj in the subset Q. Therefore,
we have:

ŵ = argmin
w
{L(w) =

m∑
j=1

(wT qj − cj )
2
} (1)

where w denotes the weight vector and ŵ is its maximum
likelihood estimate. Naturally, we can get the estimate error
as follows:

w′ = ŵ− w. (2)

Reference [31] points out that the above error has zero
mean and a covariance matrix produced from σ 2Hw. Where
Hw denotes the inverse of the Hessian operator of the objec-
tive function L(w) in (1), and it can be written by:

Hw =
(
∂2L
∂w2

)−1
=

(∑m

j=1
qjq

T
j

)−1
=

(
QQT

)−1
(3)

where Q = {q1 , q2 , . . . , qj , . . . , qm}. Thereby, OED aims
to select the subsamples by minimizing the error that is
produced from the matrix Hw. The most famous optimal
designs include the AOD, DOD and EOD, which optimize
for trace, determinant and eigenvalue of the matrix Hw
respectively [22].

B. THE METHODOLOGY OF TED
The TED method that is essentially based on the OED, eval-
uates the expected prediction error on both labeled and unla-
beled examples. Giving out the simple dataset S, minimizing
the average expected square predictive error of the S can be

equivalently viewed as a simplified optimization target as
follows:

min
Q⊂S

Tr(ST (QQT )−1S). (4)

The most important problem in (4) is how to search the
subset Q, however, it is difficult to obtain a global solution.
This is because that the issue is the NP-hard [23]. After a
few transformations, it is able to convert the task (4) into the
following form:

min
ai∈IRm,Q=(q1,...,qm)

n∑
i=1

∥∥∥Si − QT ai∥∥∥2 + ξ‖ai‖2 (5)

where ai = (ai,1 , ai,2 , . . . , ai,m ) is a vector of auxiliary recon-
structing coefficient that uses the linear combination of the
subset Q = {q1 , q2 , . . . , qj , . . . , qm} to fit the data point si,
i.e., the whole dataset S can be reconstructed by the subsetQ.
The ξ is a regularization parameter that is used to control the
amount of shrinkage [38]–[40]. Whereas, the above formula
is still a disadvantageous approach. This is due to the solution
in (5) is suboptimal.

In order to thoroughly solve the above optimiza-
tion problem, a series of auxiliary variables b =

(b1, b2, . . . , bi, . . . , bn) are introduced to control the noise
of training samples, i.e., bi and si are one-versus-one, which
help us to determine the sample si of the whole dataset S
is selected or not selected as a training sample by the bi.
Do some transformations, it can convert the target (5) into
another form:

min
b,ai∈IRn

n∑
i=1

(
∥∥∥si − ST ai∥∥∥2 + n∑

j=1

a2i,j
bj

)+ ϕ ‖b‖1

s.t. bj ≥ 0, j = 1, . . . , n

(6)

where ϕ is a regularization parameter. Minimizing ‖b‖1 can
obtain a sparse vector of which some elements are zero.
Supposing that bj = 0, we would have ai,j = 0, or else the (6)
would become infinity, that is to say, the whole optimization
would not get a satisfying solution. Thereby, the j-th sample
sj that corresponds to the bj would not be selected, then we
can select the most informative samples according to the
value of bj. Reference [24] reveals that the (6) is convex
optimization, hence, it can make sure that the calculations of
the global optimization solution come out.

C. THE ALGORITHM OF MAED
Considering that the TED approach has some shortcomings
and the potential geometric attributes of sample data space are
exceedingly useful for increasing classification accuracy, it is
natural to think that put themanifold structure into the process
of active learning. As for how to carry out this idea concretely,
an effective way is to implement the active learning tasks
in the manifold adaptive kernel space. We demonstrate the
details as follows:

Giving out the sample dataset S and defining a mathemati-
cal formula rs = (R(s, s1), . . . ,R(s, sn))T , then the reproduc-
ing kernel of Hilbert space can use the following equation to
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represent itself [31], [32]:

R̂(s, q) = R(s, q)− ρrTs (E + FR)
−1FRq (7)

where E denotes an identity matrix, R is a kernel matrix that
comes from Hilbert space, and ρ ≥ 0 represents a constant
that is used to regulate the smoothness of R̂(s, q). With regard
to thematrixR, it can use the classic kernels, such as the linear
kernel, Gaussian kernel, to obtain it. As for the construction
of the reproducing kernel, the most important thing is the
selection of the matrix F . Based on different kinds of graph
construction methods, we can obtain various matrix F .
By choosing the matrix F that bases on graph

Laplacian [30], [41], MAED method presents the data-
dependent kernel and performs convex TED problem in the
manifold adaptive kernel space. For the sample dataset S,
let R(si, sj) =

〈
ψ(si), ψ(sj)

〉
, ψ denote a feature map that

from raw input data space to the reproducing kernel Hilbert
space [32], [42]. Then the convex TED of (6) is rewritten by
another form:

min
b,ai∈IRn

n∑
i=1

(‖9(si)−9(S)ai‖2 +
n∑
j=1

a2i,j
bj

)+ ϕ‖b‖1

s.t. bj ≥ 0, j = 1, . . . , n

(8)

whereψ(S) denotes the data matrix of the reproducing kernel
Hilbert space, i.e., ψ(S) = (ψ(s1), . . . , ψ(sn)). With (8),
we consider a n× n kernel matrix R̂ like this R̂i,j = R̂(si, sj),
and let vi be its i-th column (or row, because R is symmetric)
vector. Then, after somemathematical deductions, we can get
the following equation:

ai = (diag(b)−1 + R̂)−1vi (9)

where diag(b) denotes a diagonal matrix whose elements on
the main diagonal are b1, b2, . . . , bn . Once ai is gotten, fix
ai and search the minimal value for bj. Do some similar
mathematical derivations again, we can obtain the following
equation:

bj =

√∑n
i=1 a

2
i,j

ϕ
. (10)

Therefore, by iteratively compute until convergence, ai,j
and bj can be successfully calculated. Hence, it can choose
the most informative samples according to bj(j = 1, 2, . . . , n)
that are arranged in descending order.

D. THE NOVEL ALGORITHM
Obviously, the performance of the MAED approach mainly
depends on the choice of the matrix F . Thereupon, it is
possible to design a robust active learningmethod, which uses
a new graph construction style to calculate themanifold adap-
tive matrix. By calculating the locally linear reconstruction
coefficients of sample data points with the semi-supervised
manner and incorporating the manifold structure into the
active learning process, we propose a novel active learning

algorithm that is called semi-supervised adaptive experimen-
tal design (SSAED) for image classification. In this subsec-
tion, we first give out the graph construction method used in
this paper and then present the new active learning algorithm
that bases on this graph adaptive kernel space. Some details
of graph embedding can be found in reference [43].

1) GRAPH CONSTRUCTION
(1) Construct a nearest neighbor graph with the semi-

supervised manner. Given a set of sample data points
S = {s1, s2, . . . , sn} in IRm, for any data point si
with known class, firstly, find the samples which have
the same class information, and then use Euclidean
distance to compute its k nearest data samples from
the same class dataset. Otherwise, for a sample without
class information, we directly use Euclidean distance
to compute the k nearest data points from the whole
dataset.

(2) Compute reconstruction weight matrix and recon-
struction graph. The weight matrixW is computed by
solving the following optimization problem:

ε(W ) = min
∑
i

∥∥∥∥∥∥si −
∑
j∈Ni

Wijsj

∥∥∥∥∥∥
2

(11)

where Wij denotes the contribution of the j-th sample
data point to the i-th sample data point, Ni denotes the
nearest neighbors of the sample point si. In order to
make the problem (11) well-posed, it should minimize
the above cost function under the condition that (11)
meets two constraints:
(i) si is reconstructed only from its neighbors, in other
words, Wij = 0, ∀j /∈ Ni;
(ii) the elements of each row of the coefficient matrix

add up to one, i.e.,
N∑
j=1

Wij = 1, ∀i.

After obtaining the weight matrix, then we have:

8 = (E −W )T (E −W ) (12)

Give S = {s1, s2, . . . , sn}, let8 = G(S) as the reconstruction
graph [43].

2) THE NEW ACTIVE LEARNING ALGORITHM
Applying the graph 8 constructed above, the procedure of
our novel active learning algorithm can be summarized as
follows:
Input: Giving the samples S = {s1, s2, . . . , sn} in

Euclidean space, which is partially labeled with class
information.
(1) Build local line reconstruct graph based on

LLE [37]. Under the semi-supervised condition, con-
struct a nearest neighbor graph with weight W as
demonstrated in the (11), and then calculate the locally
linear reconstruction graph 8 as presented in the (12).

(2) Compute the kernel matrix R with the input kernel
type. With regard to the kernel type, there are several
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uncommon kernels can be selected. For instance, it can
convert polynomial and Gaussian kernel into manifold
adaptive kernels.

(3) Set up a new kernel in reproducing kernel Hilbert
space. Replace the matrix F of reproducing kernel (7)
by 8, let ri be the i-th column of the above R, and let
R(i, j) be the element of the i-th row, j-th column of R.
Finally, we obtain the manifold adaptive kernel:

RF (i, j) = R(i, j)− ρrTi (E +8R)
−18rj (13)

(4) Calculate deformation of convex TED in reproduc-
ing kernel Hilbert space. Let vi be the i-th column (or
row, because RF is symmetric) of the new kernel RF
that is calculated in the previous step. Initialize ai,j = 1,
then we can ultimately obtain:

bj =

√∑n
i=1 a

2
i,j

ϕ
, j = 1, 2, . . . , n (14)

ai = (diag(b)−1 + RF )−1vi, i = 1, 2, . . . , n (15)

(5) Choose samples. The samples of the original dataset
S = {s1, s2, . . . , sn} are arranged from big to small on
the basis of the numerical value of bj. Then, the max-
imally informative samples can be selected by the top
t samples, because bj and sj are one-versus-one. It is
noteworthy that people can label for the subset that is
combined by the top t samples, which is easier than
label for the whole dataset.

Output: All the original data samples are rearranged accord-
ing to their importance, and give out the optimal subset that
is used to do the classification tasks.

After choosing the most useful samples, many kinds of
image classification tasks can be successfully carried out. Our
novel algorithm, SSAED, is substantially based on the TED,
but the SSAED method attaches great importance to the geo-
metric structure of data space. Comparing with the MAED
algorithm, our novel active learning method also bases on
manifold assumption, which defines the adjacency graphwith
a certain neighborhood size for all samples. The differences
between these two manifold learning methods mainly have
two aspects. In the first place, the styles of constructing graph
are remarkably dissimilar. Our novel algorithm adopts LLE
to construct the graph, while MAED uses LE to do this.
In the second place, the ways that use the class information
of samples are different. The novel algorithm constructs the
manifold adaptive kernel with the semi-supervised manner,
which not only uses the structure of data but also considers
the category information of the data. It makes the proposed
methodmore robust, efficient and effective. However,MAED
only adopts the supervised manner to construct the manifold
adaptive kernel.

E. EXPERIMENTAL MATERIALS
In this study, we evaluate the performance of our novel active
learning algorithm, SSAED, on several benchmark datasets.

TABLE 1. Properties of the maximal image databases used in this study,
where n, d and c denote the number of sizes, dimensionality and class
respectively.

These datasets are all image data that are very popular in the
machine learning field.

1) DESCRIPTION OF DATASETS
Programs are run on nine extremely famous real-world image
datasets: MNIST, USPS, PIE, ORL32, ORL64, Yale32,
Yale64, Yale-B, and CBCL. Except for the MNIST and
USPS handwritten digital datasets, the other seven datasets
are all human face images. ORL32 and ORL64 are datasets
of two different dimensions in the ORL dataset. Similarly,
Yale32 and Yale64 are datasets of two different dimensions in
the Yale dataset. Table 1 gives out the attributes of the seven
broad categories that are used in this study.

2) EXPERIMENTAL SETTING
In the data classification, a k-fold cross-validation strategy is
adopted by us. As for the parameter k, we let it be 10. All
experiments are performed in the software environment of
MATLAB2017a andWindows 7 operation system. Concomi-
tantly, the hardware specifications are Core i5 processor, 4G
memory, independent graphics card, and 500G mechanical
hard disk.

III. RESULTS AND DISCUSSION
We estimate the performance of the novel algorithm, SSAED,
on several benchmark datasets. The comparison is made with
two classification methods: the MAED algorithm and Ran-
dom sampling approach (Random).

• Random sampling method conformably chooses exam-
ples as the training data, which does not consider the
importance of each sample. That is to say, the strategy
of the Random method is to select the samples in a
disorderly manner. In this study, the Random method is
used as the baseline of active learning.

• MAED algorithm, proposed by D. Cai et al. [31], selects
the most informative samples with a restrictive parame-
ter, which has been detailedly described in the method
and materials section.

The fundamental aim of this study is to investigate whether
the novelmethod can obtain a satisfactory classification result
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FIGURE 2. Average classification accuracy. From subfigure ‘a’ to ‘i’, they denote the classification results of the MNIST, USPS, PIE, ORL32, ORL64,
Yale32, Yale64, Yale-B, and CBCL image dataset respectively.

under the condition that the training sample dataset’s size
is small. We let proportion of the labeled training data (the
samples that are selected by Random, MAED and SSAED
methods) change from 0.1 to 0.9. In Fig.2, the ‘length(alpha)’
denotes the proportion of the selected training sample data.
We use the 10-point system, for instance, in the figure, ‘2’,
‘4’, ‘6’, and ‘8’ denote ‘0.2’, ‘0.4’, ‘0.6’, and ‘0.8’ respec-
tively, i.e., alpha=2 means that twenty percentage samples in
the dataset S = (s1, s2, . . . , sn) are selected to be labeled and
used as the training set.

A. AVERAGE CLASSIFICATION ACCURACIES ON WIDE
RANGE TRAINING SETS
For each kind of image datasets (MNIST, USPS, PIE, ORL32,
ORL64, Yale32, Yale64, Yale-B, CBCL), we give out the

classification accuracies based on the three algorithms. The
range of selected training sample set varies from 10% to
90%. The classification results on all real-world datasets are
shown in the Fig.2. The numerical values of the average
classification accuracies and standard deviations on the nine
datasets with the three sample selection approaches are shown
in table 2.

As is shown in the Fig.2, the classification accuracy is
increasing with more samples are selected as the training set.
When compared with MAED and Random methods, there is
no consistent winner. Overall, our novel method performs the
best, while the Random method leads to the lowest classifi-
cation accuracies in all datasets. In the following passages,
we present out the detailed descriptions for each subfigure of
the Fig.2.

VOLUME 8, 2020 71111



X. Xiong et al.: Novel Active Learning Algorithm for Robust Image Classification

FIGURE 3. Comparisons among three algorithms with small size training sample datasets. The upper, middle and lower subfigures represent the
classification accuracies under the condition that 10%, 20% and 30% of the data points are marked as training samples, respectively. The results
of ORL32 and ORL64 in the top subfigure have not been shown out, which are owing to the classification accuracies are equal to zero in the case
of only 10% of data points are selected as a training set.

As is shown in the Fig.2.a, our novel algorithm SSAED
performs well when the size of the training sample set is
small in the MNIST dataset. When 10% of samples are
selected as the training set, the classification accuracy of
SSAED is over 82%, while the Random method is lower
than 80%. Except for the condition that 70% of samples used
as the training set, SSAED performs better than the MAED
algorithm. In the USPS handwritten digital image dataset,
our new method is a consistent winner when it is compared
with the MAED method (see the Fig.2.b). The discriminative
ability of the selected informative samples by the SSAED
algorithm is much better than that of Randommethods on the
USPS dataset when there are less than 50% of data points are
selected. It is noteworthy that the SSAED method performs
very well when the size of the training set is small. For
instance, the classification accuracy of SSAED is over 86%
and approximately overpass 3 percentage points compared
with the result of Random method under the condition that
only 10% of data points are selected to use as the training
samples.

As can be seen from the Fig.2.c, the SSAED continuously
shows better results than both MAED and Random meth-
ods in the PIE dataset. The accuracy of the new method
overpasses 7 percentage points compared with the Random
and 2 percentage points compared with the MAED method
when only 10 percentage data samples are selected to use as
the training samples. It can be seen from both Fig.2.d and
Fig.2.e, SSAED shows a little bit better performance than the

MAED method in the ORL datasets (ORL32 and ORL64),
but performsmuch better than the Randommethod.When the
alpha changes from 0.2 to 0.7, the SSAED is less sensitive
to outliers than the other methods. As for the classification
accuracies in the Yale datasets (Yale32 and Yale64), we can
know that the SSAED performs better than the MAED and
Random in most of the cases (see the Fig.2.f and Fig.2.g).
However, all the three methods show their pool classification
abilities that are all lower than 70% on this kind of face image
dataset. As can be seen from the Fig.2.h, comparison among
the three methods shows that our novel method performs the
best in the Yale-B dataset. Particularly, the SSAED continu-
ously obtains higher classification accuracy than the Random
method when alpha ranges from 0.1 to 0.9. As is shown in
the Fig.2.i, the SSAED consistently outperforms bothMAED
and Random in the CBCL dataset. With alpha increasing,
when it reaches at 0.5, the SSAED method gets the highest
classification accuracy that is over 95%. It is noteworthy
that the classification accuracy of the SSAED is over 88%
under the condition that only 10% samples are labeled as
the training data. Whereas, the accuracy of MAED is 86%
on the same condition, and the Random method needs more
than twice samples to be chosen as the training set to achieve
88% classification accuracy. The results in the CBCL clearly
show the advantages of our novel algorithm in selecting the
best samples for labeling, i.e., these labeled samples that
are chosen by the SSAED can improve the classifier the
most.

71112 VOLUME 8, 2020



X. Xiong et al.: Novel Active Learning Algorithm for Robust Image Classification

TABLE 2. The numerical value of average classification accuracy and standard deviation.

From the subfigure ‘a’ to ‘i’ that is orderly presented
out in the Fig.2, we can clearly see that the classification
accuracies in the handwritten datasets (MNIST and USPS)
are all extremely satisfactory. Whether in a small training
sample set or a large training sample set, good classification
accuracy can be obtained. However, the classification results
are unsatisfactory in some of the human face image datasets,
e.g., Yale32 and Yale64. Additionally, we can also know that
the SSAED can continuously perform better than the other
two methods on the three datasets: USPS, PIE, and CBCL.
It is important to note that the SSAED can obtain satisfactory
results of which classification accuracies are more than 82%
in the case of only choose 10% samples as the training set on
the MNIST, USPS and CBCL datasets.

B. AVERAGE CLASSIFICATION ACCURACIES ON SMALL
RANGE TRAINING SETS
Due to the fundamental aim of active learning is to select the
best samples to train the classifier model and expect to obtain

a satisfactory classification accuracy, experimental result
comparison bars on three kinds of small size training sets are
given in this part. In terms of the percentage, we choose the
training set of which size accounts for 10%, 20%, and 30%
of the whole dataset respectively. All the comparisons are
implemented in the nine image datasets (MNIST, USPS, PIE,
ORL32, ORL64, Yale32, Yale64, Yale-B and CBCL) with the
three algorithms (Random, MAED and SSAED).

From Fig.3, we can see that SSAED performs better than
both Random and MAED methods in almost all circum-
stances. Except for the ORL64 and Yale-B datasets with 20%
and ORL32 dataset with 30% of data samples are selected
as the training set, our novel algorithm is not lower than
the MAED. The Random method performs the worst in all
conditions (see three subfigures), this indirectly proves that
active learning can reduce the cost of artificial marking. It is
noteworthy that the SSAED algorithm performs extremely
well in the MNIST, USPS and CBCL datasets. In these
three datasets, all the classification accuracies with small size
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TABLE 3. Comparison of processing time among the three algorithms,
Random, MAED and SSAED, on all the image datasets applied in this
paper (time/s).

training samples are higher than 80%, especially, in the CBCL
dataset, the accuracy even approximates 90% with 10% of
training samples and overpasses 90% with 20% and 30% of
training samples.

C. EFFICIENCY ANALYSIS OF THE THREE ALGORITHMS
For testing the operation efficiency of the SSAED algorithm,
comparative experiments were implemented in the MNIST,
USPS, ORL32, ORL64, Yale32, Yale64, Yale-B and CBCL
datasets. Some details of these datasets have been presented
in table 1. The running time of each algorithm in the nine
datasets is presented in table 3. We can see that the Random
method has the shortest running time, which is attributed to its
simple structure that doesn’t consider the intrinsic geometry
of the sample data space. The running time of MAED and
SSAED is relatively close, which due to the processing steps
are similar. Both MAED and SSAED methods attach great
importance to the geometric structure of data space. It is
important to note that the dimensionality of the data set
affects the processing times of the algorithms, the higher the
dimensionality of the dataset, the longer the algorithms run,
e.g., ORL32, ORL64, Yale32 and Yale64 datasets confirm
this viewpoint (see table 1 and table 3). Theoretically, due
to the SSAED algorithm adopts the semi-supervised strategy
to construct the special geometric structure graph, which
has to consider both labeled samples and unlabeled samples
information. Hence, it needs to take more time than the other
two methods. Actually, the results in the table 3 confirm this
viewpoint.

We have so far compared the three algorithms (Ran-
dom, MAED and SSAED) on two handwritten digital image
datasets (MNIST, USPS) and seven human face image
datasets (PIE, ORL32, ORL64, Yale32, Yale64, Yale-B and
CBCL). Many data suggest that the new algorithm can
achieve higher classification accuracy. SSAED has some
advantages over the MAED and Random. As is shown
in Fig.2, Fig.3 and table 2, SSAED algorithm yields impres-
sive results on the compared datasets. Two reasons could
account for these phenomena. Firstly, the applied datasets

always have partially labeled data samples, which make
the SSAED method adequately takes account of the class
information of these partially labeled samples. For the unla-
beled samples, SSAED still can use them effectively, because
the graph is constructed with the semi-supervised style.
Secondly, many samples that come from diverse categories
overlap with each other seriously. All these indicate that con-
struct graph with semi-supervised manner has obvious mer-
its [33]–[36]. Among the three methods, the Random method
performs the worst all the time on all the image datasets.
BothMAED and SSAED algorithms are much better than the
Random. The main reason is that the active learning method
spontaneously selects the most useful samples to label as
the training set, which is helpful for achieving maximum
efficiency [31]. However, in the Randommethod, the training
set is constructed by choosing the samples randomly, which
easily leads to putting the useless samples into the training
dataset. Therefore, it is difficult to obtain a satisfactory classi-
fication accuracy. Our experimental results further prove that
the active learning algorithm has great application value.

IV. CONCLUSION
As is shown in section two, a novel active learning method
has been presented for data classification by incorporat-
ing the locally linear reconstruction coefficients matrix into
the learning course, where the coefficients are computed
with a semi-supervised manner. The new algorithm attaches
great importance to the potential manifold structure of the
data space. The classification accuracies which are on nine
real-world datasets indicate that SSAED surpasses both the
MAED and Random methods, especially under the condition
that only a few examples are chosen to use as the train-
ing dataset. However, it still has some shortcomings in this
research. One weakness of the novel approach is that the
experimental result is not satisfying in all the image datasets.
The new method is only sensitive to some datasets, but not
to all. In the future, we need to design a universal approach
that can perform well in more datasets. Additionally, the key
improvement of our algorithm is the locally linear reconstruc-
tion frame, which comes from the LLE. We adopt this frame
to calculate the reconstruction coefficients that are used to
construct the novel graph, but it is difficult to determinewhich
constructive graph is the best. Thereby, we will try to use
other methods, such as sparse reconstruction with the semi-
supervised or supervised manner, to construct the new graph
in the next classification study.
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