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ABSTRACT With the application of wireless body sensing network to real-time monitoring of biological
signals, compressed sensing (CS) has become a promising signal acquisition technology that can extend
monitoring time, reduce equipment cost and decrease power consumption. This paper makes a comparative
study on the acquisition of heart sound (HS) signals by CS, compares and analyzes the performance of
wavelet basis, reconstruction algorithms and frames. Among a large number of experimental data records,
the reconstruction performance under different compression rates is comparatively studied, and the suitable
wavelet basis, reconstruction algorithm and signal frame size for HS acquisition are obtained. The presented
performance records and comparative analyses can give benchmarks for future academic research, and are

also believed to be beneficial for practical applications.

INDEX TERMS Compressed sensing, heart sound, wavelet basis, reconstruction algorithm.

I. INTRODUCTION

According to the report of World Health Organization, car-
diovascular diseases (CVDs) are the number one cause of
worldwide death, an estimated 31% of all the deaths globally.
In a single year of 2017, the CVDs are responsible for approx-
imately 17.8 million deaths [1]. Individuals at risk of CVDs
usually have irregular blood pressure, heart rate, etc., which
are generally easier to be monitored. In this scene, long-
term and real-time monitoring of body status plays critical
roles for earlier diagnosis and better treatments of the CVDs.
The rapid developing wireless body sensor network (WBSN)
emerges as a promising solution [2]. The WBSN’s sensors
first collect the biomedical signals of a patient, then transmits
these parameters to a remote center which always locates in
a hospital. Finally, with the state-of-the-art analysis by the
artificial intelligent and medical diagnosis, the CVDs can be
earlier discovered and better treated. In addition, WBSN can
also be integrated as a sub-network into Internet-connected
networks or Internet of Things [3], [4] and provide various
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smart healthy services, as demonstrated in Fig. 1. Benefiting
from the remarkable progresses of wearable devices and
networking technologies [5]-[7], WBSN is expected to play
more important roles for intelligent health treatments in the
future smart cities. For the acquisition process of WBSN,
energy consumption of the sensors is the most critical
problem for practical applications [8]-[10], because it has
remarkable impacts to prolong the monitoring time and to
make the devices smaller and comfortable. The traditional
signal acquisition techniques are based on Nyquist-Shannon
theory. They require high energy consumption, and further
result in the high cost of the sensors [11], [12]. Improving
the signal acquisition and processing method in terms of
energy consumption is of great significance for extending the
lifespan of bio-sensors, and thus prolong the monitoring time
of the WBSN for collecting the patient’s healthy parameters.

Compressed sensing (CS) is a new signal acquisition tech-
nology with the advantage of low power consumption [13].
Based on the sparse characteristics of the signals, CS is
able to reconstruct the original signal with less sampled
data [12]. Compared with the traditional Shannon’s theorem,
the lower sampling frequency will remarkably reduce the
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FIGURE 1. lllustration of the wireless body sensor network.

energy consumption. At the same time, CS can compress
the signal in the process of acquisition, so as to reduce the
data volume and achieve the purpose of reducing data storage
and power consumption [12], [14]. At present, CS has been
widely used for signal acquisition and processing [15]-[18].
When applied in WBSN, CS can significantly improve the
monitoring efficiency of the bio-sensors and furthermore
extend the monitoring durations [8], [19]. It has been pro-
posed by Zhang et al. [20] and Polania and Barner [21] that
using CS for electrocardiograph (ECG) signals had good
reconstruction quality and can be well applied to the design
of WBSN. In [22], Zhang et al. proposed the block sparse
bayesian learning (BSBL) algorithm for reconstructing ECG
signals from the CS measurements, and demonstrated that
BSBL had remarkable advantages over traditional solutions
in terms of accuracy and efficiency. On the other hand, Pant
and Krishnan [23] analyzed the reconstruction performance
of CS for different QRS complexes, and concluded that the
reconstruction performance of CS is related to specific QRS.
By promoting the sparsity of ECG on the first-order and
second-order difference, reconstruction algorithms based on
lg and lgd optimization are theoretically investigated and
experimentally validated in [19]. In addition, applications
of CS for acquiring electroencephalogram (EEG) [24] and
electromyography (EMG) [25] were also investigated.

On the other hand, researchers seldom explored CS for
sampling heart sound (HS) signals. In addition to ECG,
HS is also an important reference for monitoring CVDs.
Sejdic and Chaparro [26] had proven that CS is suitable
for acquiring HS, and demonstrated that 40% samples are
sufficient to reconstruct the original HS signals accurately.
Cheng et al. [27] proposed and verified a multi-channel CS
model for HS acquisition. The achievements of [26] and [27]
fully proved that the CS is suitable for the reconstruction
of heart sound signal. However, extensive study of CS for
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HS acquisition is lacking at present. The aforementioned
related works didn’t give the most suitable benchmarks for
HS reconstruction in terms of the common-used wavelet
basis, reconstruction algorithms and frame sizes. The aca-
demic research requires benchmarks, and the practical appli-
cations also need referred data records.

In this work, we conduct a comparative analysis on the
acquisition of HS using CS technique. A total of 52 wavelet
basis, 5 reconstruction algorithms are introduced, and the
impact of frame size is also evaluated. The contributions of
this paper can be summarized as follows.

1) The acquisition of heart sound using CS technique has

been compressively analyzed.

2) Different wavelet basis have been tested, and the best
sparse basis which can serve as benchmarks for future
sparsifying basis has been found out.

3) Various reconstruction algorithms have been analyzed,
the results can serve benchmarks for future recovery
techniques.

4) This paper first investigates the effect of frame size for
the reconstruction of HS signals.

5) The source sources are open accessible for extension. !

The remainder of this paper is organized as follows.
Section II introduces the basic theory of CS and HS, and
also sketches the application of CS for HS acquisition The
experiment configuration is given in Section III, while the
results are described and analyzed in Section IV. Finally,
conclusions will be drawn in the last section.

Il. RELATED WORK
A. COMPRESSED SENSING
As introduced in [12], [13], [20], [23], CS is a technology
that uses fewer samples (than those in Nyquist-Shannon
theorem) to reconstruct the original signal. As long as the
signal is sparse or compressible in certain transform basis,
the CS theory demonstrates that it can be acquired by a linear
sampling process and then reconstructed by optimization
approaches. The classical sparse transform methods include
discrete cosine transform, Fourier transform, discrete wavelet
transform, etc [12], [13], [28].

Mathematically, let signal x be a one-dimensional signal
of length N, and the sparsity is k (k#0). The signal x can be
sparsely expressed as

x = Us (1

where W is the sparse basis matrix and s is the coefficient.
A suitable sparse transform should be selected to minimize
the number of the non-zero coefficients, i.e., to promote the
sparsity level. When the signal can be represented sparsely,
a random measurement matrix @ is employed to project the
high-dimensional signal onto the a low-dimensional space,
and get the measurement vector y as

y = Ox, @

IThe source codes are open accessible via https://github.com/lurenjia212/
CS_Heart_Sound_Acquisition/.
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where @ is with dimension M xN. In this scene, the
N-dimensional signal x has been compressively sampled
as an M dimensional measurement y. Combining Egs. (1)
and (2), the CS acquisition process is finalized into Eq. (3)
in which ® denotes sensing matrix.

y=dx = dUs = Bs. 3)

Only when matrix ® satisfies the Restricted Isometry Prop-
erty (RIP) [29], the M -dimensional measured value y can pre-
serve sufficient information for fully recovering the original
signal x. The equivalent condition of RIP is that the measure-
ment matrix @ is unrelated to the sparse basis. This property
ensures that the measurement matrix will not map two differ-
ent K sparse signals into the same set. It has been proven that
Gaussian matrix, Bernoulli matrix, Fourier random matrix,
Hadamar matrix are unrelated to the common-used sparse
basis, and thus guarantee the RIP of the resultant ®. In other
words, these random matrices can be used as the alternative
measurement matrix of CS.

Unlike the linear multiplication in the acquisition process,
signal reconstruction should be preformed with the help of
optimization approaches. The reconstruction process is

min ||s||; subjecttoy = Os. “4)

After obtaining s, the the signal is further calculated by
Eq. (1). The current commonly used algorithms for Eq. (4)
can be roughly divided into convex optimization, greedy
pursuit, and iterative thresholding. In specific, the widely-
used reconstruction algorithms include Orthogonal Matching
Pursuit (OMP), Basis Pursuit (BP), Compressive Sampling
Matching Pursuit (CoSaMP), iteratively reweighted least
squares (Irls), and subspace pursuit (SP) [12], [22], [30].
The performance of these reconstruction algorithms for ECG
acquisition has been investigated in [8]. These algorithms will
also be adopted in this work.

B. HEART SOUND SIGNALS

The HS signals are the sounds when our hearts contract.
They are periodic signals that can be recorded by a stetho-
scope or special electronic instrument. The pathological state
of the heart is distorted, resulting in the noise of the HS.
Doctors can make the initial diagnosis through the noise or a
series of medical indicators including heart rate, heart sounds,
duration of diastolic and systolic events (W1/W2), and dias-
tolic and systolic periods (D/S) [31]. As an important indica-
tor of CVDs, heart sound signal has an many advantages. The
HS has characteristics of non-originality and good periodic-
ity, and the presence of murmur or distortion in HS reveals the
cardiovascular diseases. The application of HS for detecting
CVDs has received increasing attention in recent years.

The periodic beating of the heart produces four heart
sounds: the first (S1), the second (S2) (normally heard),
the third (S3 is usually heard only by children and adoles-
cents), and the fourth (S4 is rarely heard normally) [26], [32],
as shown in Fig. 2.
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FIGURE 2. Illustration of a HS waveform.

The ideal-heart sound has no periodic variation waveform
of S3 and S4. Each heartbeat period has two extremes, cor-
responding to the peaks of S1 and S2. The systolic period
of the heart lasts from S1 to S2, and the diastolic period
lasts from S2 to S1. Normally, diastole is slightly larger
than systole [27]. When the heart beats too fast, diastolic
periods shorten, and further make the systolic and diastolic
periods identical. The doctors can use this phenomenon to
make a diagnosis. According to the different stethoscope area,
the intensity of HS will also be different. The S2 signal of
aortic area is strong, and the S1 signal of bicuspid valve and
tricuspid valve stethoscope area is strong [27]. For the wave-
form of a group of HS, the three values S1/52, W1/W2 and
D/S obtained by medical indicators can determine the con-
gestive state of the heart [33].

The accuracy and reliability of heart signals determine
a doctor’s diagnosis. With the development of WBSN,
the accuracy and reliability of electronic devices for HS
monitoring have been greatly improved, which can be fully
applied to the diagnosis of CVDs in clinical treatments.

C. CS FOR HS ACQUISITION

In comparison with the extensive research on ECG and EEG
acquisition, there are few previous works focusing on acquir-
ing HS using the CS technique [26], [27].

There are two previous works can be referred [26], [27].
On one hand, Sejdic and Chaparro [26] first investigated
the feasibility of using CS to acquire the HS signals. Based
on modulated discrete prolate spheroidal sequences, it was
reported that when the measurements have only 40% samples
of the original HS signal, the HS can also be accurately
reconstructed. On the other hand, Cheng et al. [27] proposed
a multi-channel model to parallelly collect and compress
the HS of different intensity in different auscultation areas.
Numerical experimental results demonstrated that the model
proposed in [27] was able to achieve a speed of 9-10 times
faster than BSBL algorithm, and obtained a better reconstruc-
tion quality at the same time.

However, a comprehensive study on CS acquisition of HS
signals with common sparsifying basis and reconstruction
algorithms is still lacking. The benchmarks in various aspects
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require more numerical support. For example, the BSBL
is originally developed for ECG acquisition [22] yet it is
introduced in [27] as a compared algorithm. If we can use
open accessible HS data sets, and find the most suitable spar-
sifying basis and reconstruction algorithm from the common
candidates, then they can be referred as benchmarks in the
future academic research. This is our primary concern.

Ill. COMPARATIVE EXPERIMENTS

In this work, three factors are evaluated for the HS acquisition
with CS technique. Specifically, the wavelet basis, recon-
struction algorithms and different frame sizes are tested in
terms of various performance indicators. The primary goal is
to find the suitable sparsifying basis among wavelet family,
the satisfactory reconstruction algorithms among the widely-
used ones, and the suitable frame size. The raw data and
analytical conclusion are expected being beneficial to not
only future academic research but also practical applications.

A. PLATFORM AND DATABASE

All of the experiments are implemented by Matlab 2018a on
our computing platform, a personal computer with an Intel(R)
Core(TM) i7 CPU (3.00 GHZ) and 16 GB memory.

The HS samples in the experiments are obtained from the
PhysioNet Database.” All the introduced records are first re-
sampled to 1024 Hz (from 2048 Hz) and a total of 100 heart
sound signals are employed in our experiments.

B. PERFORMANCE METRICS

The experiments mainly compares the compression ratio
(CR) and reconstruction quality. Three metrics in terms
of reconstruction quality are introduced, i.e., percentage
root-mean-squared difference (PRD) [8], structural similarity
index (SSIM) [13] and executive time. The CR in this paper
is defined as

M
CR=1-—.
N

Obviously, CR is a float number less than 1. The value of CR
reveals the length of the samples (measurements).

The PRD is defined as the percentage of distortion between
the original signal and the reconstructed signal. The mathe-
matical formula of PRD is

|2 x|
PRD = —— .

100,
X1l

where X is original signal and X is reconstructed signal.
The third performance index is SSIM, defined as

(2/1*)(/",% + Cl)(zaxi + CZ)
(12412 + )02 +0f +c)

SSIM (x, &) =

where p, is the average of the x, u; denotes the average

of the x, oxz is the variance of x, 0;22 is the variance of x,

2The dataset is available via https://physionet.org/content/challenge-
2016/1.0.0/. We use the data records in training — a directory.
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while o,; refers to the covariance of original signal and
reconstructed signal, respectively. The variable ¢ and ¢, are
constant, in our experiment, they are set as c; = 0, c; = 0.
Essentially, SSIM denotes the similarity of two signals,
higher SSIM refers to higher similarity.

In addition, the reconstruction time is of course also an
important comparison index.

C. COMPARATIVE DIMENSIONS

Three factors are included for comparative analysis. The first
factor is the sparsifying basis. This paper aims to make a
comparative analysis of the reconstruction quality in differ-
ent wavelet basis, and will give empirical results for future
research of HS acquisition. A total of 52 wavelet basis are
compared in this work, they are haar, dbn (n = 2-10), symn
(n = 2-8), coifn (n = 1-5), biornt.nd (nr = 1,nd =1, 3, 5;
nr=2,nd=2,4,6,8nr=3,nd=1,3,57,9;,nr =4,
nd =4;nr=15,nd = 5;nr =6, nd = 8) and rbionr.nd (nr = 1,
nd=1,3,5nr=2,nd=2,4,6,8;nr=3,nd=1,3,5,7,9;
nr=4,nd=4,nr=5,nd =5; nr =6, nd = 8).

The second factor is the reconstruction algorithm. When
the sensing matrix ® satisfies RIP, the signal x can be recov-
ered from the M -dimensional projection y by a reconstruction
algorithm. In our experiments, the measurement matrix is
fixed as Bernoulli matrix which can assure the RIP require-
ments of ® when collaborating with the common-used spar-
sifying basis. The adopted reconstruction algorithms in our
experiments include OMP, BP, CoSaMP, Irls and SP. These
algorithms are employed on each CR region.

The last factor is the frame size. A frame is named for the
short-time signal which is reconstructed one time. The size of
a frame may affect the reconstruction performance in terms
of PRD and SSIM [34]. This paper discusses the relationship
between the frame size and reconstruction quality. The tested
frame sizes include 256, 512, 768, 1024, 2048 and 4096. On
the basis of a fixed reconstruction algorithm and measure-
ment matrix, 100 heart sounds were employed to exploit the
influence of frame size to the quality of the reconstructed
signal. Finally, we suggest the empirical satisfactory frame
size for the CS application of HS acquisition.

IV. RESULTS AND DISCUSSIONS

A. PERFORMANCE ANALYSIS VERSUS WAVELET BASIS
First, the reconstruction is implemented over 52 types of
wavelet basis. The reconstruction algorithm is fixed as BP,
while the frame size is 1024. The experimental results are
shown in Tables 1 and 2, and Fig. 3. With the reduction
of CR, PRD decreases significantly, i.e., the signal quality
improves. The results demonstrate that rbio5.5 is always the
best wavelet basis for HS reconstruction. In addition, bior2.6,
bior2.8 and rbio4.4 also have good PRD performances. When
CR is less than 35%, bior2.6 has a satisfactory reconstruction
performance. On the other hand, bior2.8 and rbio4.4 are good
choices when CR is in the range of 30%-70%, while bior2.8 is
also a good alternative when CR is greater than 70%.
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TABLE 1. PRD of various wavelet basis.

Wavelet 10% 20% 30% 40% 50% 60% 70% 80% 90%
hear 8.6369 144911  20.6307  28.3235 36.4335 46.1747  58.1768  71.3833  87.0691
db2 6.1418 10.8409 16.4196 23.6786  31.0068  41.2011  53.4448  67.6051  84.6928
db3 5.4270 9.8689 147760  21.9065 29.8001  39.7362  52.4105 66.5163  83.6598
db4 5.0687 9.3149 143864  21.6799  29.0862 38.6466 51.9005 66.4629  84.5530
db5 5.1130 9.2070 14.1323  21.2607  28.8981  39.0961 51.5463  66.3932  84.6093
db6 49121 8.9636 14.1722  20.9448  28.7945 38.8178 52.0242 66.4380  84.2053
db7 4.9032 8.9213 13.9562  21.0288  28.7271  38.8261 51.8571 66.6971  84.4036
db8 4.9292 8.9487 139216  21.0637  28.4671 38.7692 515136 66.7651  85.2784
db9 4.8440 8.9156 14.0732  21.0384  29.1514  39.0922  52.0624  67.0895  84.9954
db10 4.8783 8.8347 14.1532  21.1667  29.1169  39.1628  52.4903  67.0734  84.7321
sym2 6.1418 10.8409 16.4196  23.6786  31.0068 41.2011  53.4448  67.6051  84.6928
sym3 5.4270 9.8689 147760  21.9065 29.8001 39.7362 52.4105 66.5163  83.6598
sym4 5.0711 9.2842 143688  21.1855  28.6856  38.2307 51.1979  65.6017  83.1736
sym5 4.9373 9.1054 14.0641  20.8699  28.4901 38.5962 50.9965 66.0807  83.8048
Sym6 4.8275 9.0050 14.1141  20.5693  28.0721  37.8767 50.5594  65.6531  83.0509
sym?7 4.8560 8.8383 13.7668  20.5812  28.2524  38.0063  50.7885  65.7631  84.0181
sym§ 4.7888 8.8683 13.9090  20.4808  27.9666  37.9457 50.3173  65.5962  82.9568
coifl 6.0984 10.7043  16.0608  23.2809 30.8675 40.4641 52.7954  67.1339  83.8902
coif2 5.1213 9.3039 14.1916  21.1033  28.6330  38.5893  51.2339  65.6980  83.0472
coif3 4.9521 8.9684 13.6472  20.6467  28.2414  38.1708  50.6092  65.6759  82.8934
coif4 4.8305 8.7973 13.6068  20.4420 27.9042 37.9310 50.3488  65.6544  83.0959
coif5 4.7226 8.6141 13.5142  20.3551 27.8861 38.0458 50.4126  65.6818  83.3363
biorl.1 8.6369 144911  20.6307  28.3235 36.4335 46.1747  58.1768  71.3833  87.0691
biorl.3 4.6242 8.52537 129455 19.7531 269379 36.5560 49.5242  63.7323  82.6675
biorl.5 4.3536 8.0678 12.7557  19.4521  26.5008  36.1900  48.8379 629186  81.9564
bior2.2 7.0293 12.2731  19.4007 28.0587 37.3148  48.1681  60.7478  73.4593  86.8019
bior2.4 4.8270 8.7359 14.2276 ~ 21.1592  29.0351 389882  51.1366  64.8049  81.2521
bior2.6 4.3001 7.8744 12.8056  19.3636  26.6812  36.5350 48.5854  62.5942  79.8614
bior2.8 4.0916 7.5827 12.3081  18.6627  26.0430  35.7636  47.6263  61.7826  79.2918
bior3.1 16.9649  30.2834  46.0243  64.4826  82.7845  100.5082 116.0555 125.7300 128.3656
bior3.3 6.9252 13.6531  22.3801 34.7910 48.8867 63.5920  78.1791  89.5257  98.6177
bior3.5 5.5337 11.1701  18.4753  29.0765 40.5529 53.8669 67.0728  78.4356  89.6479
bior3.7 5.0779 10.0086 169130  26.8672  37.4034 49.8346 623661 74.5598  87.1084
bior3.9 4.8539 9.5113 16.1276  25.0821  35.6343  47.9689  60.0981  72.5813  86.1269
bior4.4 6.6415 12.0239  18.8677 269836  35.2278 454002 57.6769  71.2813  86.2659
bior5.5 9.5453 16,9264 257317 362334 458068 57.1656  70.4478  82.4786  93.9004
bior6.8 5.0800 9.2893 14.5274  21.1504  28.7288  38.5583  51.1609  65.5736  82.6268
rbiol.1 8.6369 14.4911  20.6307 283235 36.4335 46.1747 58.1768  71.3833  87.0691
rbiol.3 104109  17.4939 249673  33.8504 427458 525480 64.0228 759449  89.4436
rbiol.5 10.9918  18.6473  26.5844 359870 454875 552776  66.6827  77.9634  90.4048
rbio2.2 8.2601 15.7681  24.5573 347063  44.2470 54.8319  66.2440  78.0060  90.2942
rbio2.4 8.2737 154700  24.2293  34.3328 44.0759 549462  67.1456  78.9980  91.2474
rbio2.6 8.6603 16.0525  24.9207 35.1004 44.7972 555966  68.0189  79.7269  91.8074
rbio2.8 8.8784 164279 255171  35.8076 454564 56.4073  68.7109  80.3501  92.1843
rbio3.1 36.4408  47.3172  49.8115 524048  55.2432  60.0898  67.6257  77.2668  89.8288
rbio3.3 18.4187  33.8828 493290 61.1621  69.4909  76.0840  82.3558  88.7868  96.7126
rbio3.5 15.1663  29.2174  45.1930 58.6033  68.4000 76.6187  84.0868  90.6071  98.4630
rbio3.7 144717  28.1987 439258 57.8445  67.5738 759713  84.1076  91.2261  99.3106
rbio3.9 14.4742  28.0209 439021 57.5630 67.2161 759373  84.2706 91.6010  99.7624
rbio4.4 4.3338 8.0648 12.5693  18.7108  26.0661  35.7560  48.1534  62.9683  81.1557
rbio5.5 3.0208 5.4110 8.4883 12.8735  18.3762  26.4419  37.9083  53.0474  73.8949
rbi06.8 49172 9.1593 143950  21.3085  29.0712  39.2107 519503 66.9630  83.8937

However, rbio3.1, bior3.1 and bior3.3 always have bad
reconstruction performance. When CR is greater than 35%,
bior3.1 had the worst PRD. In addition, the PRDs in rbio3.5,
rbio3.7 and rbio3.9 basis were poor either. It is not recom-
mended to reconstruct the HS signal in these six wavelet
basis.

In addition to the PRD performance, Table 2 reveals the
similarity between the reconstructed HS signals and the orig-
inal one under various wavelet basis. The results are similar to

VOLUME 8, 2020

but not equal with the PRDs in Table 1. The SSIM decreases
with the increase of CR. In the range of 5%-60%, rbio5.5 has
the best SSIM, more than 50%. On the other hand, rbio3.1 and
bior3.1 had the worst similarity while rbio3.3, and rbio3.5,
rbi03.7 and rbi03.9 don’t possess satisfactory SSIM either.
In addition, in a fixed CR, the required reconstruction
times in the tested wavelet basis are roughly the same.
Generally, the greater the CR, the shorter the reconstruction
time.
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TABLE 2. SSIM of various wavelet basis.

Wavelet basis 10% 20% 30% 40% 50% 60% 70% 80% 90%
hear 0.86 0.7598 0.6588 0.5342 0.4107 0.3106 0.1903 0.1053 0.0315
db2 0.9006 0.8173 0.7264 0.5998 0.4706 0.358 0.2346 0.131 0.0435
db3 0.9076 0.8363 0.748 0.6189 0.4938 0.3797 0.2521 0.1345 0.0489
db4 0.9136 0.8372 0.7536 0.6247 0.4981 0.3826 0.254 0.1419 0.0444
db5 0.9132 0.8404 0.753 0.6363 0.503 0.3857 0.2532 0.139 0.045
db6 0.9149 0.8459 0.7549 0.6343 0.503 0.3833 0.2515 0.1424 0.0474
db7 0.9168 0.8473 0.7592 0.6312 0.5042 0.3956 0.2583 0.1417 0.0482
db8 0.9146 0.8448 0.7535 0.6363 0.5123 0.3934 0.266 0.1436 0.045
db9 0.9172 0.847 0.7611 0.6325 0.4988 0.382 0.2509 0.1408 0.0464
db10 0.9136 0.8454 0.7543 0.6322 0.5046 0.3873 0.2531 0.1419 0.0483
sym?2 0.9006 0.8173 0.7264 0.5998 0.4706 0.358 0.2346 0.131 0.0435
sym3 0.9076 0.8363 0.748 0.6189 0.4938 0.3797 0.2521 0.1345 0.0489
sym4 0.9149 0.8396 0.7533 0.6292 0.5058 0.3961 0.2631 0.1425 0.0501
sym5 0.9167 0.8436 0.7549 0.6321 0.5057 0.389 0.2523 0.1422 0.0484
Sym6 0.9179 0.8447 0.754 0.6379 0.5151 0.3985 0.2667 0.1435 0.0511
sym?7 0.918 0.8445 0.7602 0.6403 0.5071 0.4018 0.2607 0.1441 0.047
sym§ 0.9179 0.8483 0.7579 0.6419 0.5152 0.3962 0.2685 0.1451 0.0519
coifl 0.9003 0.821 0.7284 0.6001 0.4766 0.3659 0.2466 0.1316 0.048
coif2 0.9126 0.8434 0.7575 0.6304 0.5077 0.3905 0.2631 0.1405 0.0509
coif3 0.9144 0.8475 0.7648 0.6345 0.5115 0.3959 0.2677 0.1423 0.0512
coif4 0.9175 0.8454 0.7679 0.6384 0.5103 0.3947 0.2691 0.145 0.051
coif5 0.9201 0.8469 0.7665 0.6413 0.5131 0.394 0.2654 0.1457 0.0493
biorl.1 0.86 0.7598 0.6588 0.5342 0.4107 0.3106 0.1903 0.1053 0.0315
biorl.3 0.9189 0.8495 0.768 0.6479 0.526 0.4037 0.255 0.1473 0.0475
biorl.5 0.9236 0.8557 0.7724 0.6516 0.5334 0.4128 0.2667 0.1551 0.0521
bior2.2 0.8874 0.8045 0.6883 0.5523 0.4251 0.3205 0.2144 0.1198 0.0494
bior2.4 0.9184 0.8555 0.7626 0.6412 0.5222 0.4075 0.2878 0.1652 0.0688
bior2.6 0.9257 0.8677 0.7833 0.6659 0.5554 0.4358 0.31 0.1803 0.0759
bior2.8 0.9292 0.8717 0.791 0.6764 0.5655 0.4459 0.3204 0.187 0.0796
bior3.1 0.742 0.5421 0.3816 0.2291 0.127 0.0726 0.0334 0.0129 0.005
bior3.3 0.8874 0.7717 0.6481 0.4841 0.3265 0.2267 0.14 0.078 0.037
bior3.5 0.9078 0.81 0.7005 0.5531 0.4103 0.2945 0.1981 0.1216 0.0574
bior3.7 0.9145 0.8277 0.7214 0.582 0.4462 0.3299 0.2266 0.1429 0.0661
bior3.9 0.9179 0.8349 0.7315 0.6043 0.4655 0.3493 0.2416 0.1549 0.0703
bior4.4 0.8923 0.8017 0.6876 0.5507 0.4293 0.3271 0.2176 0.113 0.0403
bior5.5 0.8515 0.7165 0.5807 0.4262 0.3074 0.2226 0.1324 0.0646 0.0189
bior6.8 0.915 0.8435 0.7515 0.6305 0.5118 0.3963 0.2685 0.1464 0.0542
rbiol.1 0.86 0.7598 0.6588 0.5342 0.4107 0.3106 0.1903 0.1053 0.0315
rbiol.3 0.8315 0.7124 0.6015 0.4705 0.3514 0.2591 0.1638 0.0921 0.0293
rbiol.5 0.8233 0.6953 0.5806 0.4484 0.327 0.2384 0.1514 0.0847 0.0274
rbio2.2 0.8674 0.7295 0.5988 0.4512 0.3269 0.2416 0.1594 0.0916 0.0332
rbio2.4 0.8676 0.7348 0.6052 0.4513 0.3255 0.2423 0.1561 0.0861 0.0296
rbio2.6 0.8617 0.7266 0.5947 0.4415 0.3192 0.2362 0.1502 0.0819 0.0278
rbio2.8 0.8582 0.7223 0.5861 0.4338 0.3131 0.2296 0.1457 0.0789 0.0264
rbio3.1 0.5081 0.4141 0.3852 0.3425 0.3133 0.2729 0.2046 0.1199 0.0409
rbio3.3 0.7152 0.5157 0.3422 0.2518 0.1928 0.152 0.1134 0.071 0.0228
rbio3.5 0.7607 0.5614 0.3714 0.2546 0.1855 0.139 0.099 0.0621 0.0185
rbio3.7 0.7719 0.5711 0.3824 0.2558 0.1844 0.1376 0.0949 0.0582 0.0165
rbio3.9 0.7723 0.5709 0.3829 0.2557 0.1841 0.1362 0.0919 0.0556 0.0155
rbio4.4 0.9257 0.8589 0.7784 0.6658 0.5379 0.42 0.2874 0.1637 0.0622
rbio5.5 0.945 0.9059 0.8457 0.7646 0.6674 0.5522 0.4037 0.2443 0.1029
rbi06.8 0.9179 0.8417 0.7498 0.6258 0.4932 0.3806 0.2549 0.1392 0.05

B. PERFORMANCE ANALYSIS VERSUS RECONSTRUCTION
ALGORITHMS

In this suite of experiments, 5 reconstruction algorithms are
evaluated in terms of the PRD, SSIM and execution time. The
sparsifying basis is fixed as db2, while the frame size is set
as 1024 for fair comparison. The reconstruction performance
of the compared algorithms is listed in Tables 3, 4 and 5.
In addition, the PRDs are also plotted in Fig. 4 for visual-
ized perception. As can be observed, different reconstruction
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algorithms bring about different signal qualities. The results
show that Irls has the best reconstruction PRD for almost
every CR region. When CR is less than 35%, the PRD
and SSIM performance of OMP algorithm are also more
satisfactory than other counterparts. When CR is greater
than 50%, BP algorithm can be used as an alternative in terms
of PRD and SSIM. However, when CR is greater than 50%,
PRDs and SSIMs of OMP and CoSaMP methods are
unsatisfactory.
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TABLE 3. PRD of various reconstruction algorithms.

Algorithms 10% 20% 30% 40% 50% 60% 70% 80% 90%

BP 6.0292 11.0188 16.3885  23.1710  31.1720  41.7657  52.9921 68.4678  85.5651

OMP 5.5380 9.5774 14.2397  21.8026  32.6202  48.2880  66.7271 90.3104 118.5109

CoSaMP 9.9755 12.1141 15.2541 20.6488  29.7681 47.8450  68.3914  91.0147 112.0554

Irls 3.5618 6.7443 10.6787 16.1072  23.5149 338117 455713  62.5557 84.3012

Sp 10.3353 12.5627 157478  20.7660  29.0758  42.2533  58.2479  80.2740 104.0563
TABLE 4. SSIM of various reconstruction algorithms.

Algorithms 10% 20% 30% 40% 50% 60% 70% 80% 90%

BP 0.9008 0.8135 0.7176 0.5984 0.4746 0.3478 0.2350 0.1270 0.0410

OMP 0.9113 0.8446 0.7564 0.6372 0.4652 0.2987 0.1814 0.0945 0.0374

CoSaMP 0.8323 0.7882 0.7200 0.6099 0.4575 0.3141 0.1806 0.1548 0.0388

IRLS 0.9395 0.8834 0.8072 0.7098 0.5664 0.4123 0.2847 0.1557 0.0441

Sp 0.8216 0.7787 0.6980 0.5996 0.4597 0.3100 0.2026 0.1174 0.0486
TABLE 5. Reconstruction time of various reconstruction algorithms.

Algorithms 10% 20% 30% 40% 50% 60% 70% 80% 90%

BP 11.4765  9.6877 8.0554 6.7669 5.4703 4.2137 3.0412 2.5191 2.005

OMP 857.9601 580.165 376.1595 225.5641 123.6176 55.9108 20.9316  6.9083 1.0691

CoSaMP 323.3513  221.0618 157.3298 99.7399 522744  21.1266  9.5246 3.4006 0.7567

Irls 671.3869 725.3193 545.2352 3949726 263.0556 155.5577 84.3698  37.3615 11.579

SP 187.9845 133.1603 80.1687 49.5136  22.7025 11.9847  5.5953 2.2019 0.5261
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FIGURE 3. PRD versus different wavelet basis.

The execution times of the reconstruction algorithms are
very different from each other, as listed in Table 5. The BP
generally acts as the most efficient reconstruction algorithm,
while the operation time of SP is also relatively shorter.
However, Irls requires the longest operation time. In addition,
OMP and CoSaMP don’t have remarkable advantageous in
each region either.

The SSIMs between the original signal and the recon-
structed signals are also calculated. The results are listed
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FIGURE 4. PRD in different reconstruction algorithms.

in Table 4. The Irls algorithm has the highest SSIM, it almost
reaches up to 95.8%. The SSIMs obtained by CoSaMP and
SP algorithms are relatively lower.

Referring to the aforementioned experimental results,
we can conclude that the Irls is the best reconstruction algo-
rithm in terms of signal quality, but it takes the longest time
to be executed. The BP algorithm has better compromise
in terms of execution efficiency and reconstruction quality.
In addition, when CR is greater than 50%, SP may also be
considered. On the other hand, if reconstruction quality is
a priority, the Irls algorithm is recommended.

C. PERFORMANCE ANALYSIS VERSUS FRAME SIZE

This section describes the impact of frame size to the
signal reconstruction quality. The BP is fixed as the
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TABLE 6. PRD of various frame sizes.

Frame size 10% 20% 30% 40% 50% 60% 70% 80% 90%
256 3.9173 6.5206 12.2285 17.8231 24.1271 34.5728 46.0472 59.7709 71.7824 93.0173
512 3.8357 6.3627 11.3656 16.8066 23.6679 32.6652 42.7463 56.3965 69.7876 87.3390
768 3.6937 6.0196 10.9525 16.2349 23.1605 31.6383 41.5339 53.3578 69.0209 85.4739
1024 3.6771 6.0420 10.6815 16.2119 22.9602 31.7885 40.9209 54.2869 68.0594 84.8560
2048 3.7628 6.0938 11.0824 16.3796 23.2359 31.2115 41.5065 53.1092 67.7314 86.2354
3072 3.7969 6.2078 11.0417 16.5752 23.1376 31.3892 41.2880 53.5705 68.4010 85.9643
4096 3.7792 6.2777 10.9930 16.3029 23.2115 31.6739 41.8515 53.4386 68.3121 86.4659
TABLE 7. SSIM of different frame sizes.

Frame size 10% 20% 30% 40% 50% 60% 70% 80% 90%

256 0.9084 0.8198 0.7494 0.6900 0.5080 0.3775 0.2157 0.1594 0.0332

512 0.9083 0.8225 0.7165 0.6362 0.5006 0.3715 0.2332 0.1389 0.0456

768 0.8972 0.8136 0.7215 0.6050 0.4804 0.3500 0.2397 0.1155 0.0412

1024 0.8997 0.8152 0.7163 0.6117 0.4666 0.3628 0.2288 0.1248 0.0398

2048 0.8902 0.7959 0.6965 0.5780 0.4580 0.3317 0.2170 0.1191 0.0328

3072 0.8887 0.7953 0.6937 0.5752 0.4517 0.3296 0.2192 0.1141 0.0368

4096 0.8830 0.7956 0.6986 0.5720 0.4441 0.3220 0.2098 0.1148 0.0336

TABLE 8. Reconstruction time of different frame sizes.

Frame size 10% 20% 30% 40% 50% 60% 70% 80% 90%

256 0.6601 0.5998 0.5320 0.4989 0.4970 0.4431 0.4080 0.3785 0.3464

512 4.4160 4.3695 3.3838 3.2022 2.9873 2.5821 2.4756 2.3830 2.2862

768 10.6617 9.8293 8.9020 8.2075 7.4481 6.5044 6.0479 5.5575 5.3750

1024 20.0670 18.8880 16.7226 16.0283 14.2595 13.0489 12.3528 11.6003 10.3172

2048 119.7231 112.4036 93.7834 88.6368 79.8995 74.2527 70.0138 67.1209 57.5594

3072 342.0246 305.2268 273.8622 242.2887 218.3298 194.7132 184.6064 177.3049 150.5862

4096 723.5457 6327409 597.6457 508.5414 462.6418 429.7729 384.3703 355.2914 299.8624

reconstruction algorithm. The tested frame sizes range from
256 to 4096. The results are listed in Tables 6-8, while the
PRDs are also visualized demonstrated in Fig. 5. As indicated
by these results, at different frame size, PRD increases with
CR. On the same CR, the reconstructed PRDs with frame
size of 256 and 512 are relatively poorer. Table 7 compares
the similarity between the reconstructed signals with the
original one. It is revealed that similar SSIMs have been
obtained in terms of various frame sizes. However, a signal
with a frame size of 256 has a better SSIM than the other
frame sizes. Such an observation is a bit different from that
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FIGURE 5. PRD in different frame sizes.
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derived from the PRD values in Table 6. Table 8 shows the
relationship between reconstruction time and frame size. It is
obviously that under the same CR, the longer the signal frame,
the longer the operation time.

D. DISCUSSIONS
The aforementioned experiments discuss the application of
CS for HS acquisition, exploring the performance in terms
of 5 reconstruction algorithms, 52 wavelet basis and different
frame sizes. Then corresponding observations are illustrated.
Among the five reconstruction algorithms, the Irls has the
best reconstruction quality, but also has the longest recon-
struction time. It is suggested that Irls algorithm can be
selected when the requirements of reconstruction quality
are of higher superiority. On the other hand, BP and SP
algorithms can make a compromise between execution time
and reconstruction quality at different compression levels.
Observing the performance indicators in terms of wavelet
basis, it is shown that rbio5.5 is the best wavelet basis. The
rbio5.5 can be used for practical applications, or act as a
benchmark for the future research in term of sparsifying basis
for CS acquisition of HS. In the analysis of frame size, it is
concluded that the frame size from 256 to 4096 has little influ-
ence on the reconstruction quality. The reconstructed signals
from different frame sizes have indistinctive difference in
terms of PRD and SSIM.
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Referring to the presented data records, for practical
applications owing different types of requirements, the users
can choose suitable combinations of wavelet basis, recon-
struction algorithm and the frame size. In addition, these
results can also be used as benchmarks for academic research
of HS acquisition using CS. For example, if we want to
develop a suitable reconstruction algorithm, the Irls should
be compared in terms of reconstruction quality while the
executive time should be compared with BP. In this scenario,
the developed algorithm can be declared satisfactory when it
has superiorities in both dimensions.

V. CONCLUSION

In this paper, the acquisition of heart sound signals by com-
pressed sensing is comparatively studied. Amounts of exper-
iments have been carried out and the results are analyzed in
detail. Experimental results show that rbio5.5 is considered
being a satisfactory wavelet basis for heart sound acquisition,
while Irls gives best reconstruction quality and BP algorithm
has good efficiency. In addition, we also analyze the impact
of the frame size, and conclude that the frame size has little
effect on the reconstruction accuracy. The involved conclu-
sions in terms of sparsifying basis, reconstruction algorithms
can be used as benchmarks for future academic scientific
research, and the experimental data records are also believed
being beneficial for practical applications.
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