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ABSTRACT In the hardware implementation of deep learning algorithms such as, convolutional neural
networks (CNNs) and binarized neural networks (BNNs), multiple dot products and memories for storing
parameters take a significant portion of area and power consumption. In this paper, we propose a domain
wall memory (DWM) based design of CNN and BNN convolutional layers. In the proposed design, the
resistive cell sensing mechanism is efficiently exploited to design low-cost DWM-based cell arrays for
storing parameters. The unique serial access mechanism and small footprint of DWM are also used to
reduce the area and energy cost of DWM-based design for filter sliding. Simulation results with 65 nm
CMOS process show 45% and 43% of energy savings compared to the conventional CNN and BNN design
approach, respectively.

INDEX TERMS Binarized neural network, convolutional neural network, deep neural network, domain wall
memory.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) are one of the
well-known deep learning algorithms that have been widely
employed for image classifications [1]. CNN can achieve low
error rate with an acceptable complexity by combining three
architectural ideas – local connections, shared weights, and
spatial/temporal subsampling [2]. Deeper architecture with
more layers in CNNs is the key to achieve high accuracy
at the cost of complexity. In the hardware implementa-
tion of CNNs, multiple dot products for extracting features
and memories for storing parameters (input activations and
weights) take a significant portion of area and power con-
sumption. Several in-depth studies on the low-cost CNN
accelerator design have been carried out over the recent years.
Chen et al. [3] proposed a CNN accelerator named Eyeriss.
Systolic array-based architectures [4], [5] have also been
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widely adopted among various energy-efficient CNN accel-
erators using application specific integrated circuits (ASIC).
Recently, in order to reduce the complexity of CNN, binarized
neural networks (BNN) [6] have been introduced, where all
the parameters and activations are represented as binary-
based numbers. Using XNOR and bit-count operations
(XNOR-popcount), BNN achieved comparable accuracies
for MNIST, SVHN, and CIFAR-10 datasets [6]. In addition,
XNOR-Net [7] and DoReFa-Net [8] have been proposed to
improve the ImageNet classification accuracy of BNNs, and
researches [9], [10] are currently in progress to improve those
accuracies.

DWM is a flavor of spintronic memory technology that
possesses the ability to store multiple bits per cell [11], [12].
The bits are stored in the magnetic nanowire in the form
of magnetic orientation and can be accessed serially by
performing shift operations. DWM has been proposed for
energy efficient deep neural networks [13], [14]. In this work,
the unique shift-based access pattern of DWM is efficiently
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exploited [15] to implement the input activations and/or
weights storages of CNN and BNN convolutional layer that
prefer sequential access. The resistor cell sensing circuit
through read MTJ [16] is also proposed to implement a
partial dot product (a XNOR-popcount) in CNN and BNN.
The major contribution of this work can be summarized as
follows:
• We propose a novel DWM-based cell array architec-
ture for an area and energy-efficient CNN convolutional
layer with the implementation of a partial dot product
using the resistor cell sensing circuit.

• We propose a DWM-based cell array to provide low cost
XNOR-popcount operations for a BNN convolutional
layer.

• We propose novel DWM design techniques for imple-
menting filter sliding in CNN and BNN convolutional
layers by exploiting the sequential access pattern of
DWM.

The rest of the paper is organized as follows. Section II
describes the basics of DWM. The details of a convolu-
tional layer in CNNs and the differences between CNN and
BNN are presented in section III. Sections IV and V pro-
vide the DWM-based CNN and BNN convolutional layer
design approaches, respectively, including implementations,
and numerical results. Finally, conclusions are drawn in
section VI.

II. DWM FUNDAMENTALS
DWM consists of three components: (a) write head (b) read
head and (c) magnetic Nanowire (NW). As shown in Fig. 1,
the read and write heads are similar to the conventional Mag-
netic Tunnel Junction (MTJ) whereas NW holds the bits in
the form of magnetic polarity. Since a single bit-cell can hold
multiple bits in the NW, this memory technology provides
high-density. Magnetic NW is the crucial component that
holds the bits. In essence, the NW is analogous to a shift
register. The NW typically contains physical notches to move
the DW in lockstep fashion [12], [17], [18]. It also ensures
that the DW does not land in between two notches. The shift
pulse is enough to dislodge the DW and shift along the NW.

FIGURE 1. Schematic of the DWM using the shift-based write
scheme [16]. The MTJ at read head, extra two fixed layers at write head,
and the overhead bits are also shown.

Note that the MTJ forms naturally between the NW and the
fixed magnetic layer that are separated by the tunnel oxide
barrier. The left (right) magnetic orientation in the NW can
be regarded as ‘0’ (‘1’).

The most interesting feature of the NW is the formation of
domain walls (DWs) between domains of opposite polarities
where the local magnetization changes its polarity. The DWs
can be shifted forward and backward by injecting charge
current from left-shift (SL+) and right-shift (SL-) contacts.
The new bits are written by first pushing current through
shift contacts to move the bits in lockstep fashion to bring
the desired bit under write head. Then, spin polarized current
is injected through two extra fixed layers in write head (using
Write BL and SL) in positive or negative direction to write a
‘1’ or ‘0’ in theNW.Note that conventional write scheme uses
write MTJ instead of extra fixed layers. The writing involves
current induced spin-torque transfer to flip the magnetization
of the free layer (NW in this case). The bits are shifted back
to initial state after the write operation. Read is performed by
bringing the desired bit under the read head using shift and
sensing the resistance of MTJ formed by DW under the read
head (using Read BL and BLB in Fig. 1).

It should be noted that the resistance of MTJ is high (pre-
sented by RAP) when the fixed layer and the free layer are in
antiparallel configuration whereas the resistance is low (pre-
sented by RP) when they are parallel to each other (Fig. 1).
The bits are shifted back to initial state after the read opera-
tion. From the above discussion, it can also be concluded that
the read/write involves shifting of bits. For random access,
the worst case latency is the summation of number of shifts
and read/write latency. However, for serial access, the latency
is a summation of single shift and read/write latency.

The conventional DWM has high power consumption for
write operation. In this work, a shift-based write scheme is
introduced in [17] which uses extra fixed layers to shift the
bits in the NW instead of nucleating it through MTJ. The
resulting write operation is significantly low-power and fast
at the cost of area overhead (24.7F2 per bit vs 2.56F2 [17]).
The latency, power, and area of DWM are shown in Table 1.
The 1D DWM model [19], [20] is used for the latency and
power estimation.

TABLE 1. Characteristics of DWM.

III. CNN AND BNN OVERVIEW
In this section, we first introduce the simple CNN and
BNN architectures and their comparison. We also discuss the
implementation of CNN and BNN convolutional layers based
on 2D processing element (PE) array.
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FIGURE 2. A simple convolutional neural network (CNN) with three layers for MNIST (28 × 28 × 1) classification.

FIGURE 3. (a) The hardware architecture of the conventional CNN convolutional layer with (b) PE array. (c) The CONV2 layer example.

A. CNN ARCHITECTURE
CNNs are similar to regular neural networks (NNs) since
several hidden layers are composed of a set of neurons where
each neuron in the output layer is connected to the neu-
rons in the input layer. While neurons are fully connected
in regular NNs, CNNs have local connections by explicitly
assuming that the input activations will have spatial locality
such as images. The layers of CNNs, unlike regular NNs,
have neurons arranged in three dimensions: width, height,
and depth. Typical CNNs have six types of layers, shown
in Fig. 2: INPUT, CONV (convolutional), BN (batch normal-
ization), RELU (rectified-linear units), POOL (pooling), and
FC (fully-connected) layer.

1) CNN CONVOLUTIONAL LAYER DESIGN
Convolutional layer is the core building block of CNNs,
which is locally connected to the input volume. The output
volume of the convolutional layer can be characterized by
three hyper-parameters [21]: (a) The depth of the output
volume is the number of filters with the same region of the
input volume; (b) The stride is the spatial distance between
current and next filtering region; and, (c) With sizing zero-
padding, the spatial size of the output volume can be con-
trolled, and the spatial size of the input volume can also
be preserved. Fig.2 shows an example of a CNN with three
layers for MNIST classification. In the CNN, CONV, POOL,

and ReLU layers are performed twice with input image
(28 × 28 × 1), followed by the FC layer for MNIST
classification. As specified in the CONV2 layer of Fig. 2,
a 5 × 5 dot product (or filtering) is computed with output
depth 12, stride (=S) 1, and zero-padding (=P) 2.

The overall hardware architecture of the conventional CNN
convolutional layer specified in Fig. 2, is presented in Fig. 3.
The PE systolic array that contains PE units in 2D form, and
each PE unit compute a partial sum with an input activation
and a weight is illustrated in Fig. 3(b). For the computation,
weights are preloaded into the PE array from weight buffer
and remain stationary until all the related input activations
are computed. For the systolic operation, scheduled input
activations are streamed into the PE array from the input
buffer, and PE outputs (partial sums) are accumulated sequen-
tially through the bottom direction in 2D array. As shown
in Fig. 3(c), the number of PE units in the 2D PE array
is Nc × Mc, and the number of accumulators is 1 × Mc.
In Fig. 3(c) (leftmost),Nc (the number of PE units in a column
of the PE array) shows the filter size R multiplied by input
depth and divided by 2, and Mc (the number of PE units
in a row of the PE array) is the filter size R multiplied by
output depth and divided by 2. Here, to make the proposed PE
array have similar core size with the recent CNN accelerator
(32 × 16 [22]) the ‘division by 2’ is used forMc and Nc. For
example, for CONV2 layer, the convolutional layer design
includes 15 × 30 (=Nc × Mc) PE units and 30 (=1 × Mc)
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FIGURE 4. (a) Differences of the CNN layer operations between CNN and BNN. (b) The architecture that implements the BNN convolutional layer using
2D PE array. (c) The CONV2 layer example.

accumulators, where the filter size R/ input depth/ output
depth of CONV2 layer are 5/ 6/ 12, respectively. The peak
throughput per sample of the convolutional layer can be
calculated as Mc/Tclk (Tclk is a clock cycle time), while the
output latency is Nc.

B. BNN ARCHITECTURE
BNNs have a layer structure like CNNs, and the only dif-
ferences are the binary parameters (input activations and
weights). As shown in Fig. 4(a), the layer operation in BNN
is different from that of CNN as follows: (1) a multiplication
in BNN is a bitwise AND operation, (2) a batch normal-
ization in BNN is just adding integer bias B [23], and (3)
an activation operation (e.g. ReLU) in BNN corresponds to
binarization.

1) BNN CONVOLUTIONAL LAYER DESIGN
For the hardware implementation of BNN convolutional
layer design, a 2D PE array can also be used as presented
in Fig. 4(b). However, the area of the PE unit can be signif-
icantly reduced, since the multiplications of a binary input
activation and a binary weight can be replaced with bitwise
AND operations. Due to the smaller area of PE units and
the reduced buffer sizes for storing binary parameters (input
activation and weight), the fully parallel architecture [24] is
usually adopted. In this architecture, both input activations
and weights are preloaded to compute the output activation
within one clock.

Fig. 4(c) shows the hardware architecture that implements
the BNN CONV2 layer. The PE array for BNN consists of
Nb × Mb(=150 × 12) PE units, where Nb means the input
depth multiplied by R2, and Mb denotes the output depth.
Compared to CNN convolutional layer, since DFFs are not
needed for the BNN PE unit, the accumulation size Nb in
column direction decides critical path delay. The accumula-
tion can be performed with optimal adder-tree such as carry
save adders [25]. In the BNN convolutional layer, the peak
throughput per sample is Mb/Tclk with a maximum output
latency of one clock cycle.

2) XNOR-POPCOUNT IN BNN CONVOLUTIONAL LAYER
The XNOR-popcount in BNN convolutional layer is
expressed as follows:

f (Y ) = f
(∑Nb

i=1
Xbi W

b
i + B{0,1}

)
=

{
1, if Y ≥ Nb/2
0, else

(1)

where Y is non-negative output activation, B{0,1} is the half
of B (bias), and Xbi ,W

b
i ∈ {0, 1} and Nb means binarized

input activation, binarized filter weight, and accumulation
size, respectively (i.e. Nb = R× R× C = 5× 5× 6 = 150
as shown in CONV2 layer of Fig. 4(c)). (1) means that the
binarization function outputs 1 when the accumulated result
is larger than Nb/2+ B{0,1}, and otherwise the output is 0.

C. THE CONV2 DESIGN COMPARISON IN CNN AND BNN
Fig. 5 show the comparison results of four different modules
in CONV2 layer of CNN and BNN accelerators. Those four
modules are CORE (PE array+ accumulator), IBUF (SRAM
based input buffer), WBUF (SRAM based weight buffer),
and WREG (DFF based weight registers). The four modules
are implemented using 65nm CMOS process, and the results

FIGURE 5. Comparison results (implemented using 65nm CMOS process)
of CORE, IBUF, WBUF, and WREG modules in CNN design in terms of
(a) area and (b) energy consumption, and in BNN design in terms of
(c) area and (d) energy consumption.
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FIGURE 6. Architecture of (a) the proposed DWM-based CNN convolutional layer with (b) the DWM-based cell array for CNN, which consists of (c) the
DWM-based PEs including (d) the DWM-based cell string (length = 7).

are compared in terms of the area and energy consumption.
As shown in Fig. 5, the WBUF takes the largest area and
energy consumption since WBUF storing the weight param-
eters is shared by all the PE units in 2D PE array. WREG
is used to store partial weight parameters (in this example,
2R weights in each weight register of CNN and 2 weights
in each weight register of BNN), and it is locally connected
with PE unit in 2D PE array. We can notice from the results
that not only the PE array (CORE in Fig. 5) but also the
input buffers (IBUF) and weight registers (WREG) should be
carefully designed to make an area and energy efficient CNN
architecture. In the following sections, we show those expen-
sive WBUF, WREG and IBUF can be efficiently designed
using low cost DWM-based in-memory computing.

IV. DWM BASED CNN CONVOLUTIONAL LAYER DESIGN
In this section, we present the architectural/circuit-level
design techniques for the proposed DWM-based CNN convo-
lutional layer design. By exploiting the unique serial access
mechanism of DWM, the sequence of input activations and
weights in PE array can be efficiently implemented using
DWM. In addition, the partial implementation of dot product
using the resistive cell sensing of DWM leads to low cost
design of CNN convolutional layer.

A. DWM-BASED CNN CONVOLUTIONAL LAYER
The architecture of the proposed DWM-based CNN convo-
lutional layer is illustrated in Fig. 6(a). It consists of input
buffers, weight buffers, DWM-based cell array for CNN,
accumulators, and output buffers. In the DWM-based design,
input and weight buffers are connected to the cell array
through the DWM buses. In Fig. 6(b), the DWM-based cell
array is illustrated. As shown in the figures, the DWM-
based CNN convolutional layer has similar architecture and
operations to the conventional CMOS-based architecture

(Fig. 3(b)). The only exception is the bit-serial operation
which is implemented using the DWM-based PE units com-
posed of the DWM-based cell string, 3-bit ADC, and the
accumulator as shown in Fig. 6(c)-(d) and Fig. 7. By using
the DWM shift operation, the convolutional window sliding
and serial multiplications can be effectively implemented in
the proposed DWM based cell array. For the convolutional
window sliding, DWM shift based convolution operations in
the first row between multiple inputs and multiple weights
are presented in section IV-C. In addition, DWM shift based
serial multiplication between one input and one weight is
shown in Fig. 7.

FIGURE 7. The accumulator in PE unit in the DWM-based design.

Fig. 6(c) shows the differences of the DWMbased PE units
compared to the conventional CMOS-based design. First,
the DFFs (for storing input activations and weights) and the
multiplier in the conventional PE unit are replaced by the
DWM-based cell string, 3-bit ADC, and the accumulator in
the DWM-based PE unit. As shown in the DWMbased design
of Fig. 6(c), the registers for storing a partial sum (psum) that
placed in odd rows are removed. This configuration facilitates
to accumulate two rows psum while reducing the critical
path delay and PE area. The row-wise input timing control
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depends on the psum register. For example, on the left side of
Fig. 6(c), the input of the 1st (3rd) row is faster than the input
of the 2nd (4th) row by one latency, but both have the same
timing on the right side of Fig. 6(c). The detailed architecture
of the PE unit (bit width of input activation and weight =
4-bit) is shown in Fig. 6(d) and Fig. 7. For a bit count oper-
ation, bit-serial input (e.g. x[0]) comes from the DWM input
buses, and it performs the operations using the DWM-based
cell string with bit-parallel weights (e.g. w[3:0]) that are
stored in DWM weight buses. The partial product can be
obtained by summing the bit count results of each weight
index. Thus, the serial multiplication operations are replaced
by accumulating the partial products of each input index.
For accumulation outside the cell array, like conventional
CMOS architecture, the initial value of accumulators is the
bias value, and the outputs of cell arrays are accumulated
if the input depth is larger than the height of the cell array.
The DWM-based cell string and 3-bit ADC will be discussed
in section IV-B, and the DWM input and weight buses for
input activations and weights, respectively, are shown in
section IV-C.

B. DWM-BASED CELL ARRAY FOR CNN
In the CMOS-based PE systolic array architecture shown
in Fig. 3(b), the cell array and dot product operators are sep-
arately implemented. In the proposed DWM-based architec-
ture (Fig. 6), the partial dot products can be merged together
and performed in the cell arrays. The DWM-based cell array
consists of PE array and DWM input and weight buses.
The current reference circuit for sensing the outputs of the
DWM-based cell string are located inside the cell array.

1) DWM-BASED CELL STRING
The DWM-based cell array architecture shown in Fig. 6
presents the implementation of the convolutional layer
using 5 × 5 filter with the input depth of 6 and the output
depth of 12. The operation can be considered as parallel
multiplications and accumulations on PE array (bit width of
each weight is 4 and input bit width is 4). The convolutional
layer operation is expressed as

y(l) =
∑5

r=1

∑5

c=1
y(l)r,c (2)

y(l)r,c =
∑3

m=0
y(l)r,c [m] · 2

m (3)

y(l)r,c [m] = −y
(l)
r,c [m] [3]+

∑2

n=0
y(l)r,c [m] [n] · 2

n−3 (4)

y(l)r,c [m] [n] =
∑7

k=1
x(k) [m] · w(k,l) [n] (5)

where l = output depth index, k = input depth index,
m = the bit index of input, n = the bit index of weight, and
w = weight (in this example, input activations and weights
when k = 7, x(7) [m] and w(7,l) [n], are zero since the input
depth is 6). In Fig. 6(d), the boxes show an example (m = 0)
of y(l)r,c [m] [n] =

∑3
m=0

∑3
n=0

∑7
k=1 x

(k) [m] · w(k,l) [n] with
bit-serial operations, wherem varies from 0 to 3 depending on
bit-serial index, while n stretches from 0 to 3 in bit-parallel

fashion. The operation in the boxes at the bottom (m = 0
and n = 3) is x(1)[0] · w(1,l)[3] + x(2)[0] · w(2,l)[3] +
x(3)[0] · w(3,l)[3] + x(4)[0] · w(4,l)[3] + x(5)[0] · w(5,l)[3] +
x(6)[0] · w(6,l)[3] + x(7)[0] · w(7,l)[3]. As shown in Fig. 6(d),
each of w(k,l)[3] is stored in MTJ, and x(k)[0] is applied
to the gate input of the selective transistor. The output of∑7

k=1 x
(k)[0] · w(k,l)[3] can be represented as the series of

resistors (referred as the DWM based cell string in Fig. 6(d)),
where the resistance values are dependent on the input acti-
vation x(k)[0] and weight w(k,l)[3].
As shown in Fig. 6(d), the DWM-based cell string is com-

posed of serial connection of selective transistor and MTJ
pairs. Since an MTJ cell can be modeled as RP (‘0’ in logic)
or RAP (‘1’ in logic) resistor, and the selective transistor has
Ron or open state depending on the gate input x(k)[m], each
pair can be modeled as a resistor with four values, which
are RP, RAP, (Ron|| RP), and (Ron||RAP). By assuming that
Ron < RP < RAP and (Ron||RP) ≈ (Ron||RAP) in this work,
each pair can be expressed as a resistor with three variable
resistances, RAP > RP > RS where RS = Ron ||RP (or RAP).
Here, the selective transistor performs a masking operation
for the MTJ value based on the gate input. The logic value of
the pair is same as AND gate output between the inverted
input and the bit stored in MTJ (=the bit information of
weights). The DWM-based cell string accumulates the resis-
tance values of these pairs, and the accumulated resistance
value is same as the number of ‘1’s in terms of logical value.
As a result, DWM-based cell string for 7 input depth performs
the operations in (5).

2) VOLTAGE REFERENCE CIRCUIT
As presented in the previous subsection, the resistance of
the DWM-based cell string varies depending on the input
activation x(k)[m] andweightw(k,l)[n]. The varying resistance
value will appear as the changes of the voltages on ‘read BL
(referred as rBL)’ in Fig. 6(d). Therefore, we need to gen-
erate the reference signals for sensing the read BL voltages.
The references can be expressed as the following resistance
values:

RBL(0) < RREF(0)
RREF(i) < RBL(i+1) < RREF(i+1)

RREF(N−1) < RBL(N ) (6)

where i = 0 . . .N−2. The voltage reference circuit in the left
side of Fig. 8(a) is composed of input-independent resistor
ladder and input-dependent DWM-based cell string consist-
ing only of MTJ cells in the parallel state (RP represented
in the resistance value), which can compensate the Rs terms
applied to the voltage on read BL.

3) 3-BIT FLASH TYPE ADC
The read BL (rBL) and the generated reference signals go into
the ADC to compute a partial dot product operation. Fig. 8(a)
shows the 3-bit flash type ADC with the voltage reference
circuit. In the proposed scheme, typical flash ADC can be
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FIGURE 8. Schematics of (a) voltage reference and 3-bit ADC with
(b) voltage comparator (including the kickback noise simulation),
(c) diff_lat, and (d) diff_lat2.

divided into three stages: (a) in the first step, thermome-
ter code is generated using comparators; (b) thermometer
code is converted to one-hot code using the gates logic (e.g.
AND-NOT gate); and, in the third step, (c) the outputs of
the gates are decoded to binary outputs. For the thermome-
ter code generation, we used the voltage comparator with
low kickback noise in Fig. 8(b) [26] to ensure the voltage
margin as shown on the bottom side of the figure. For the
thermometer-to-one hot conversion, the modified CMOS dif-
ferential latch (diff_lat2) in Fig. 8(d) is used that is made with
only four additional transistors based on differential latch
(diff_lat or N-C2MOS latch [27]) shown in Fig. 8(c). Finally,
the conventional ROM-based design is employed to obtain
binary outputs from one-hot code.

4) DATA DEPENDENCY AND OPTIMIZATION OF
DWM-BASED CELL STRING
Fig. 9 shows two input cases for the DWM-based cell string.
Although both cell strings are intended to have the same resis-
tance of 3RAP for those two input cases, the actual voltage
difference (1BL) between two read BLs is +9 mV according
to our simulations. In addition, the voltage difference (1BL)
is larger than the reference voltage difference between two
DWM-based cell strings, which is 1REF of +3 mV. The
simulation results show that the reference voltage cannot
completely track the read BL of MTJ cells. This is because
the Ron varies depending on the gate input pattern, and the
DWM-based cell string in the voltage reference circuit has

FIGURE 9. The data dependency of DWM-based cell string due to
stacking effect.

only RP of MTJ cells while the DWM-based cell sub-array
has both RP and RAP. This problem is even more exacerbated
with long length of DWM-based cell string. According to our
simulation results on the voltage margin and the bit width
of binary output (ADC overhead), the length of DWM-based
cell string is decided to 7.

In the proposed DWM-based cell string, to maximize the
voltage margin, the scale factor αU (αL) for the resistor
located at the top (bottom) of the input-independent resistor
ladder in the voltage reference circuit is tuned to 0.75 (0.75)
according to our simulations. To verify the operation relia-
bility, HSPICE Monte-Carlo simulations are performed for
the worst-case conditions. As shown in Fig. 10(a), voltage
margin of the DWM-based cell string relies on the gate input
pattern and the cell states. For the upper voltage margin and
the lower voltage margin, 3 worst combinations and 9 worst
combinations of the gate input pattern and the cell states are
selected, respectively. The simulation results for those worst-
case conditions are presented in Fig. 10(b). The negative
voltage margin which indicates the functional failure is not
observed.

C. DWM INPUT AND WEIGHT BUS
In the CMOS-based PE systolic array architecture shown
in Fig. 3(b), the input activations for each row pass from a
DFF’s in a PE unit to the next stage PE unit, while the weights
are sent from the weight buffer to PE following data flow.
In the proposed DWM-based architecture as shown in Fig. 6,
the serial access of input activations and weights in PE array
can be implemented usingDWMbus, which are the collection
of DWMs of the same length. The number of the DWMs in
the DWM bus is designed as the length of the DWM-based
cell string (=7).

1) DESIGN ISSUE OF DWM BUS AS INPUT AND WEIGHT
BUFFERS
Fig. 11(a) illustrates the design issues of the DWM input and
weight bus when those are used as input activation buffers
and weights buffers, respectively. As presented in Fig. 11(a),
on the first row in PE array, we have three PE units.
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FIGURE 10. (a) The process of finding weak voltage margin points and (b) the result of Monte-Carlo analysis for those points of DWM-based cell string.

FIGURE 11. The proposed DWM-based cell array for CNN operation: (a) Design issue of the DWM input and weight bus, and (b) two solutions to
those issues.

PE<0> creates a partial sum for the first row (e.g. x1,1w1,1)
when the filtered window is not sliding yet. PE<1> generates
a partial sum for the first row (e.g. x1,2w1,1) after the filtered
window slides right once. PE<2> generates the outputs of a
partial sum for the first row (e.g. x1,3w1,1) when the filtered
window slides right twice. The time table of PEs in Fig. 11(a)
shows the index changes of input activations and weights
for each PE. According to the table, PE<0>, PE<1>, and
PE<2> continuously generate outputs (partial sums) after
1 cycle, 3 cycles, and 5 cycles, respectively. For the input
activations and weights from PE<0> to PE<2> at cycle L,
the input sequence appears from x1,L to x1,L−2. On the other
hand, the weight sequence appears from w1,g(L) to w1,g(L−4)
where g (a) = (amod (R+ 1))+ 1 and R is filter size, which
differs by four samples. This means that the weight index
increases two (=stride+1 = 2) times faster than input index,
which makes it difficult to physically place the two (input
activation and weight) DWM buses side by side.

As presented in Fig. 11(b), one of the possible solutions
is the direct connections without any spacer cells. However,
this approach has significant interconnection congestions as
shown in Fig. 11(b). For example, if the PE cell array size is
15 × 30 and the length of the DWM-based cell string is 7,
the number of interconnect lines is more than 750
(=ceil((30-1)/4) × 7 × 15). Therefore, we used the inter-
connect optimization scheme by employing redundant DWM
cells. The additional DWM cells do not incur large area
overhead as the DWM cell has small footprint, which will
be presented in the next subsection.

2) OPERATION OF DWM INPUT AND WEIGHT BUS
Fig. 12 presents the serial multiplications between input acti-
vations and weights based on index-time chart and DWM
bus update diagram. The chart shows the input activation and
weight index at each PE over time, and the DWM bus update
diagram shows the overall values of the DWM buses.

Fig. 12(a) shows the schedule of the serial multiplication
between x1,1 and w1,1 at PE<0>, where the input activations
come in bit-serial with the bit width of 4, while the weights
come in bit-parallel with the bit width of 4. As shown in the
index-time chart, the DWM weight bus should be doubled to
match the update rates between input activations and weights.
This means that w1,1 is stored in two consecutive DWM
addresses. The serial multiplication process is as follows:
i) cycle 1: for the 0-th bit position of x1,1, PE<0> computes
x1,1 [0]w1,1, ii) cycle 2: with the first bit position of x1,1,
PE<0> computes x1,1 [1]w1,1, iii) cycle 3: for the second
bit position of x1,1, PE<0> computes x1,1 [2]w1,1, and iv)
cycle 4: with the third bit position of w1,1, PE<0> computes
x1,1 [3]w1,1 and obtains x1,1w1,1. As a result, after 4 cycles,
DWM input bus and weight bus are shifted by 4 and 2 cells,
respectively, to match the update rates. The output latency
for a partial sum generation is equal to the bit width of input
activation, assuming that stride is 1 and bit width is an even
number.

Fig. 12(b) shows the time schedule of the serial multipli-
cations between input activations and weights in PE<0>,
PE<1>, and PE<2>. In the index-time chart, where the top
left corner is same as Fig. 12(a), the index of PE<0> is
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FIGURE 12. The proposed DWM-based cell array for CNN operation: index vs. cycle chart and DWM bus update diagram for (a) single PE and
(b) multiple PEs.

FIGURE 13. The proposed DWM-based cell array for CNN operation: (a) flowchart for finding dPEs (the distance between two adjacent PEs) and nREDs
(the number of redundant cells per sample), (b) index vs. cycle chart for BWx (the bit width of input) = 4 and S (stride) = 2, and (c) the DWM input and
weight bus example of S = 1 and 2 (BWx = 4).

drawn with a solid line with black arrows, that of PE<1> is
a dotted line with black arrows, and that of PE<2> is a solid
line with white arrows. During the simultaneous operation
of the three PEs, the spacing between charts is kept constant
since the spacing between the PEs on the DWM bus is fixed.
The proposed DWM-based convolutional layer design shown
in Fig. 12 shows the throughput of the bit width of the
input activations times slower compared to the CMOS-based
design. However, the throughput can be made same when the
DWM-based cell string in theDWM-based cell array operates
in parallel.

3) GENERALIZATION OF DWM INPUT AND WEIGHT BUS
In the proposed DWM-based cell array for CNN operation,
the distance between two adjacent PEs and the number of
redundant cells per sample are determined by the bit width of
input sample and stride. For the serial multiplication, the dis-
tance between two adjacent PEs in DWM input bus (Dx) is
initialized to the bit width of input sample (BWx), while the
distance between two adjacent PEs in DWMweight bus (Dw)
is initialized to ‘stride (S) + 1’. As shown in the flowchart
of Fig. 13(a), when Dx can be divisible by Dw (or Dw can
be divisible by Dx), the two (input activation and weight)
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FIGURE 14. Area breakdown of the comparison between the conventional CMOS-based and the proposed DWM-based CNN convolutional layer
implementations – (a) PE unit, (b) accumulator, (c) IBUF, (d) WREG, and (e) total (the PE array size N ×M is 15 × 30 and the bit width of input
activations and weights is 4-bit).

DWMbuses, which include redundant cell per sample, can be
physically placed side by side. On the other hand, when Dx
cannot be divisible by Dw (or Dw cannot be divisible by Dx),
since the input activations come in bit-serial, if the weights
come in bit-parallel, BWx and 1 are added to Dx and Dw,
respectively, until Dx is divisible by Dw or vice versa. At this
time, to align the input and weight in DWM bus, the distance
between two adjacent PEs (dPEs) is selected as maximum
number between Dx and Dw. For the dPEs, the number of
redundant cells per sample (nREDs) can be computed as
shown in Fig. 13(a). Fig. 13(b) shows an example of when
BWx = 4 and S = 2, and Fig. 13(c) shows an example
of the DWM input and weight bus when S = 1 and 2.
As shown in the figure, when the stride changes from 1 to 2,
the number of redundant cells is fixed to 1, while the dis-
tance between two adjacent PEs (dPEs) is doubled. Although
large stride or odd number of input feature bit-width can
degrade the effectiveness of the proposed DWM-based cell
array, since stride is generally less than 3 [21] and the 4-bit
input and weight configurations can present the full-precision
accuracy [28], [29] for recent CNNs, the proposed systolic
DWM-based array is effectively reconfigurable for the dif-
ferent layer configuration.

D. CNN IMPLEMENTATION RESULTS
DWM-based cell arrays for CNN have been implemented and
simulations are performed using 65 nm CMOS standard cell
library. Using the liberty file (.lib) format, we also generate
a DWM cell library through Synopsys for delay, power and
area estimation. The delay of DWM has been obtained based
on bitcell delay, interconnect resistances and capacitance
estimated for 65nm process. The large DWM (shift-based
write) footprint of 24.75 F2/bit is used in our simulations. For
the comparisons of power dissipation in architectural/circuit-
level, PrimeTime-PX and HSPICE are used in the simula-
tions with TYPICAL 1.2V 25◦C corner @333 MHz (clock
period = 3ns).

Fig. 14 shows the comparison of the area breakdown
between the CMOS-based implementation and DWM-based
implementation. For the comparison, we configure the
CMOS-based implementation to the baseline architecture

of Fig. 3 [4] which is converted to the DWM-based CNN
convolutional layer design (Fig. 6). As shown in Fig. 6 and
Fig. 14(c)-(d), the DWM-based in-memory-computing fea-
ture, which maps the dot product operation to the resistor
sensing operation, efficiently eliminate the large footprint
IBUF and WREG. Here, the magnetic nanowires of DWM
are laid on the back-end-of-line (BEOL) layers while the
other PE components (ADC, ACC, Adder, and DFF in Fig. 6)
are occupied in the font-end-of-line (FEOL) layers. As a
result, the DWM-based approach is 27% compact than the
CMOS-based design even though the DWM-based PE unit
takes ×4.7 ∼ ×5.0 larger area than the CMOS-based PE
unit as shown in Fig. 14. The power and energy breakdowns
are presented in Fig. 15. Although the ADC of DWM-based
PE unit consumes considerable power, i) inherent low power
shift operation of DWM and ii) the 7 parallel DWM-based
cell string leads to energy efficient CNN dot product opera-
tion. Compared to the CMOS-based design, 13% and 98.4%
energy savings (Fig. 15(h)-(i)) are observed in the DWM-
based IBUF and WREG, respectively. Consequently, the
DWM-based approach shows overall 45% less energy con-
sumption than the CMOS-based implementation. In addition,
as presented in section IV-A and Fig. 6(c), about half of
Nc cycles are reduced in the DWM-based design since the
partial sum registers in odd rows of PE array are removed.
Here, the latency is calculated using Nc as shown in Fig. 3(c).

In order to verify the effectiveness of the proposed
DWM-based convolutional layer design, hardware costs in
various PE array configurations are also simulated. In our
design, as the bit-width of inputs and weights are changed
from 4, 6, to 8-bit, the required number of iterations
for a serial multiplication (for an ‘input × weight’ term)
increases to 4, 6, and 8, respectively. Accordingly, the energy
savings over the CMOS-based design becomes smaller
as the bit-width increases while the power consumption
reduces with increasing bit-width as shown in Fig. 16(c)-(e).
However, the 4-bit input and weight configurations can
present the full-precision accuracy for recent CNNs as men-
tioned in recent bit-width quantization approaches [28], [29].
For this reason, the impact of PE array size on the area
and energy efficiency has been investigated with 4-bit
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FIGURE 15. Power/energy consumption breakdown of the comparison between the conventional CMOS-based and the proposed DWM-based CNN
convolutional layer implementations – (a)/(f) PE unit, (b)/(g) accumulator, (c)/(h) IBUF, (d)/(i) WREG, and (e)/(j) total (the PE array size N ×M
is 15 × 30 and the bit width of input activations and weights is 4-bit).

FIGURE 16. Comparison between the conventional CMOS-based and the proposed DWM-based CNN convolutional layer implementations in
terms of area, power, and energy consumption – (a)-(e) for various bit width of input activation and weight and (f)-(j) for various PE array size at
4-bit.

inputs and weights. From Fig. 16(f), the area savings over
the CMOS-based design become smaller due to the ADC
overhead as the PE array size increases. The proposed
DWM-based design shows significant energy reduction even

with increasing PE array size (Fig. 16(h)-(j)). It is because
the increased number of ADC can support more parallel dot
product operations. Table 2 also shows the comparison results
with the recent state-of-the-art work [22]. Compared to
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TABLE 2. Comparison with the state-of-the-art CNN accelerator.

the QUEST [22] which includes sufficient on-chip mem-
ory buffer using stacked-SRAM, the proposed DWM-based
implementation shows 22.9% improved energy efficiency.

V. DWM BASED BNN CONVOLUTIONAL LAYER DESIGN
This section presents the proposed DWM-based BNN convo-
lutional layer design [30]. For the implementation of the par-
allel XNOR-popcount operation with DWM, the DWM input
buses and the DWM-based weight reorder blocks for filter
sliding operations will be discussed with specific examples.

A. DWM-BASED BNN CONVOLUTIONAL LAYER
The architecture of the proposed DWM-based BNN convo-
lutional layer is illustrated in Fig. 17(a). It consists of the

FIGURE 17. (a) The block diagram of the proposed DWM-based BNN
convolutional layer. (b) The conceptual diagram and (c) The detailed
architecture of the proposed DWM-based cell array for BNN (for example,
input depth C = 3, filter size R = 2, the length of the DWM-based cell
string = 3, the first filtering window only).

DWM-based cell array for BNN, the accumulators, and
the output buffer. In the BNN design, the reduced param-
eters (input activation and weight) facilitate the spatially
unrolled architecture [24], for which the input activations and
weights are fully preloaded in the DWM input buses and the
DWM-based weight reorder blocks, respectively. Fig. 17(b)
shows conceptual diagram of the proposed DWM-based cell
array for BNN. Compared to the CNN convolutional layer,
the output Y1,1 of the convolutional layer is simply generated
using bit-wise AND and bit count between the unrolled input
activations Xb and weights W b. The detailed architecture of
the DWM based BNN will be described in the following sub-
section.

B. DWM BASED CELL ARRAY FOR BNN
The DWM-based cell array for BNN is presented
in Fig. 17(c). In the proposed design, to reduce the memory
access in filter sliding operations, the DWM-based cell array
performs the parallel XNOR-popcount operation [30].

1) XNOR-POPCOUNT AND DWM-BASED CELL STRING
The accumulated result

∑Nb
i=1X

b
i W

b
i , as shown in Fig. 17(b),

can be decomposed as following:∑Nb

i=1
Xbi W

b
i

=

∑2

l=0

∑4

r=1
Xb(l)r W b(l)

r

=

∑4

r=1

(
Xb(0)r W b(0)

r +Xb(1)r W b(1)
r +Xb(2)r W b(2)

r

)
(7)

where r is row index of the cell array, l is the index
of the DWM-based cell string, the input depth C is 3,
the filter size R is 2, and the accumulation size Nb is 12
(=R × R × C). The summation of the multiplied terms
(Xb(0)r W b(0)

r + Xb(1)r W b(1)
r + Xb(2)r W b(2)

r ) in (7) can be imple-
mented using the bit count (XNOR-popcount in [6]) and
the DWM-based bit-wise AND operations. As presented
in Fig. 17(c), the input activations Xb(l)1 are stored in MTJ,
and weightsW b(l)

1 are applied to the gate input of the selective
transistor. The output of

∑2
l=0 X

b(l)
1 ·W b(l)

1 can be imple-
mented with the series of resistances (referred as ‘DWM
based cell string’ in Fig. 17(c)). Similar to the DMW based
cell string in the CNN convolutional layer, the serial resis-
tance values depend on the input activations and weights.

2) PARALLEL XNOR-POPCOUNT OPERATION BASED
ON DWM
Fig. 18(a) shows the proposed DWM-based cell array for
BNN and physical address mapping of input activations. For
the H × H × C input feature map and R × R × C filter-
ing windows (FWs), each PE that consists of the proposed
DWM-based cell string, processes a D vector (1 × 1 × C
input activations). Each bank in DWM-based cell array stores
R× N × N (N = floor (H /R)+ 1) of D vectors, and a bunch
ofD vectors (R×R ofD vectors in the example of Fig. 18(a))
in a FW is handled in a column of DWM-based PE array.
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FIGURE 18. (a) The proposed DWM-based cell array for BNN and physical address mapping of input activations. (b) The DWM-based weight reorder block
(filter size R = 5, stride S = 1, bank 1 only).

FIGURE 19. The proposed DWM-based cell array for BNN: (a) initialization, (b) After 1st right sliding, (c) After 1st downward sliding, and (d) After 4th right
and 4th downward sliding with 18 × 18 × 6 input activation and 5 × 5 × 6 filter (stride = 1).

As shown in Fig. 18(a),N×N FWs can be placed on the input
feature map. For thoseN×N FWs, the most top leftD vectors
in the FWs is stored in sub-array 1 of bank 1, while most
bottom right D vectors in the FWs are placed in the sub-array
R of bank R. For the weight, PEs on the same row share the
same weights which are generated from the weight reorder
block.

Based on the data flow and the unrolled architecture,
parallel XNOR-popcount operations on all the non-
overlapped FWs can be performed in parallel. Fig. 19 shows
the simplified example with the nine non-overlapped FWs
(A, B, C, D, E, F, G, H, and I). First, the input activations
and the weights of the non-overlapped FWs are loaded to
the DWM-based PE array. On one hand, the input activations
for the first column of FW-A (Fig. 19(a)) are stored in the
first column of the Bank 1 (BK1 in Fig. 19(a)) in the BNN
configuration. On the other hand, the input activations for the

last column (5th column) of FW-A (Fig. 19(a)) are stored in
the first column of Bank 5 (BK5 in Fig. 19(a)). The bunches
of the input activations corresponding to each column of
the FW are placed to each bank in numerical order. When
the FW is sliding as shown in Fig. 19(b), since the input
activations for the right-most column in FW-A are located
in the second column of Bank 1, the input activations of
BK1 for FW-A are laid in the different column of PE array.
In order to align the input activations, left-shift operation of
DWM buses are performed in Bank 1 such that the input
activations and weight can be paired by rotating the weights.
Since the weights for the first column of FW-A (Fig. 19(b))
are previously (before sliding) located in Bank 2, weights
that are previously paired to Bank 1 location should move
to Bank2 location. For this reason, bank-to-bank counter-
clockwise rotation is performed as shown in the right-most
side of Fig. 19(b). When FW is sliding as shown in Fig. 19(c),
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FIGURE 20. Comparison of (a) power and (b) energy consumption per operation breakdowns between the conventional CMOS-based and the
proposed DWM-based BNN convolutional layer implementations. Comparison of (c) cumulative energy vs. clock cycles and (d) energy consumption for
CONV2 layer operation.

the input activations for bottom-most row in FW-A are pre-
viously (Fig. 19(a)) located in first row of FW-D. At this
time, since those input activations are distributed in the
first rows (sub-array 1s) of all Banks, left-shift operation of
DWM buses are performed in first rows (sub-array 1s) of
all the Banks. In order to align input-weight pair, intra-bank
clockwise rotation is conducted as shown in the right-most
side of Fig. 19(c). As shown in Fig. 19(d), the number of the
overhead cells depends on the size of the input feature map
and filter.

Using the shift operations of the DWM buses, the bank-
to-bank rotation (inter-bank rotation) and intra-bank rotation
can be performed for weight re-ordering. The detailed archi-
tecture of the weight reorder block is presented in Fig. 18(b).
For the right sliding of FW, the weights are first preloaded
in the weight reorder block. The reorder block outputs the
leftmost weights in DWM buses during right sliding of FW.
For the downward sliding of FW, those weights are shifted to
the extra DWM buses, which are located in the next subarray.
With the weight reordering and input activation aligning,
the parallel XNOR-popcount operation has been enabled in
the proposed DWM-based PE array.

The PE utilization ratio (PEUR) of the DWM-based cell
array for BNN is determined by input feature map size (H )
and filter size (R). Under the same number of PE units,
different layer configuration (different input feature map size
(Hd ) and filter size (Rd )) induces different PEUR. The PEUR
can be calculated as follows:

PEUR =
(min

{
Ńd , Ń

}
)
2
· (min {Rd ,R})2

Ń 2 · R2
× 100% (8)

where N′ = floor(H /R) and N ′d = floor(Hd /Rd ). After FW
sliding, when some of FWs overlap the boundaries of the
input feature map only to the right or down, the PEUR can
be calculated by replacing (min{N ′d , N

′})2 in the numerator
of (8) to min{N ′d , N

′} × (min{N ′d , N
′}-1). On the other

hand, when some FWs overlap the boundaries of the input
feature map to the right and down (Fig. 19(d)), the PEUR can
be calculated by replacing (min{N ′d , N

′})2 in the numerator
of (8) to (min{N ′d , N

′}-1)2.

C. BNN IMPLEMENTATION RESULTS
Based on the simulation environment of the CNN
design, the BNN hardware cost comparisons between the
CMOS-based design and DWM-based design are performed,
and the numerical results are presented in Fig. 20. For the
comparison, since the DWM-based BNN design enables the
dot product operations of the multiple FWs simultaneously
(Fig. 19), the CMOS-based BNN architecture is modified to
have the same output throughput. The power and energy cost
per operation (pop-count and data movement) are presented
in Fig. 20(a)-(b). In the overall CONV2 layer operations,
as the pop-count and right sliding are dominant, the cumu-
lative energy during each time interval is computed and
presented in Fig. 20(b). As shown in Fig. 20(c)-(d), since
the DWM-based in-memory-computing feature alleviates the
expensive data movement cost in the IBUF and WREG,
43% reduced cumulative energy at the cost of 234 increasing
number of processing cycles. Since those spatially unrolled
architecture shows relatively higher throughput, and the
off-chip DRAM access latency is larger than the accelerator
latency, the timing overhead can be overshadowed in most
of the neural network accelerator. Fig. 21 shows the area
comparison for the overall CONV2 layer. As shown in the
figure, since the DWM nests on the BEOL layer, 60% of
area saving is achieved compared to the CMOS-based design.
Compared to the DWM-based 1-bit CNN cell array, the pro-
posed BNN cell array shows 26% area saving and 56% energy

FIGURE 21. Area comparisons among the conventional CMOS-based,
the proposed DWM-based CNN (1-bit version), and the proposed
DWM-based BNN convolutional layer implementations.
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reduction, as shown in Fig. 21 and Fig. 20(d), respectively.
This is because the CNN cell array is systolic based, the PE
units need DFFs for the intermediate results. On the other
hand, since the unrolled BNN structure facilitates the XNOR
pop-count operation at once, the intermediate stage and DFF
overhead can be eliminated in the proposed DWM-based
BNN cell array. The comparison with the state-of-the-art
is also presented in Table 3. The proposed DWM-based
BNN design shows 17.8% higher energy efficiency than [20]
without erroneous output activations.

TABLE 3. Comparison with the state-of-the-art BNN accelerator.

VI. CONCLUSION
In this paper, we propose a novel DWM-based cell array
architecture for an area and energy-efficient CNN/BNN
convolutional layer design. By exploiting the resistive cell
sensing mechanism, the dot product and XNOR-popcount
operations that mainly compose the CNN/BNN convolutional
layer, are effectively implemented with DWM. For designing
filter sliding in CNN and BNN convolutional layers, opti-
mal data flow is also proposed by exploiting the sequential
access pattern of DWM. In the CNN convolutional layer
design, the proposed DWM-based implementation shows
27% of area reduction compared to the CMOS-based design
due to the BEOL layer nested DWM feature. In addition,
the inherent low power shift operation of DWM and the
7 parallel DWM-based cell string lead to 45% of energy
savings. Similarly, in the BNN convolutional layer design, the
efficient data movement of DWM-based architecture enables
43% of reduced energy cost while occupying only 40% area
compared to the CMOS-based design.
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