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ABSTRACT Skeleton-based human action recognition is becoming popular due to its computational
efficiency and robustness. Since not all skeleton joints are informative for action recognition, attention
mechanisms are adopted to extract informative joints and suppress the influence of irrelevant ones. However,
existing attention frameworks usually ignore helpful scenario context information. In this paper, we propose a
cross-attentionmodule that consists of a self-attention branch and a cross-attention branch for skeleton-based
action recognition. It helps to extract joints that are not only more informative but also highly correlated
to the corresponding scenario context information. Moreover, the cross-attention module maintains input
variables’ size and can be flexibly incorporated into many existing frameworks without breaking their
behaviors. To facilitate end-to-end training, we further develop a scenario context information extraction
branch to extract context information from raw RGB video directly. We conduct comprehensive experiments
on the NTU RGB+D and the Kinetics databases, and experimental results demonstrate the correctness and
effectiveness of the proposed model.

INDEX TERMS Action recognition, cross-attention, context information.

I. INTRODUCTION
Human action recognition is a fundamental and challenging
research problem in computer vision [1]–[8]. The perfor-
mance of human action recognition has an important influ-
ence on many other tasks like video understanding and video
surveillance. Many works have been proposed with different
input modalities, including RGB video [1], [2], [9], [10], opti-
cal flow [4], [11] and human 2D/3D skeletons [8], [12], [13]
(the optical flow and human skeletons can be estimated
directly from the RGB video). Comparing to RGB video and
optical flow, skeleton data is computationally more efficient
and is robust to the variations in clothing and illumination.
With the development of depth sensors like Kinetic [14]
and pose estimation technique [15], [16], skeleton-based
human action recognition receives more and more attention
recently [6], [17]–[19].

As shown in Fig. 1, human actions can be represented by a
sequence of skeleton joints. It is well studied that for a certain
action, different joints may contain different information and
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should have different influences for action recognition [3],
[5], [6], [8]. For example, when performing snatch weight
lifting, the movements of arms may be more informative
than that of feet, the influence of joints w.r.t. arms is more
important accordingly. Yet the informativeness degree of
joints may also vary over frames for a certain sequence.
To address these, attention mechanisms [20] have been incor-
porated into skeleton-based action recognition to adaptively
assign different weights to different joints. For example,
Yang et al. proposed a convolutional neural network (CNN)
based attention architecture to focus on the informative joints
and frames [8]. Liu et al. proposed a global context-aware
framework to increase the attention capability of the LSTM
model [3]. However, these existingworks usually learn joints’
attention from skeleton modality only. Seen from Fig. 1,
being a high-level abstraction of human action, the skeleton
data may ignore the helpful scenario context information,
such as the action is performed at a weightlifting venue with
a barbell alongside. Yet human actions are often closely
related to such context information. For example, one is more
likely to do snatch weight lifting than playing football at a
weightlifting venue and a barbell alongside, and the skeleton
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FIGURE 1. An illustration of the sequence of RGB frames and their
corresponding skeleton joints for action snatch weight lifting (the sample
is selected from the Kinetics [1] database). The circle sizes of joints
indicate their attention weights for action recognition. The scenario
context information extracted from RGB frames benefits the learning of
attentions for skeleton joints.

joints w.r.t. arms should be more informative than that of
feet with high probability accordingly. The scenario context
information can help us to learn attentions for skeleton joints.

In this paper, we propose a cross-attention module
for skeleton-based human action recognition. The joints
attention in the proposed cross-attention module consists
of two branches: self-attention branch and cross-attention
branch. The self-attention branch measures the informative-
ness degree of each joint and is learned from the skeleton
representations directly. The cross-attention branch mea-
sures the relevancy between joints and the scenario context
information. By combining the self-attention branch and the
cross-attention branch, our cross-attention module pursues to
extract skeleton joints that are not only more informative but
also highly related to its context information, which in conse-
quence helps to learn more discriminative features for action
recognition. Besides, the cross-attention module is designed
tomaintain the input variables’ size such that it can be flexibly
embedded into many existing frameworks without breaking
their structures. We further develop two instantiations for the
cross-attention branch and conduct a comprehensive ablation
study to investigate their behaviors. To facilitate end-to-end
training, we propose a flexible and lightweight scenario con-
text extraction branch to learn context information from raw
RGB video directly. Finally, the whole framework is evalu-
ated on the NTU RGB+D and Kinetics databases and exper-
imental results demonstrate its correctness and effectiveness.

The main contributions are three-fold. (1) We propose
a context-aware cross-attention module that considers the
helpful scenario context information. It helps to extract joints
that are not only more informative but also highly related
to the context information. (2) We develop a lightweight
context information extraction branch that enables end-to-
end training of the whole model. (3) We conduct experiments
on the NTU RGB+D and the Kinetics databases and experi-
mental results demonstrate the effectiveness of the proposed
cross-attention module.

II. RELATED WORK
A. SKELETON-BASED ACTION RECOGNITION
Skeleton-based human action recognition has received more
and more attention [5], [6], [12], [17], [21]–[25]. Various

handcrafted features have been proposed, for example,
the covariance matrices of joint trajectories [26], the pair-
wise relative position features [27] and the histograms of 3D
joints locations [28]. Recently, the great success of deep
neural networks has also encouraged its implementation in
skeleton-based action recognition. For example, recurrent
neural networks (RNN) are widely adopted due to its power
in modeling the temporal relations [3], [5], [29]. Some works
also transform the sequence of skeleton joints into 2D arrays
and utilize the 2D convolutional kernels to extract the spatial
and temporal relations [8], [17]. However, these works usu-
ally need predefined transformation orders that may break the
graph properties of human skeletons.

Recently, Graph Convolutional Neural Networks (GCNs)
are proposed to generalize the 2D convolutional kernel from
grid-like structured data such as images to arbitrary graph
structures [30]. While human skeleton data forming a nat-
ural graph with its node being joints and edges being body
bones, Yan et al. [13] extended the ideas of GCNs to
skeleton-based action recognition and propose the ST-GCN
model. ST-GCN represents the sequence of skeleton joints
into a spatio-temporal graph. By performing graph convo-
lutions on the constructed spatio-temporal graphs directly,
ST-GCN obtains better representational ability and achieves
promising results for action recognition. Following [13], [31]
further developed a graph edge convolutional neural net-
works to learn complementary information form body bones
to the skeleton joints, and propose hybrid neural networks
to combine graph node convolutional neural networks and
graph edge convolutional neural networks. However, these
works treat joints in an equal manner and ignore the fact that
different joints and frames may have different influences for
certain action recognition.

B. ATTENTION MECHANISMS
Our work is also motivated by the success of attention
mechanisms [20]. The attention modules allow the net-
works to adaptively focus on informative response and
have been successfully implemented in many applications,
including machine translation [20], image caption [32] and
action recognition [3], [8], [33]. Though human actions can
be represented by a sequence of 2D/3D skeleton joints,
the informativeness degree of different joints may vary for
action recognition. For example, when performing wav-
ing hands, the skeleton joints with respect to hands may
be more informative than that of legs. The attention strat-
egy has also been implied in skeleton-based action recog-
nition to help the network to focus on more informative
joints. For example, Yang et al. transformed the sequences
of skeleton joints into 2D arrays and developed a global
long-sequence attention network based on 2D convolutional
kernels to extract the key joints and frames [8]. Liu et al.
proposed a global context-aware attention module to promote
the selective attention of LSTM networks [3]. Song et al.
proposed a spatial attention module to adaptively select
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the informative joints and a temporal attention module for
keyframes extraction [5].

Although the attention mechanisms have been used for
skeleton-based action recognition, our cross-attention mod-
ule is significantly different from existing works. In exist-
ing works, joints attention is usually learned from skeleton
data only and ignores the scenario context information that
is helpful to action recognition. For example, in an indoor
situation, it is more likely to perform eating or reading rather
than playing football. Thus the skeleton joints with respect
to the upper body should be more informative with high
probability. Our proposed cross-attention module consists
of a self-attention branch that learned from skeleton repre-
sentation and a cross-attention branch that incorporates the
scenario context information. It helps to extract joints that are
not only important to skeleton representations but also highly
relevant to the context information.

C. 3D CONVOLUTIONAL NEURAL NETWORKS
Deep neural networks based on 2D convolutional kernels
have achieved great success in learning discriminative fea-
tures or encoding the context information from raw RGB
images [34]. Yet it has limitations in extracting the tempo-
ral information in sequence data such as videos. Recently
3D convolutional kernels become more and more popular
in action recognition. Comparing to 2D CNNs, 3D CNNs
can extract the spatio-temporal context information directly
from raw videos [1], [2], [7]. For example, [1] proposed the
I3D model that inflates the pretrained 2D kernels into 3D
kernels. Reference [2] further explored that the pretrained 3D
CNNs models on the Kinetics database can help to finetune
the models on relative small databases like HMDB [35] and
UCF101 [36].

III. CROSS-ATTENTION MODULE
In this section, we introduce the proposed cross-attention
module for skeleton-based action recognition.We first briefly
review a base two-branch self-attention module, then we pro-
pose a flexible cross-attention module to embed the context
information. Finally, we develop two instantiations for the
proposed cross-attention branch.

A. SELF-ATTENTION MODULE
We first review a base two-branch self-attention module [37],
which includes a mask branch and a trunk branch. The trunk
branch performs necessarily transformations on the input fea-
tures to further increase its representational ability. While the
mask branch aims to learn a mask from input representations
to weight the output of the trunk branch. These two branches
usually have the same output size. For example, given a
sequence of skeleton joints with T frames and each frame
containsN joints, let v ∈ RT×N×d be the input representation
of all joints for a certain layer, where d is the number of input
channels. As shown in Fig. 2, the two-branch self-attention

FIGURE 2. Self-attention module. ⊗ denotes element-wise product and
⊕ is element-wise sum. v represents the input skeleton representations.
h(v) is the truck branch and set to be the identity mapping in our
experiments. fself (v) is the mask branch, implementation details can be
found in section III-A.

module can be described as

y = fself (v) ∗ h(v), (1)

where y ∈ RT×N×C is the output representation and C is the
number of output channels, ∗ denotes element-wise product.
Function h represents the transformation operator in the trunk
branch and h(v) ∈ RT×N×C , for example, it can be linear
transformations or just identity mapping. fself (v) ∈ RT×N×C

represents the mask branch that performs as a control gate
for the output of the trunk branch, it is realized via 1 × 1
convolution in our experiments. A residual connection ‘‘+v’’
can be added to y to maintain the original behaviors.

B. CROSS-ATTENTION MODULE
The mask branch of the base two-branch self-attention mod-
ule in eq. (1) is learned from skeleton data only. However,
as analyzed above, being a high-level abstraction of human
actions, skeleton data usually ignores the helpful scenario
context information. However, human actions usually have
close relations to their scenario context information, for
example, one is more likely to perform snatch weight lifting
in a weightlifting venue with a barbell alongside than playing
football. As different actions usually have different subsets of
informative joints, the scenario context information can help
to learn attentions for skeleton joints.

To utilize the complementary scenario context informa-
tion, we propose a cross-attention module for skeleton-based
action recognition. Let a ∈ Rk×m denote the context infor-
mation w.r.t. t-th frame, and A ∈ RT×k×m be the con-
text information of the video with T frames, the proposed
cross-attention module is designed as

y = g
(
fself (v), fcross(v,A)

)
∗ h(v), (2)

where y ∈ RT×N×C is the output representation and C is
the number of output channels. fself (v) ∈ RT×N×C denotes
the self-attention branch that learned from skeleton data only
and h(v) represents the necessary transformations in the trunk
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FIGURE 3. Cross-attention module. ⊗ denotes element-wise product and
⊕ is element-wise sum. v represents the input skeleton representations
and A is the corresponding scenario context information representation.
h(v) is the truck branch and set to be the identity mapping in our
experiments. fself (v) and fcross(v, A) are self-attention branch and
cross-attention branch, respectively. Implementation details can be found
in section III-B.

branch. fcross(v,A) ∈ RT×N×C represents the cross-attention
branch that measures the relevancy between joints representa-
tions v and scenario context informationA. The joints that are
closely related to the context information should be assigned
with high scores of fcross(v,A) and vice-versa. Operator g
unifies these two types of attention, for example, through the
element-wise average or product.

Comparing to the base two-branch self-attention module
in eq. (1), by combining the self-attention branch fself (v)
and the cross-attention branch fcross(v,A), our cross-attention
module (2) aims to put more attention to joints that are
not only more informative in the perspective of skeleton
representation but also has a close relation to the context
information. It aims to suppress the influence of joints that are
less relevant to the context information. Fig. 3 plots the struc-
ture of our cross-attention module, which contains a truck
branch h, a self-attention branch fself , and a cross-attention
branch fcross. The truck branch h is set to identity mapping
in our experiments to reduce the complexity. We also add a
residual connection such that it can be incorporated intomany
existing architectures without breaking their initial behaviors.

C. INSTANTIATIONS OF CROSS-ATTENTION BRANCH
The cross-attention branch fcross(v,A) measures the rele-
vancy between joints representation v and scenario con-
text information A, it plays an important role in our
cross-attention module. In this section, we describe two
instantiations. For simplicity, we illustrate the calculation of
relevancy w.r.t. the joints in the t-th frame.

1) DOT PRODUCT
In t-th frame, the relevancy of i-th joint v ∈ Rd to its scenario
context information a ∈ Rk×m is calculated by

fcross(v, a) = σ

1
k

k∑
j=1

θ (v)>φ(aj)

 , (3)

where aj ∈ Rm, j ∈ {1, · · · , k} represents the j-th context
information, θ : Rd

→ Rz is the embedding operator on
joints representation and φ : Rm

→ Rz denotes the embed-
ding operator on context information. The relevancy between
the v-th joint and the j-th context representation is calculated
by the dot-product in the embedded space. σ is designed to be
sigmoid activation to normalize the relevancy value to [0, 1].
Besides, the average operator in eq. (3) can also be replaced
by max, however, they perform similar according to our
experiments. The embedding functions θ and φ are simply
designed to be linear transformations, i.e., 1× 1 convolution
in our experiments. The dimension z is set to d(d + m)/2e in
our experiments.

2) CONCATENATION
Another realization is based on feed-forward network on
feature concatenation, i.e.,

fcross(v, a) = σ

1
k

k∑
j=1

ψ(
[
v, aj

]
)

 , (4)

where [·, ·] represents feature concatenation and ψ :

R(d+m)
→ R denotes the feed-forward network that learns

the relevancy between joint v and context aj, σ is sigmoid
activation. We didn’t include the embedding functions θ and
φ in eq. (4) to reduce its complexity. For the feed-forward
network ψ , we experimentally try one-layer MLP and
two-layer MLP (in which the number of hidden units is set to
d(d + m)/2e). Experimental results and detail comparisons
can be found in section V.

IV. CROSS-ATTENTION BASED ACTION RECOGNITION
The proposed cross-attention module maintains the input
variables’ size and can be flexibly combined with many exist-
ing skeleton-based action recognition networks. To inves-
tigate its behaviors, in this section we describe a specific
instantiation based on the recently proposed spatio-temporal
graph convolution networks (ST-GCN) [13]. We also analyze
the design of the scenario context information extraction
branch to facilitate end-to-end training.

A. REVIEW OF ST-GCN
We first briefly review the framework of ST-GCN [13]
for skeleton-based action recognition. Given a sequence
of human skeleton data with T frames and N joints in
each frame, a nature graph G = (V ,E) can be con-
structed with its vertices being the joints, i.e., V ={
vtj|t = 1, · · · ,T , j = 1, · · · ,N

}
, vtj denotes the represen-

tation of j-th joint in t-th frame. The edge set E usually
contains two types of edges: the intra-frame edges that con-
structed based on natural connections between body joints
in each frame, and the inter-frame edges that connect the
same joints between consecutive frames. After constructing
graphG, multiple spatio-temporal graph convolutional layers
are applied in sequence to extract discriminative features
for action recognition. Table 1 shows the overall network
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TABLE 1. The baseline ST-GCN network [13] with 9 layers, where T is the
number of frames for each sample and N is the number of skeleton joints
in each frame. The input size is 16× 18 with each joint represented by a
3-dimensional vector. The strides of temporal convolutions at gcn3 and
gcn6 are set to be 2 for down-sampling. Fully connected layer and
softmax are performed on the 256-d output of the global average pooling
layer for classification.

structures of ST-GCN, for each layer, the spatial convolution
is done by graph convolution with kernel size 3 × 1 while
that for temporal convolution is 1 × 9. We refer to [13] for
implementation details about graph convolution.

As the spatial size (i.e., the number of joints in each
frame) keeps unchanged at different layers of ST-GCN, it is
convenient for us to extract the learned representation of
each joint at different layers. More importantly, the proposed
cross-attention module in eq. (2) maintains the input vari-
ables’ size and thus can be added between any layers of
ST-GCN.We experimentally compare the performance while
inserting the cross-attention module into different layers.

B. CONTEXT INFORMATION EXTRACTION
Another important part of the cross-attention module is the
representation of scenario context information. To facilitate
end-to-end training, in this work, we propose to extract
scenario context information from raw RGB video directly.
Specifically, let I ∈ RT×w×h×3 be the input of raw
RGB video with T frames, (w, h, 3) are the width, height
and number of channels for each frame, respectively. The
structure of the scenario context information extraction
branch is given in Table 2. It consists of 3D convolution

TABLE 2. Scenario context information extraction branch. The input size
is 16× 112× 112. 3D convolutional kernels are adopted, and residual
blocks are shown in brackets. The strides at layer2_1 are set to be
(2, 2, 2) to perform down-sampling.

and residual connections. The learned context information
is represented by a 512-d feature, it is further used to
learn a relevancy score for different joints, as described
in section III-B. The context information extraction branch,
the cross-attention module as well as the graph convolution
network are learned jointly in an end-to-end manner.

Besides, although we incorporate the RGB video into the
learning of cross-attention module, our implementation is
significantly different from existing RGB video-based action
recognition methods: (1) we aim to extract context informa-
tion with a lightweight and relatively shallow network (shown
in Table 2) from RGB video to promote the cross-attention
module. The extracted 512-d context representation from
RGB video is only used to learn a scalar attention weight
for each joint. In comparison, existing RGB-based action
recognition methods [2], [10] focus on learning high-level
representative features from RGB video, which is used
directly for action recognition. For example, the C3D model
in [10] extracted a 4096-d feature with a complicated 3D
neural network, and directly fed the 4096-d feature into
a softmax layer for action recognition. (2) Comparing to
the existing RGB-based action recognition networks, our
context information extraction branch is very shallow and
lightweight. The number of model parameters of C3D [10]
is 25 times larger than that of our context extraction branch.
The performance of directly applying our context extrac-
tion branch for action recognition is very poor. We conduct
a comprehensive ablation study to verify the effectiveness
of the proposed cross-attention module in the experimental
part.

V. EXPERIMENTS
In this section, we conduct experiments on the NTU RGB+D
database [38] and the Kinetics database [1] to verify the
effectiveness of the proposed model.

A. DATABASE
1) KINETICS [1]
The DeepMind Kinetics human action database contains
400 human action classes and around 300,000 videos in total,
each action has at least 400 video clips. The video clips are
taken from YouTube video and each clip lasts around 10s.
We use the provided training set with 240,000 samples for
training and evaluate model performance on the evaluation
set with 20,000 samples. Besides, the Kinetics database only
provides raw RGB video without skeleton data. To perform
skeleton-based action recognition, [13] estimated its skeleton
information through the Openpose [15] toolbox. For a fair
comparison, here we also adopt their released skeleton data
for training. Specifically, the skeleton of each person is repre-
sented by 18 joints, and each joint is encoded by (x, y, c) with
(x, y) being its 2D coordinates and c being the confidence
score generated by Openpose. For multiple person situations,
the skeletons of two person with the highest average joint
confidence scores are recorded.
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2) KINETICS-MOTION
The Kinetics-Motion database is a subset of Kinetics [1]
adopted by [13]. It contains 30 classes that strongly related
to body motions. The selected classes are belly danc-
ing, punching bag, capoeira, squat, windsurfing, skipping
rope, swimming backstroke, hammer throw, throwing discus,
tobogganing, hopscotch, hitting baseball, roller skating, arm
wrestling, snatch weight lifting, tai chi, riding mechanical
bull, salsa dancing, hurling (sport), lunge, skateboarding,
country line dancing, juggling balls, surfing crowd, dead
lifting, clean and jerk, crawling baby, push up, front raises,
pull ups.

3) NTU RGB+D [38]
The NTU RGB+D database is captured in a controlled envi-
ronment. It contains 56,000 videos in 60 categories, and both
RGB video and 3D skeleton joints annotations are provided.
It contains 25 major body joints. The skeleton joints infor-
mation is collected by kinetic depth sensors. There are two
standard benchmarks on this database: cross-subject and
cross-view. For the cross-subject benchmark, the training and
testing sets contain 40,320 and 16, 560 videos, respectively.
For the cross-view benchmark, the training and testing sets
contain 37,920 and 18,960 videos, respectively. Following
common practice [13], we conduct experiments on these two
benchmarks and report their top-1 classification accuracy.

B. IMPLEMENTATION
1) TRAINING
Our model is trained with input skeleton clips of 16 frames.
For each sequence of skeleton joints with T frames in total,
we first randomly select a temporal position and then crop 16
consensus frames around it for training. To extract context
information from RGB video, we also generate the corre-
sponding RGB clips with 16 frames for each skeleton clip.
For each RGB clip, following [2], we further perform random
cropping from the 4 corners or center position, it is then spa-
tially resized to 112×112 and feed into networks. The whole
model is trained end-to-end with standard cross-entropy loss
and the stochastic gradient descent optimizer. The learning
rate is set to be 0.1 and is reduced by a factor of 10 every 80
epochs. The model is trained for 260 epochs with a weight
decay of 10−3 and a momentum of 0.9. The model is trained
on an 8-GPU machine with batchsize of 128.

2) INFERENCE
Following [2], we perform sliding window to generate input
clips from each test sample, i.e., its skeleton data as well as
RGB video are split into non-overlapped 16 frame clips. Each
RGB clip is further spatially cropped around center position
to a size of 112×112. The skeleton clips and its corresponding
RGB data are feed into the network to generate the class
scores. Fig. 4 illustrates the inference procedure of one input
clip. The final prediction is the averaged class scores of all
clips.

FIGURE 4. Inference procedure of the proposed model, where one
cross-cross attention module is added after layer gcn6. The ‘‘GCN’’
network is given in Table 1 and the ‘‘ContextExtraction’’ network is given
in Table 2.

C. ABLATION STUDY ON KINETICS-MOTION
We first conduct a comprehensive ablation study on the rela-
tively small database Kinetics-Motion.

1) CROSS-ATTENTION BRANCH
We conduct experiments to verify the performance of differ-
ent realizations of the cross-attention branch, including dot-
product, one-layer MLP and two-layer MLP that described
in Section III-C. For a fair comparison, we insert one
cross-attention module after gcn6 of the ST-GCN network
in Table 1, the operator g in eq. (2) is set to be average
(i.e., g = (fself + fcross)/2).

TABLE 3. Classification accuracy (%) of different attention modules on
the Kinetics-Motion database. The best results are shown in bold.

The top-1 and top-5 classification accuracy is reported
in Table 3. The ‘‘Baseline’’ refers to the ST-GCN model [13]
without any attention module (its network structure is given
in Table 1); the ‘‘Self-Attention’’ is realized by inserting one
two-branch self-attention module in eq. (1) after gcn6 of
ST-GCN; the ‘‘Dot-Product’’ denotes the variation that insert-
ing one dot-product based cross-attention module in eq. (3)
after gcn6 of ST-GCN; the ‘‘One-layer MLP’’ and ‘‘Two-
layer MLP’’ denote the variations that inserting one concate-
nation based cross-attention module in eq. (4) after gcn6 of
ST-GCN. Seen from Table 3, the cross-attention module with
two-layer MLP achieves the best performance. Besides, all
attention-based models obtain higher top-1 accuracy than the
baseline, this illustrates that the attention mechanisms can
help the skeleton-based action recognition. Comparing to the
results of self-attention, our three cross-attention realizations
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FIGURE 5. Tendency curves of training loss (left plot) and validation loss
(right plot) for different models on the Kinetics-Motion database (best
viewed in color).

all get better performance. Thus the scenario context infor-
mation can help skeleton-based action recognition. The per-
formance of two-layer MLP based realizations outperforms
that of dot-product and one-layer MLP. Fig. 5 further plots
the tendency curves of training loss and validation loss for
different methods.

2) OPERATOR g IN CROSS-ATTENTION MODULE
We then investigate different ways to combine the
self-attention branch and the cross-attention branch,
i.e., the design of operator g in eq. (2). We compare the
performance of average (i.e., g = (fself + fcross)/2) and
multiplication (i.e., g =

√
fself × fcross). We also report the

performance of self-only (i.e., g = fself ) and cross-only
(i.e., g = fcross) to better understand their behaviors, note
that self-only reduces to the base two-branch self-attention
module in eq. (1). We fix the cross-attention branch to be
two-layer MLP and insert one cross-attention module after
layer gcn6. Table 4 tabulates their classification accuracy.
We can observe that cross-only achieves better performance
than self-only in terms of both top-1 and top-5 classification
accuracy. This illustrates that the learned context information
by fcross can better help the model to focus on more informa-
tive joints. Combining the self-attention branch and cross-
attention, we obtain better performance, and the average
operator achieves higher classification accuracy than the
multiplication operator.

TABLE 4. Classification accuracy (%) w.r.t. different operator g on the
Kinetics-Motion database. The best results are shown in bold.

3) CROSS-ATTENTION AT DIFFERENT GCN LAYERS
By maintaining the input variables’ size, the cross-attention
module can be flexibly added into any layer of ST-GCN.
To better investigate their behaviors, we experiment with
one cross-attention module added after layer gcn0, gcn3,

gcn6, and gcn8. We also try two cross-attention modules that
inserted after layer gcn3 and gcn6 simultaneously (with one
for each). To embed scenario context information into differ-
ent gcn layers, we modify the context information extraction
branch in Table 2 to make its output temporal size to be
consistent with that of different gcn layers. For example,
the temporal stride of layer2_1 is modified to 1 to generate
output with 8 × 14 × 14, while the temporal strides of both
pool layer and layer2_1 are set to 1 to make the output
temporal size to be 16.

TABLE 5. Classification accuracy (%) w.r.t. cross-attention module added
after different stages of ST-GCN on the Kinetics-Motion database. The
best results are shown in bold.

Table 5 reports their numerical results, in which
the cross-attention branch is realized by the two-layer
MLP. We observe that all cross-attention based real-
izations significant outperform the baseline ST-GCN
model, this demonstrates the effectiveness of the proposed
cross-attention module. When adding one cross-attention
module, due to the powerful skeleton representations
extracted by higher gcn layers, the performance consistently
improves for gcn0, gcn3, and gcn6. Yet there is a rela-
tive performance drop for gcn8. The cross-attention module
aims to learn an attention weight for each joint. When a
cross-attention module is added after layer gcn8, the learned
attention weight influences the following global average
pooling layer and the fully connected layer. In comparison,
when the cross-attentionmodule is added after an earlier layer
such as gcn6, the layer gcn7 and gcn8 will also benefit from
the learned cross-attention weight. The implementation with
two cross-attention modules achieves the highest top-1 accu-
racy. Due to time complexity, we didn’t test implementations
with more cross-attention modules.

To better investigate what we have learned from the
cross-attention module, Fig. 6 visualizes the learned attention
weights of different skeleton joints on eight classes, in which
one cross-attention module is added after layer gcn6. The
cross-attention branch is realized by the two-layer MLP. Seen
from Fig. 6, the cross-attention module trends to assign more
weight to skeleton joints that are highly related to the actions.
For example, for the cases of punching bag and hitting base-
ball in Fig. 6, the movements of joints w.r.t. the upper body
are more significant than that of feet, these joints also obtain
more attention weights in our cross-attention module as
expected.
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FIGURE 6. Visualization of learned attention weights from the cross-attention module on the Kinetics-Motion database. For
each panel, the first row plots raw RGB frames and the second row plots the 18 skeleton joints for the corresponding person
in each frame. The circle size around each joint indicates the magnitude of the attention weight learned from the
cross-attention module.

TABLE 6. Classification accuracy (%) of different variations on the
Kinetics-Motion database. The best results are shown in bold.

4) CONTEXT INFORMATION EXTRACTION
The proposed model consists of three main components,
i.e., the context information extraction branch based on RGB
video, the baseline ST-GCN branch based on skeleton and

the cross-attention module. We conduct an ablation study
on several variations to better explore the effectiveness of
each component. Table 6 reports the numerical results of
different variations. The ‘‘Skeleton-only’’ denotes the varia-
tion that only contains the ST-GCN branch (i.e., the baseline
ST-GCN [13] given in Table 1). The ‘‘RGB-only’’ denotes the
variation that only contains the context information extraction
branch given in Table 2. The ‘‘RGB+Skeleton (concat)’’
denotes the variation that contains both branches. It con-
catenates the 512-d context feature learned from RGB video
and the 256-d skeleton feature learned from the skeleton
modality. The ‘‘RGB+Skeleton (cross-attention)’’ variation
denotes the proposed model that fuses the two branches
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TABLE 7. Top-1 classification accuracy (%) of different variations on the
NTU RGB+D database. The best results are shown in bold.

TABLE 8. Top-1 classification accuracy (%) on the NTU RGB+D database.
The best results are shown in bold.

via the proposed cross-attention module. Specifically, one
two-layer MLP based cross-attention module is added after
layer gcn6. A fully connected layer is adopted for each
variation for action recognition. For all variations, the con-
text information extraction branch (if included), the ST-GCN
branch (if included), the cross-attention module (if included)
and the fully connected layer are learned jointly in an end-to-
end manner. From the table, the ‘‘RGB-only’’ obtains better
performance than the ‘‘Skeleton-only’’. By introducing the
RGB video information, the ‘RGB+Skeleton (concat)’’ out-
performs both the ‘‘RGB-only’’ and ‘‘Skeleton-only’’ vari-
ations. Thus, fusing these two modalities could improve
the performance of action recognition. Comparing to the
‘‘RGB+Skeleton (concat)’’, our ‘‘RGB+Skeleton (cross-
attention)’’ obtains better performance in terms of both top-1
and top-5 accuracy. The performance improvement is 2.16%
and 1.08% in terms of top-1 and top-5 accuracy, respec-
tively. This demonstrates the effectiveness of the proposed
cross-attention module.

D. EXPERIMENTS ON NTU RGB+D
We now conduct experiments on the NTU RGB+D database.
According to the ablation study in the previous section, we fix
the cross-attention branch to be the two-layer MLP and the
operator g in eq. (2) is set to be average. Due to the time
complexity, we only add one cross-attention module after
layer gcn6 of ST-GCN. To verify the effectiveness of the
proposed cross-attention module, we first evaluate the per-
formance of several variations of the proposed model. The
experimental results are given in Table 7. The definition
of each variation is given in ‘‘Section V-C: Context infor-
mation extraction’’. Note that the ‘‘Skeleton-only’’ refers
to the baseline ST-GCN model given in Table 1. From the
table, we have the following observations: (1) comparing
to the ‘‘RGB-only’’, the ‘‘Skeleton-only’’ obtains 3.75%

and 3.55% performance improvements on cross-subject and
cross-view, respectively. This verifies the good quality of
the skeleton modality of the NTU RGB+D database; (2) by
concatenating the context information and the skeleton infor-
mation, the ‘‘RGB+Skeleton (concat)’’ obtains better per-
formance than both ‘‘Skeleton-only’’ and ‘‘RGB-only’’;
(3) the ‘‘RGB+Skeleton (cross-attention)’’ significantly out-
performs ‘‘RGB+Skeleton (concat)’’ on both tasks. Its per-
formance improvement is 2.69% and 4.66% on cross-view
and cross-subject, respectively. This demonstrates the effec-
tiveness of the proposed cross-attention module. We also
compare with several characteristic action recognition meth-
ods, their results are given in Table 8. Note that our baseline
ST-GCN model and the ST-GCN [13] share the same net-
work structures. The performance gap between our ST-GCN
(i.e., the Skeleton-only in Table 7) and ST-GCN in [13]
(i.e., the ST-GCN in Table 8) may because of different experi-
mental settings. For example, we adopt a temporal size of 16,
while the temporal size in [13] is 300. The results in Table 8
show the effectiveness of the proposed model.

E. EXPERIMENTS ON KINETICS
Now we evaluate the performance of the cross-attention
module on the challenging Kinetics database. We fix the
cross-attention branch to be the two-layer MLP and adopt
the average operator for g in eq. (2). The number of model
parameters is 8.4 million. The training on the Kinetics takes
66.8 hours for 260 epochs on an 8-GPU machine. We first
conduct an ablation study to verify the effectiveness of each
component of the proposed model. Table 9 reports clas-
sification accuracies of different variations. Please refers
to ‘‘Section V-C: Context information extraction’’ for the
definition of each variation. From the table, the perfor-
mance of the ‘‘RGB-only’’ is significantly better than that of
the ‘‘Skeleton-only’’. Similar to that on the NTU RGB+D
database, by concatenating the learned context feature and
the skeleton feature, the ‘‘RGB+Skeleton (concat)’’ outper-
forms both the ‘‘RGB-only’’ and ‘‘Skeleton-only’’. More-
over, the ‘‘RGB+Skeleton (cross-attention)’’ obtains better
performance than the ‘‘RGB+Skeleton (concat)’’ in terms
of both top-1 and top-5 accuracy. These demonstrate the
effectiveness of the proposed cross-attention module.

TABLE 9. Classification accuracy (%) of different variations on the
Kinetics database. The best results are shown in bold.

Table 10 reports the comparisons with several characteris-
tic action recognition methods. As analyzed in Section V-D,
the performance gap between our Skeleton-only in Table 9
and ST-GCN [13] in Table 10 is because of different exper-
imental settings. Seen from Table 10, our cross-attention
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TABLE 10. Classification accuracy (%) on the Kinetics database. The best
results are shown in bold.

model obtains the best performance on the Kinetics database.
These demonstrate the correctness and effectiveness of the
proposed cross-attention module.

VI. DISCUSSION
In this paper, we proposed to exploit helpful scenario context
information to benefit skeleton-based human action recog-
nition. We presented a novel cross-attention module that
helps to extract joints that are not only more informative
but also highly related to the scenario context information.
We also provided two instantiations of the cross-attention
module. In the experiments, we developed a context infor-
mation extraction branch to extract context information from
rawRGB video directly.We conducted comprehensive exper-
iments on the NTU RGB+D database and the Kinetics
database. The experimental results demonstrated the effec-
tiveness of the proposed cross-attention module.

There are several interesting questions regarding the
cross-attention module. For example, the context information
is not limited to the feature that learned from the RGB video.
Some other side information, such as video caption, can also
be applied to depict the context information. Meanwhile,
except for the ST-GCN network, the cross-attention module
maintains the input variables’ size and can be combined with
many other skeleton-based action recognition networks. It is
interesting and helpful to investigate the influence of the
cross-attention module with different realizations.
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