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ABSTRACT Approaches that usemore than two consecutive video frames in the optical flow estimation have
a long research history. However, almost all such methods utilize extra information for a pre-processing flow
prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously
developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the
matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in
general, optical flow is locally constant in the sense of time and the likelihood function depends on both the
previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation.
As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our
CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded
mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the
matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in
occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section
shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.

INDEX TERMS Motion estimation, optical flow, matching cost, multi-frames optical flow.

I. INTRODUCTION
Optical flow estimation is important for a large variety of
computer vision applications, such as 3D scene reconstruc-
tion, autonomous driving systems and robotics. Thus, optical
flow can be considered as one of the fundamental problems
of computer vision. Originally, the optical flow methods are
based on the assumptions of brightness constancy and spatial
smoothness [1], [2]. Although there is a long research history,
accurate and robust optical flow is still an open problem due
to illumination changes, large displacement, blur, texture-less
regions and occlusions.

Recently, several new approaches [3]–[6] leverage end-to-
end convolutional neural networks [7] to take an important
step forward in optical flow estimation, and results are close
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to state-of-the-art. However, these networks without a special
architecture for optical flow estimation can realize their full
potential only with adequate training data and appropriate
training arrangements [8]. For example, PWC-Net [6] gets
state-of-the-art results with a new neural network architecture
by embedding several classical principles: pyramid, warping
and cost volume.

In this paper, we focus our efforts to improve the part of
neural network architectures that is based on classic methods.
Several typical methods use an initialization by approximate
nearest neighbor fields (ANNF) [9]–[12] or sparse descriptor
matching [13], they leverage edge-preserving interpolation
techniques [14], [15] to get final dense optical flow. High
quality correspondence is the key for dense optical flow
estimation.

Early optical flow methods make two assumptions: the
optical flow motion vector field belongs to the set of
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continuous values; and the magnitude of the motion vector
values is relatively small. Thus, the problem of large motion
vectors arises. Note that the same problem exists in stereo
matching and the most successful algorithms rely on dis-
crete inference, where all possible discrete disparity vectors
form the matching search domain. Stereo matching methods
achieve an impressive accuracy, and this is why many optical
flow estimation algorithms try to exploit the same technique
to solve the optical flow problem in the framework of the
discrete matching paradigm [16]–[19]. Generally, a stereo
matching method pipeline consists of the following steps:
matching cost computation, cost aggregation or optimization
and post-processing refinement. Unfortunately, the straight-
forward application of this stereo matching scheme to optical
flow is very difficult due to the huge size of the discrete 2D
motion vector domain in comparison to the 1D stereo prob-
lem [19]. Recent progress in parallel calculation architectures
shows that processing on the non-restricted cost volume is
feasible and that the regular structure of this volume allows
the use of global optimization techniques [20].

The main part of the above pipeline is the cost volume
formation. A matching cost or a dissimilarity measure is an
essential part of the correspondence problem that, in turn, is a
fundamental problem in computer vision. Thus, calculation
of the cost volume in stereo matching and discrete optical
flow is a very important sub-problem [21]. There are two
kinds of cost calculation approaches: a per-pixel and an area
based dissimilarity measure estimation. The per-pixel dissim-
ilarity measure usually is the Euclidean distance in the RGB
color space between two image matched values or the same
distance between the gradients. The robust per-pixel measure
is reported [17], [18] when distances between gradients and
values are combined in one measure. Early methods that
exploited area based cost models calculated the cost by using
a non-parametric transformwith a support region such as rank
and census [22] or normalized cross correlation [23]. Using a
combination of these two costs can significantly improve the
result of stereomatching [24]. A patchmatch approach is pro-
posed in [25], where they used the sum of squared distances
to compute an initial matching cost. Consequently, Kong and
Tao [25] propose a new cost learning technique, which is the-
oretically extended by Brown et al. [26]. The latest progress
in the field of CNN provides a more robust matching cost for
stereo [27]–[29] and optical flow [10], [30]. Consequently,
the traditional cost computation has been replaced by the
CNN based cost in most recent works, and we also include
the CNN based framework as a part of our cost calculation
process.

Despite progress in the robust matching cost formation
there is still one fundamental problem in the matching dis-
similarity estimation: the cost uncertainty in the occluded
region, due to the lack of a real correspondence between
matched pixels in this case. For the standard stereo match-
ing that uses only two images the mentioned problem can-
not be solved in a straightforward manner. Fortunately,
optical flow methods usually deal with more than two

images and in the presented work we show how to han-
dle occlusion problem using three consecutive images in
the considered video sequences. Note that the occlusion
handling in the cost volume domain improves the solu-
tion robustness also in non-occluded regions, because the
energy minimization approach is very sensitive to the cost
outliers.

Formally, all methods that use more than two images
can be considered as related work, however the pro-
posed triple patch match model is fundamentally dif-
ferent from these approaches. Usually, the related work
introduces a temporal regularization [31]–[34], a trajectory
regularization [35]–[37] or predicts optical flow between pre-
vious frames to guide the estimation of the current flow
field [38], [39]. Another related work is [40], which proposed
a variational model for joint optical flow and occlusion
estimation with three frames. Recently, there are several
papers that embed a multi-frame optical flow estimation
into the convolutional neural network architecture. Mau-
rer and Bruhn [39] proposed an unsupervised online learn-
ing approach that estimates a current motion model with
multi-frame and provides predicted motion information for
forward flow estimation. Janai et al. [41] proposed an unsu-
pervised learning method for multi-frame optical flow. They
construct past cost volume and future cost volume with three
frames and leverage convolutional neural network to reason
occlusion. Neoral et al. [42] also estimate occlusion masks
by introducing the previous frame flow and named it Con-
tinualFlow. Ren et al. [43] use a neural network to fuse
optical flows of different moments depending on longer-term
temporal cues.

In contrast, we propose a new matching cost formation
based on two assumptions: most occlusion regions that are
invisible in the forward frame image (relative to the current
frame) are visible in the backward frame; the forward flow
is approximately equal to the negative value of the backward
flow. The assumptions allow us to form the composite match-
ing cost as a combination of two independent forward and
backward matching costs. We consider the proposed compos-
ite cost as the main contribution of the paper. Implementation
of our method increases the robustness of the optical flow
estimation.

To demonstrate the advantage of the proposed cost forma-
tion we incorporate our cost in the pipeline of the state-of-
the-art methodDCFlow [30] and perform several experiments
during each step of the prototype estimation scheme. Con-
sequently we show that the results of the prototype method
is improved for results of intermediate steps and for the
final estimation of the full pipeline. Our approach consider-
ably increases the optical flow estimation on the MPI-Sintel
dataset [44] after thematching cost processing that is themost
important part of the proposed pipeline. As a result, accuracy
of our estimation without the back flow consistency check
increases up to 50% in occluded regions and up to 9% in
non-occluded regions relative to the DCFlow algorithm origi-
nal results. After post-processing steps our estimation results
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FIGURE 1. Illustration of two main principles for the triple image matching: (a) - supplementing visibility of occluded regions in a triple
frame set of a video sequence; (b) - local time optical flow constancy.

achieve state-of-the-art results especially on the MPI-Sintel
dataset.

The rest of this paper is organised as follows. In section II
we introduce our problem definition. In section III we
describe the proposed cost volume formation with triple
frame. Our improved optical flow estimation pipeline is
described in section IV. In section V we present our exper-
iments. In section VI we conclude our work and plan our
further research.

II. PROBLEM DEFINITION
Discrete optical flow estimation belongs to the generalmatch-
ing problem, and in the framework of the global approach the
matching problem is formulated in terms of energyminimiza-
tion with the energy function in the following form:

E (v) =
∑
p∈V

Cp
(
vp
)
+

∑
(p,q)∈Ep

Bp,q
(
vp, vq

)
(1)

where set p ∈ V corresponds to pixels and set (p, q) ∈ Ep
to edges of a pixel p neighborhood of an image graph G =
(E,V); vp denotes the label of pixel p which belongs to some
discrete set of 2D motion vectors v ∈ V that represents
the so called correspondence search region; Cp (·) defines
a unary potential which corresponds to the conventional
penalty or dissimilarity cost; Bp,q (·, ·) is a binary potential
which defines edge interaction between pixels (p, q). Here
we assume that the search region is discrete and rectangular
V = [−vmax ,−vmax+1, . . . , vmax−1, vmax].

Consequently, the integer solution of the optical flow esti-
mation problem v should minimize the energy functional in
Eq. (1):

vp = argmin
vp

E
(
vp
)

(2)

The binary potential Bp,q in Eq. (1) defines the local
smoothness of the estimated optical flow v and in our algo-
rithm has the following form:

Bp,q = µmin
(∣∣vp − vq∣∣ ,1) (3)

where µ and 1 the algorithm intrinsic parameters.

As we note in the introduction the choice of the unary
potential (cost) in matching tasks is very important. The
main contribution of our paper is a new dissimilarity cost
formation based on triple image matching. We explain the
main concept and motivation of the cost calculation in the
next section. However, firstly it is necessary to describe the
prototype cost calculation based on a simple convolutional
neural network (CNN).

To calculate the cost volume in our pipeline we use the
feature extraction CNN network trained by [30]. This small
network contains 4 convolutional layers and each layer uses
64 filters. The first three layers are followed by a ReLU
layer and output are normalized to produce a unit-length
feature. The receptive field of this network or the size of
a matched image patch is 9 × 9, which has proven to be
effective for stereo and optical flow estimation. Or formally,
the considered CNN transforms the 81D vectors iNp that
consist of image values in the patch neighborhood relevant
to a pixel p into the 64D up vectors of the CNN feature space:
up = TCNN

(
iNp
)
.

In turn, the cost is the vector dot-product of two matched
pixel features:

C (p, v) = 1− utpu
t+1
p+v (4)

For more details about the used CNN readers can refer the
paper [30].

Energy minimization methods have lately attracted much
attention in computer vision, especially in the context of
image segmentation and optical flow estimation. The first
implementations of the energy minimization methods such as
belief propagation [45] and graph cuts [46] in stereomatching
have provided a significant progress in disparity map esti-
mation. However in our case, where a huge cost volume has
to be handled in Eq. (1) the above approaches are computa-
tionally demanding. As the trade-off between computational
complexity and accuracy of energy minimization we use
semi-global matching technique (SGM) [47] to process the
cost volume the same as in the DCFlow method [30].
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FIGURE 2. Cost volume calculation scheme for the standard CNN based approach and for the proposed triple image matching technique. Both individual
costs are unified in one triple image matching cost. Here, the middle image is used twice: for the forward and backward costs calculation.

III. COST VOLUME FORMATION BASED ON TRIPLE
IMAGE MATCHING
Our idea to use three constitutive frames for cost calculation is
based on two principles: supplementing visibility of occluded
regions in a triple frame set of a video sequence and local time
optical flow constancy.

The first principle is illustrated in Fig. 1(a). One can see
that the occlusion region t + 1 in the frame f t+1 has no
corresponded pixels relative to the current frame f t , but this
occluded region is visible in the frame f t−1. The same sup-
plementing visibility exists for the occluded region t − 1.The
illustrated assumption is not a physical law or a strict general
observation, however in real world scenarios, those pixels
which are visible in a current frame and turn invisible in the
next frame are usually visible in the previous frame. Thus,
in the set that consists of three consecutive frames there are
less pixels in the current frame that have no correspondent
pixels in the next or in the previous frames.

The second principle is illustrated in Fig. 1(b). We sup-
pose that the motion vector vfrp , which corresponds to the
forward optical flow direction (to the future) is equal to
the negative motion vector −vbkp , which corresponds to the
backward optical flow direction (to the past). This principal
is a direct consequence of the optical flow framework, and we
reformulate it in the cost form rewriting Eq. 4:

C fr (p, v) = 1− utpu
t+1
p+v = 1− utpu

t−1
p−v = Cbk (p,−v) (5)

It is obvious that the above equality Eq. 5 holds only
for non-occluded pixels in the next and the previous frames
simultaneously. And for these pixels it is reasonable to make
the final cost as a linear combination of the forward and
backward costs to make the composite cost more robust:

C = λ1C fr
+ λ2Cbk (6)

However, if Eq. 5 does not hold as illustrated in Fig. 1(a),
we assume that one of the costs C fr or Cbk is the true
cost. Consequently, to avoid ambiguities caused by occlu-
sion, we have to choose the true one. Recall that the energy

minimization approach is derived from the maximum a pos-
teriori probability rule with the assumption that the cost of
the estimated motion vector is inversely proportional to its
probability:C ∝ − logP. It means that a lower cost value cor-
responds to a higher probability. Because we think that this is
a good reason to choose the most probable cost as a true cost,
consequently, we formalize our paradigm in the presence of
occlusion as a minimum choice between correspondent cost
values:

C = min
(
C fr ,Cbk

)
(7)

To unify both sets of pixels: occluded and non-occluded,
the final cost can be written in the following form:

C = λ1C fr
+ λ2Cbk

+ λ3min
(
C fr ,Cbk

)
(8)

where linear weights λ1,λ2 and λ3 are our algorithm intrinsic
parameters to be optimized and we explain their choice in the
experimental section. In Fig. 2 the computational scheme of
the composite cost volume is summarized. Also one can see
the difference between the proposed cost formation and the
standard one.

IV. IMPROVED OPTICAL FLOW ESTIMATION PIPELINE
To demonstrate advantages of our proposed cost formation
we design our optical flow estimation pipeline based on triple
image matching cost formation (TIMCflow), which mainly
follows the DCFlow algorithm [30]. In Fig. 3 we depict our
main algorithm (red arrow) in parallel with the two-frame
DCFlow prototype (black arrow). We demonstrate the result
difference between the compared algorithms in all control
points (steps) by including the relevant table in the same
figure. The compared intermediate results are based on the
Sintel training dataset under the EPE of all | noc | occmetrics.
Note that numbers in Fig. 3 corresponding to the outlier
handling step are not meaningful, because the sparseness
density of the algorithms is different.
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FIGURE 3. The pipeline of two-frame baseline method (a) and our TIMCflow algorithm (b) with the results comparison on MPI Sintel data set after
each step.

TABLE 1. Results on the final pass of the MPI-Sintel benchmark for different regions, velocities (s) and distances from motion boundaries (d).

The cost volume formation of the scheme Fig. 3 is
described in Section III, and in the experimental section we
compare the simple flow results obtained by two different
cost formation.

The optimization block of the scheme in Fig. 3 is described
in Section II. From Fig. 3 one can see that after the opti-
mization step our three-frame approach considerably out-
performs the two-frame prototypes (results highlighted by
yellow).

The next step is the occlusion detection and out-
lier removal. To perform this task most work uses the
forward-backward consistency strategy [12], [19], [30]. We
also follow this idea, but the problem is that the consistency
check procedure usually removes estimated flow values in
occluded regions, thus we cannot capitalize advantages of the
flow estimation that are achieved on the previous algorithmic
step. Consequently we try several different strategies for
outlier removal and choose the best that is described in the
experimental section.

The next step of our pipeline is the sparse data interpo-
lation, because the output result of the previous steps is the
sparse set of estimated values and this set should be inter-
polated to the dense optical flow. For this purpose we choose
the state-of-the-art interpolation method InterpoNet [48]. The
motivation behind this choice is that the method can produce
good dense optical flow for all kinds of sparse optical flow
input, for example FlowField [9], DeepMatch [11], DF [19],
CPM [12].

Both two-frame and three-frame pipelines include the same
coarse-to-fine procedure based on a continues optimization
framework [49] that is the final step of our pipeline.

The performance of the proposed algorithm on MPI Sin-
tel benchmark is confirmed in Table 1, where we com-
pare the proposed algorithm TIMCflow with five discrete
optical flowmethods: FlowFieldsCNN [10], CPM-Flow [12],
FullFlow [20], FlowFields [9] and DCFlow [30], two inter-
polation methods with discrete optical flow initialization:
EpicFlow [14] and InterpoNet [48]. One can see that our
method is better than the prototype DCFlow method and also
outperforms all compared algorithms.

In addition, we also show the results of several recent
learning based optical flow estimation methods in this table:
PWC-Net [50], ProFlow [39], Back2FutureFlow [41],
MFF [43]

V. EXPERIMENTAL RESULTS
The experiments have been designed to demonstrate the main
advantages of the proposed cost formation approach. They are
divided into several key parts related to the main algorithm
steps in Fig. 3 where:

• the robustness of the proposed triple image matching
cost in comparison with standard two-image matching
cost is evaluated.

• the advantage of using the proposed cost in the
energy minimization part of the pipeline is analyzed
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TABLE 2. Cost volume processing results with WTA output: quantitative comparison of two-frames and three-frames using the endpoint error metric for
every MPI-Sintel training set sequence. The top part of this table is the all pixels mask, the middle is the non-occluded pixels mask and the bottom is the
occluded pixels mask.

TABLE 3. Quantitative comparison of two-frames and three-frames using
the endpoint error metric with different masks.

(corresponding to Step 1 in Fig. 3) and the results of our
additional simplified pipeline of Fig. 5 are reported.

• we motivate our choice for the final outlier handling
strategy by analizing the intermediate results after
Step 2.

• we compare the results of two different pipelines after
flow field interpolation (corresponding to Step 3) and
refinement (corresponding to Step 4).

• we report and compare running time of our pipeline in
comparisonwith the two-frame version of our algorithm.

In our experiments we mainly use the final pass of the
MPI-Sintel dataset [44] that is a challenging flow evalua-
tion benchmark, which contains long image sequences with
large displacements, motion blur, defocus blur and specular
reflections. For several additional experiments we also use the
KITTI flow 2015 dataset [51] and a part of the Middlebury
training dataset [52]. We discuss the results of the proposed
algorithm in comparison with state-of-the-art methods on the
Sintel dataset. Note that the KITTI dataset differs from the
Sintel dataset: the first data set include shading and over-
exposure, the second motion blur and dramatic occlusion.
As a result, different strategies are necessary to reach state-
of-the-art.

A. WTA OUTPUT RESULTS COMPARISON
We perform experiments with the winner takes all (WTA)
output for two different cost formation approaches in Fig. 3.
In this part, we found that the best results of our approach
can be achieved by using λ1 = 0, λ2 = 0 and λ3 = 1 as
parameter setting in Eq. 8. In Table 2 the comparison between
two different cost calculations is shown by using the final pass
of the Sintel training data. One can see that our triple image
matching cost produces more accurate results and improves
the accuracy of the standard cost calculation technique in
the occluded area by 32% and by 16% in the non-occluded
region. The comparison results confirm the ability of the

proposed cost to handle occlusion. Note that the proposed
cost formation is more robust than the standard two-image
matching cost and that is confirmed by the results in the
non-occluded region.

B. DISCRETE FLOW RESULTS COMPARISON
The next experiments are performed to show the advantage
of using the proposed cost in the energy minimization part of
the pipeline (Step 1 in Fig. 3). Here we use the SGM approach
to minimize energy of the cost volume for three optical
flow datasets: the MPI-Sintel, the Middlebury and the KITTI
flow 2015 datasets. The Middlebury is represented only by
six sequences (Grove2, Grove3, Hydrangea, RubberWhale,
Urban2 and Urban3) because other sequences do not provide
the ground truth or only two frames are available.

We prepare Fig. 4 to demonstrate the advantage of our
approach for visual comparison with the standard two-frame
approach. Occluded regions are displayed with shadow in
the optical flow ground truth image. One can see that our
algorithm is able to estimate flow values in occluded regions,
while the two-frame method produces noisy flow values in
these regions. For example, the regions in the red bounding
box in Fig. 4 illustrate our claim. Also our method is more
accurate in non-occluded regions (the regions in the blue
bounding box). It is important, because non-occluded regions
expand their flow values over image boundaries (the regions
in green bounding box).

In this subsection we also perform an experiment to obtain
the final dense optical flow without backward flow check
and interpolation. In this case, the cost volume pre-processing
based on the bilateral filtering is added, like it is done in the
paper [53]. Fig. 6 illustrates this experiment and shows that
the filtering operation in the cost volume can improve the
discrete optical flow estimation. Table 3 gives the quantitative
evaluation results. One can see that for the MPI-Sintel dataset
the accuracy of our estimation without the backward flow
consistency check increases up to 50% in occluded regions
and up to 9% in non-occluded regions in comparision with
the two-frame approach, which are the original results of
DCFlow algorithm before consistency check. In the case
of the cost volume pre-filtering accuracy of the final result
(three-frame+ in Table 3) increases further by 21% and 12%
in non-occluded and occluded regions respectively.

In this experiment we also leverage a variational energy
minimization post-processing method [49] to obtain our final
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FIGURE 4. Optical flow results illustration: the first row illustrates the reference image; ground truth with occlusion mask (shadow area) is shown in
the second row; the third row illustrates discrete optical flow using two frames; the two-frame approach results after consistency check is shown in the
forth row; the fifth row illustrates the optical flow results with three frames; three-frame approach results with different outlier removal strategies are
shown in the sixth - ninth rows.

optical flow results (three-frame++ in Table 3). In compar-
ison with the DCFlow results after interpolation and post
processing (Table 5), our method reaches the same accuracy
level in non-occluded regions directlywithout the consistency
check and interpolation. The result of this experiment demon-
strates that potentially one can use our approach without the
consistency check and interpolation parts.

C. RESULTS AFTER OUTLIERS HANDLING
In the previous subsection it is shown that accuracy of
the optical flow estimation with our triple image match-
ing cost formation is considerably higher than with the

standard two-image matching cost. In this part, we test
the impact of different outlier handling methods for the
final optical flow estimation results (Step 3 in Fig. 3).
The problem is that the popular consistency check proce-
dure usually removes estimated flow values in occluded
regions, thus we cannot capitalize advantages of the flow
estimation that are achieved in the previous algorithmic
step.

In this subsection we apply several different strategies for
outlier handling, which include outlier removal based on the
flow field map segmentation and several modifications of the
consistency check procedure. These results are summarized
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FIGURE 5. Proposed additional algorithm based on tripe image matching cost and cost volume filter: outlier handing and interpolation part are not
necessary in this simplified pipeline.

FIGURE 6. Discrete optical flow results on the MPI-Sintel training dataset for two frames, three frames and three frames with cost volume filtering; final
flow values after post-processing.

TABLE 4. Endpoint error and density of outliers handling results on the
final pass of the MPI-Sintel dataset: DCFlow (sparse matching points) and
four different outliers handling strategies.

in Table 4. For Strategy1, we use the breadth-first search [54]
technique to segment the flow field map and remove the
regions with less than 20 pixels. For Strategy2, we estimate
two different discrete flows relative to the same current frame
f t , but with different sets of λ. We use standard forward
and backward flow consistency check to Strategy3, but with
two different thresholds T1 and T2 for consistency check:
T1 is equal to 0.8 for area in which C fk < Cbk and T2 is
equal to 3 elsewhere. For Strategy4, we use backward flow
computed also with three images but shift one frame com-
pared with forward flow. Different outlier handling results
can be seen in Fig. 4. Formally, the best results among our
strategies is achieved with Strategy2 and Strategy4. However,
these strategies produce a more sparse output, thus making
the final optical flow estimation worse than the output of
Strategy3.

D. DENSE OPTICAL FLOW RESULTS AFTER
INTERPOLATION AND REFINEMENT
We consider two state-of-the-art interpolation methods in our
experiments: EpicFlow [14] and InterpoNet [48] to get dense
initialization flow values for the final variational refinement.
The default parameters of EpicFlow and InterpoNet are the

TABLE 5. Interpolation and variational refinement results: quantitative
comparison of interpolation and refinement results with DCFlow (sparse
matching points) and for four different outliers handling strategies.

same for different outlier handling strategies. In the interpola-
tion part of Table 5 one can see that our approach gets the best
interpolation results with Strategy3 (circle 4 in Fig. 3), even
for the refinement results (circle 5 in Fig. 3). We find that the
interpolation result of the InterpoNet method is better than
the result obtained with the EpicFlow algorithm, especially
for occluded regions.

E. ADDITIONAL ALGORITHM
The intermediate results of our algorithm considerably out-
perform the DCFlow method, however the final performance
gain is not that significant, we propose an additional algo-
rithm in Fig. 5 that simplifies the proposed calculation
scheme by removing the outlier removal and interpolation
steps of the original pipeline. Consequently, this innovation
decreases computation complexity. In this case, the results
are not better, but comparable with the original results of

17100 VOLUME 8, 2020



F. Yang et al.: Improved Discrete Optical Flow Estimation With Triple Image Matching Cost

TABLE 6. Running time of different methods (sec).

the two-frame pipeline, however, this decreases the compu-
tational complexity of the algorithm.

F. RUNNING TIME
We report and compare running time of our main pipeline
(in Fig. 3 and additional algorithm (in Fig. 5) in Table 6. Our
three-frame version increases the calculation time minimally.
In contrast, our additional algorithm Three-Frame_add algo-
rithm considerably decreases the computational time.

VI. CONCLUSION
In this paper, we propose a new matching cost formation
based on two assumptions: most occlusion regions that are
invisible in the forward frame image (relative to the current
frame) are visible in the backward frame; the forward flow
is approximately equal to the negative value of the back-
ward flow. The assumptions allow us to form the composite
matching cost as a combination of two independent forward
and backward matching costs. The proposed method allows
us to improve the standard two-frame matching technique.
Consequently, our approach considerably increases discrete
optical flow estimation after the matching cost processing.
Experimental results have shown that our TIMCflow pipeline
can get better results than two-frame pipeline and reach
three first rank positions among nine metrics. In addition,
we also propose a simplified pipeline without consistency
check and interpolation that can keep comparable accuracy.
The running time of our TIMCflow stays at the same level
as the two-frame pipeline, and our reduced pipeline shortens
running time significantlywhen compared to the full pipeline.
Note that the consistency check procedure usually removes
estimated flow values in occluded regions, thus we cannot
fully capitalize advantages of the flow estimation that are
achieved on the previous algorithmic step of our pipeline,
and we plan to improve this aspect of our algorithm in future
work.
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