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ABSTRACT Parameter estimation of Lorenz chaotic system using a novel hybrid Jaya-Powell algorithm is
proposed in this paper. Since the nonlinear dynamic system is complex with multi-dimension parameters,
estimating parameters of the system can be considered as a muti-objective optimization task. The proposed
Jaya-Powell algorithm combines the Jaya and Powell algorithm to search for the relatively global optimum
and local optimum respectively, which offers a more accurate and effective estimation. The searching strategy
of the proposed algorithm facilitates the balance of the exploration and exploitation in the optimization
procedure. Due to no algorithm-specific parameters are required in the Jaya and Powell algorithm, the pro-
posed Jaya-Powell can avoid deliberate fine-tuning of corresponding parameters. To validate the accuracy
and robustness of the proposed algorithm in parameter estimation, the simulation of Lorenz chaotic system
and comparative experiments are conducted. Seven algorithms, including Jaya algorithm, Powell algorithm,
Teaching-learning-based optimization (TLBO) algorithm, particle swarm optimization (PSO), genetic algo-
rithm (GA), covariance matrix adaptation evolution strategy (CMA-ES), and cluster-chaotic-optimization
algorithm (CCO), are considered as benchmarking algorithms in the comparison. The proposed hybrid
Jaya-Powell algorithm outperforms seven benchmarking algorithms with the more accurate estimation and
the relatively faster convergence. Based on the embedded system Raspberry pi 3, the proposed algorithm
achieves the similar performance by comparing with the experiments conducted on the computer. The
successful implementation via Raspberry pi 3 facilitates the application of the proposed algorithm in edge
computing.

INDEX TERMS Chaos theory, Lorenz system, Parameter estimation, Jaya algorithm, Edge computing.

I. INTRODUCTION

As a prominent complex behavior in nonlinear dynamical
systems, chaos has attracted much attention from researchers
and been widely studied over the past three decades. The
phenomenon of chaos has been applied in various fields, such
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as image encryption [1], secure communication [2], financial
market [3], and etc. Lorenz chaotic system [4], which was
firstly proposed by the meteorologist Edward Lorenz, is con-
sidered as one of the representative chaotic systems. The
major characteristics of Lorenz chaotic system is of two-fold,
the extreme sensitivity to initial conditions and unstable
periodic orbits. To control and synchronize Lorenz chaotic
system, it is critical to capture the information of parameters
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due to the complexity of such system. However, determining
parameters of Lorenz chaotic system is a challenging task in
real applications. Thus, parameter estimation is a meaningful
task in the analysis of Lorenz chaotic system.

A few pioneer studies related to parameter estimation of
chaotic systems via the synchronization based methods have
been reported in the literature. Parlitz et al. [5] developed
a computer model to minimize the average synchronization
error for parameter estimation of an unknown chaotic system.
Maybhate and Amritkar [6] combined the synchronization
and an adaptive control method to estimate parameters under
a noisy environment. Hyun et al. [7] proposed an adap-
tive fuzzy observer for the synchronization of chaotic sys-
tems. Wang and Ge [8] discussed an adaptive backstepping
method to synchronize uncertain chaotic systems, which was
also reported by Yu and Zhang [9]. Yu et al. [10] intro-
duced a backstepping synchronization method based on the
equivalent transfer function for chaotic systems. Although
the synchronization based methods are capable to estimate
parameters of chaotic systems, their real implementations
might be lack of feasibility and bounded to specific models.

To achieve the feasibility in parameter estimation of
chaotic systems, evolutionary computation based methods
have been applied in this field and address parameter esti-
mation as an optimization problem. Numerous studies based
on classical evolutionary computation algorithms have been
developed to estimate the parameter of uncertain chaotic
systems. Tao et al. [11] applied genetic algorithm (GA) into
parameter estimation of chaotic time series. He et al. [12]
developed particle swarm optimization (PSO) to estimate
parameters of chaos systems and achieved more accurate
solutions by comparing with GA. Tang and Guan [13]
introduced PSO to address the issue of parameter estima-
tion in a time-delay chaotic system. Sun et al. [14] pro-
posed a drift particle swarm optimization (DPSO), which
is an improved algorithm based PSO, to estimate param-
eters of chaotic systems. Peng et al. [15] considered
parameter estimation of Lorenz chaotic system via the
differential evolution algorithm (DE) and discussed the influ-
ence of the population size on the optimization performance.
Xiang-Tao and Ming-Hao [16] proposed a Cuckoo search
algorithm with the orthogonal learning to estimate param-
eters. Zhang et al. [17] identified the unknown parame-
ters of the chaotic system based on teaching-learning-based
optimization (TLBO). Reported evolutionary computation
algorithms [11]-[17] proved the feasibility of parameter
estimation for chaotic systems. However, the aforementioned
evolutionary computation algorithms are susceptible to being
trapped into local optima and suffering from the premature
convergence.

Based on classical evolutionary computation algorithms,
hybrid methods which combine two different evolutionary
algorithms have been developed to obtain better estimation
results. Wang and Xu [18] proposed a hybrid biogeography-
based optimization(BBO) algorithm to recognize unknown
parameters. Gu et al. [19] introduced a hybrid algorithm
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named as HABCDE to estimate model parameters, which
combined the differential evolution algorithm (DE) and the
artificial bee colony algorithm (ABC). Lazzis et al. [20]
developed a hybrid PSO-ACO algorithm for parameter esti-
mation of chaotic systems. Galvez et al. [21] combined the
characteristics of clustering and the randomness of chaotic
sequence, named as cluster-chaotic-optimization, to solve
the optimization problem in chaotic systems. The developed
hybrid algorithms [18]-[20] have the ability to achieve the
satisfactory estimation performance, which relies on fine-
tuned algorithm-specific parameters.

This research proposes a hybrid algorithm named as
Jaya-Powell algorithm, which combines Jaya algorithm [22]
and Powell algorithm [23] to balance the exploration and
exploitation in parameter estimation of Lorenz chaotic sys-
tem. Firstly, Jaya algorithm, a population-based method pro-
posed by Rao [22] free of algorithm-specific parameters,
is applied to optimize parameters of Lorenz chaotic sys-
tem. The main idea of Jaya algorithm is offering the prob-
ability for candidate solutions to move close to the best
solution and away from the worst solution. Based on the
update strategy, Jaya algorithm is capable to explore more
unknown spaces to obtain useful information and avoid to
fall into the local optimum. As an adaptive algorithm, Jaya
only needs basic parameters including the population size
and the number of maximum iterations. Next, Powell algo-
rithm [23] is employed to exploit the local information based
on the approximatively global optimum obtained by Jaya
algorithm. Finally, the optimal solution of parameter estima-
tion for Lorenz chaotic system can be attained. To validate the
performance of the proposed Jaya-Powell algorithm, seven
algorithms are considered as the benchmarking algorithms in
the comparative experiments, including Jaya, Powell, TLBO,
PSO, GA, CMA-ES, CCO. Based on simulations, the pro-
posed algorithm outperforms seven benchmarking algorithms
on the accuracy and robustness of parameter estimation for
Lorenz chaotic system.

The remaining parts of this paper are organized as fol-
lows. In Section II, the problem formulation is intro-
duced. Next, the proposed hybrid algorithm, Jaya-Powell
algorithm, is described in Section III. The benchmarking
algorithms employed in comparative experiments are illus-
trated in Section IV. Section V discussed simulation results
based on different algorithms. Finally, Section VI makes the
conclusion.

Il. PROBLEM FORMULATION
The principle of unknown parameter estimation for chaotic
systems is described in this section.

A. THE GENERIC CHAOTIC SYSTEM
A n-dimensional generic chaotic system is considered as
following (1):

X =f(X, Xo, 0) (1
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where X = (x1,x2,...,x,)7 € R" represents the state
vector of the original system, X denotes the initial state, and
Qo = (<p?, (pg s ey (p,(l)) represents a set of original systematic
parameters.

Assuming that the structure of the generic chaotic system
(1) is known, then the corresponding estimated system can be
described as (2):

Y =f(Y,Xo, ®) 2

where Y = (y1,y2, ..., yn)T € R" denotes the state vector of
the estimated system, ¢ = (¢1, ¢2, ..., ¢,) represents the set
of estimated parameters.

Update ¢ .
17 Algorithm
X, 0 v
X=f(X,X,,9)
Y=/, X,.9) -

FIGURE 1. The optimization principle of parameter estimation for the
generic chaotic system.

Estimating unknown parameters of the generic chaotic
system can be formulated as an optimization problem, which
targets on searching for a set of optimal parameters. The
obtained optimal parameters can minimize the gap of behav-
iors between the original system and the estimated system.
To attain the estimated parameters ¢y, ..., ¢,, minimizing
the loss function (3) is required. The optimization principle
of parameter estimation for the generic chaotic system is
depicted in Fig. 1

K
. 5 1
min) (§) = - > 11Xk — Yill? A3)
k=1

where Xp (k=1,2,...,K)and Y, (k = 1,2, ..., K)denote
state vectors of the original system and the estimated system
respectively, which are observed at time k. K is the total
number of state vectors used in the estimation.

It is difficult to estimate parameters in the generic chaotic
system due to its unstable dynamic orbits. Meanwhile,
the behavior of the generic chaotic system is extremely sensi-
tive to the initial state. Classical optimization algorithms are
easy to fall into the local optimum, which cannot guarantees
a satisfactory solution.

B. LORENZ SYSTEM
The Lorenz system [4] is a classical continuous-time system
in chaos theory, which is described by a three-dimensional
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model for the fluid convection as illustrated in (4):

x =o(y—x
y=x(p—2)—y “)
= xy—pz

where x = dx/dt,y = dy/dt, z = dz/dt. ¢ = {o, p, B} is the
parameter vector and the ¢ = {0 = 10, p = 28, 8 = 8/3} is
the original parameter vector of Lorenz system.

Ill. JAYA-POWELL ALGORITHM

In this section, a novel hybrid algorithm named as Jaya-
Powell is proposed. The Jaya-Powell algorithm combines
the adaptive Jaya algorithm and Powell algorithm to balance
the exploration and exploitation, which offers the high prob-
ability to search for the global optimum. In the optimiza-
tion procedure, Jaya algorithm [22] is firstly applied to find
a relatively good solution and narrow down the searching
space for further searching. Next, Powell algorithm [23] is
employed to search for the best local solution based on the
reduced searching space obtained from Jaya algorithm. The
rapid convergence of Jaya algorithm and Powell algorithm
ensures the searching speed during the optimization. The
main optimization procedure of the proposed Jaya-Powell
algorthim is described in Algorithm 1.

Algorithm 1 Jaya-Powell Algorithm

Input: The population size: N, Iteration: M, Tolerance:
e, Model parameters of the ith population at the
Jjthiteration: O ;

Output: Solution: Oy,

fori:=1to N do

Initialize O; 1;

end

Setj=1;

repeat

Update solutions O; j based on Jaya algorithm;
Get the best solution Op,y;
Set e = J(Opest);

Setm=m+ 1.
until termination criterion e or j(j <= M) satisfied,;

Update Opey; via Powll algorithm to O,
Return O}, ,.

A. JAYA ALGORITHM

Jaya algorithm is an adaptive optimization algorithm, which
facilitates candidate solutions to get closer to the current opti-
mum and move away from the worst solution over iterations.
The major characteristics of Jaya algorithm is that it is free of
algorithm-specific parameters, such as the mutation probabil-
ity and crossover probability of GA as well as social and cog-
nitive parameters of PSO. The algorithm-specific parameters
can greatly influence the optimization performance and need
to be well fine-tuned. In Jaya algorithm, only the population
size and the number of iterations need to be set in advance.
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The update strategy of Jaya algorithm is illustrated as (5):

0;/41,[7," = Om,p,n + r ,p,n(Om,bext,n - |0m,p,n|)
_"Z,p,n(om,worst,n - |0m,p,n|) )

where Oy, p , is the value of the mth variable for the pth
candidate at nth iteration. The O, pest,n and Oy, worst,n are the
values of the best and worst candidates in the searching space
for the mth variable at the nth iteration. ry ,, , and r . , are
two random numbers for the mth variable at the nth iteration
in the range [0, 1]. Oy, , , is the updated solution. Based on
the objective function J, the updated solution will be accepted
and passed to the next iteration based on the rule (6).

0. = 02"»" lf‘](O;nn) = J(Om,n)

6
" Omn IOy, > J(Omn) ©

The optimization procedure of Jaya algorithm is summarized

as follows:

Step 1: Set the population size, the range of parameters, and
the maximum number of iterations.

Step 2: Initialize the population randomly with the specific
range of parameters.

Step 3: Identify the best and worst solutions in the current
solution space.

Step 4: Update the current solution based on the best and
worst solutions according to eq. (5).

Step 5: Evaluate the value of the objective function for each
updated solution. Then the updated solution will be
accepted or abandoned according to eq. (6).

Step 6: If the maximum iteration is satisfied, the optimiza-
tion procedure will be stopped. Otherwise, the pro-
cedure jumps to Step 3.

B. POWELL METHOD

Powell algorithm, targeting on searching for the optimum in

multi-dimension solution space, is considered as a local opti-

mization algorithm without algorithm-specific parameters.

It is a searching method employing the conjugate direc-

tion to speed up the convergence rate during the optimiza-

tion. Meanwhile, Powell algorithm utilizes a bi-dimensional

searching strategy instead of a hopping probe step to mini-

mize the objective funtion, which can be applied to the non-

differentiable optimization problem. Let X be the initial state

vector and the objective function is denoted by f. Initialize

a set of directions u; as the standard base vectors, u; = e¢;,

i = 1,2,..,n. The procedure of Powell method is summa-

rized as follows:

Step 1: Set the start point Pp = X; and tolerance error e.

Step 2: Find the value of y = y; to minimize f (P;—1+y; X 4;)
andset P =P;,_1+vyi xujfori=1,2,..,n,.

Step 3: Setujy; < u;fori=1,2,..,n.

Step 4: Set u, = P,, — Py.

Step 5: Seti =i+ 1.

Step 6: Find the value of y = vy, to minimize f (P + Ypmin *
uy) and set X; = Py + Yimin X Up.

Step 7: Repeat Step 1 to Step 5 until e is satisfied.
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The initial vectors of Powell algorithm are replaced by a set
of new conjugate vectors completely after n iterations. During
the iterations, u, = P, — Po become linearly dependent
at each stage and might contain incorrect information. The
enhanced Powell method, which replaces one of the direction
vectors selectively based on an obtained new direction vector,
is proposed to guarantee better conjugate properties of the
new group of vectors. The procedure of Powell method is
illustrated in Algorithm 2.

Algorithm 2 Powell Algorithm

Input: Initial solution: Xo; Tolerance error: e; Objective
function: f;
Output: Solution: X, ;
repeat
Set Pp = Xp ;
for k := 1tondo
fori:=1tondo
Initialize the set of direction u; = ¢;;
Find a minimizer y;;
Calculate f(Pi—1 + yi X u;);
Set Pi = Pi—1 + vi X uj;
end
Define Afy = f(Px) — f(Pk—1);
Calculate Af = |Af;| = max{|Afrl};
Record the subscript r;
Set the u, as the maximum decrease;
Calculate fi = f(Px), fE =f 2Py — Py);
if either
fe > foor 2(fo — 2 — f&) X (fo — fu — A)?
0.5 x Af(fo — fe)? then
Setu = P,, — Pg;
Find the minimizer yn;
Calculate ' (Po + Ymin X 4);
Update the search direction:
[e1, ooy Up—1, Uty ooy Up, UG
Set Xk+1 = Py + Vimin X U5
Initialize Py = Xi41;
Seti=1,k=k—+1.

v

end

else

Keep the search direction: [ug, ...... ,unl;
Set Xy+1 = Py or Xgy1 = 2P, — Py;
Initialize Py = Xy 413
Seti=1,k=k+1.

end
end
until termination criterion e satisfied;

IV. BENCHMIARKING ALGORITHMS

To verify the performance of the proposed Jaya-Powell algo-
rithm on parameter estimation for Lorenz chaotic system,
seven benchmarking algorithms, including Jaya algorithm,
Powell algorithm, teaching-learning-based optimization
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algorithm (TLBO), particle swarm optimization (PSO),
generic algorithm (GA), covariance matrix adaptation evolu-
tion strategy (CMA-ES), cluster-chaotic-optimization algo-
rithm (CCO), are employed in comparative experiments.
Brief introductions of seven benchmarking algorithms are
described in this section.

A. PSO

The major characteristics of PSO is to find the optima
through the collaboration and information sharing among
individuals. A group of particles in PSO move around
the searching space based on the historical information of
their own best locations and the best location of the whole
swarm. The velocity of a particle is updated after one
iteration via (7):

Vit +1) = 0 x vi(t) + c1 X 11 X (Ppest — Xi(t))
+c2 X 12 X (8pest — Xi(t)) (7)

where v;(¢) is the velocity of the ith particle at time ¢. ¢; and ¢
are acceleration coefficients of the personal best ppes; and the
global best position gpes respectively. w denotes the scaling
factor of the particle velocity. x;(¢) is the current position of
the ith particle at time r. The position of a particle will be
updated at time ¢ + 1 based on (8):

xi(r + 1) = x;(t) +vi(r) ®)

B. TLBO

TLBO algorithm consists of two components, the teacher
phase and the learner phase. As a global optimization algo-
rithm, the best solution denotes the teacher and the remaining
solutions are the learners at each iteration. TBLO algorithm
does not require other algorithm-specific parameters except
the population size and the number of iterations.

1) TEACHER PHASE

The parameter of a student will be updated according to
the difference between the average performance and the best
performance via (9) and (10)

X/ i = Xjki+1i X Kjppest.i — T X Mj;) ©

Tr = round[1 + rand(0, 1){2 — 1}] (10)

where M; ; is the mean value of jth subject after ith iterations.
ri is a random number within the range of [0,1]. X tpest,i is
the best learner of jth subject. TF is the teaching factor and
the X/ ; is the updated solution.

2) LEARNER PHASE

Next, two students are selected randomly among the group of
students to learn from the teacher, which offers the probability
of enhancing the performance of students.

C. GA
GA is inspired by the law of evolution in nature. The opti-
mization procedure of GA is summarized as follows:
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Step 1: Initialize the number and the length of chromosomes

Step 2: Calculate the fitness value of individuals and select
two individuals named as parents for next iteration.

Step 3: Recombine two parents to generate children for the
next iteration (crossover).

Step 4: Mutate parents from children randomly.

Step 5: Calculate the fitness value of each individual in the
population and record the best solution.

Step 6: Repeat Step 2 to Step 5 until the result is satisfied.

D. CMA-ES

CMA-ES is considered as a state-of-the-art evolutionary
strategy for the derivative-free global optimization. Firstly,
individuals are initialized randomly and sampled according
to the multivariate normal distribution. Next, selected indi-
viduals are considered as the parents and re-ordered based
on the fitness function. Then the re-ordered individuals are
updated via the covariance matrix of the current distribution.
The iteration will be stopped once the optimum has been
found.

E. CCO

The optimization strategy in CCO combines the charac-
teristics of the clustering and the randomness of chaotic
sequences. Based on CCO, the population is firstly divided
into different clusters in each generation. Next, individuals in
each cluster are updated via two operators named as intra-
cluster and extra-cluster. Chaotic sequence are applied in
such two operators to generate random numbers for searching
better solutions. The procedure will be repeated to find the
best solution.

V. SIMULATION AND COMPARITIVE EXPERIMENTS

A. EXPERIMENT ENVIRONMENT

Simulation experiments are conducted on a computer having
a single 15-6500 CPU and 4G memory. Meanwhile, the per-
formance of the proposed algorithm has also been validated
on Raspberry pi 3, which has the advantages of small size
and portability. As the embedded device, Raspberry pi 3 is
powerful for solving the ordinary problem and can be used
in many conditions such as non-personal computer. It is a
single-board computer developed by Raspberry Pi foundation
which focuses on promoting the basic of technology on the
computer. Based on Raspberry pi 3, the proposed algorithm
is capable to be applied in edge computing.

B. SIMULATION

To demonstrate the superiority of the proposed algorithm,
the original Lorenz system evolves freely from a random
initial state firstly. A state vector Xg = (0., 1., 1.05) is set
as the starting point to conduct the behavior. 300 successive
state vectors, which are defined as X1, X2, ..., X300 and
Y1,Y2,..., Y300, are selected both from original and esti-
mated systems to calculate the fitness value. The step size of
chaotic behaviors ¢ is set to 0.01. The value of the objective
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TABLE 1. Statistical results of parameter estimation for Lorenz system based on different algorithms.

Algorithm
Jaya-Powell Jaya Powell TLBO PSO GA CMA-ES CCO
o 10.000000 9.801253 10.00000 9.833314 9.957756 9.626279 9.999609 9.543224
‘U%Olol 1.119104e-23 0.198747 2.913225e-13 0.166686 0.042244 0.373721 0.000391 0.456776
Best p 28.000000 28.239758 28.000000 28.100972 28.038217 27.961971 28.000178 27.888521
% 2.486899%¢-14 0.239758 4.583001e-13 0.100972 0.038217 0.038029 0.000178 0.111478
B 2.666667 2.692626 2.666667 2.670115 2.669889 2.626392 2.666665 2.603154
% 3.552713e-15 0.025959 5.728751e-14 0.003448 0.003223 0.040275 2.090676e-06 0.063512
J 1.291529e-25 0.299256 6.204374e-25 0.183798 0.026173 2.524589 1.275172e-06 7.966531
T 10.000000 10.250868 9.847906 9.956764 10.083554 9.842539 9.620862 9.660097
% 1.776356e-15 0.250868 0.152094 0.043236 0.083554 0.157460 0.379137 0.339903
Mean . P 28.00000 27.473784 26.002084 27.984726 27.9451205 27.368433 24.150269 25.612109
% 2.735589%¢-13 0.526216 1.997916 0.015274 0.054879 0.631567 3.849731 2.387890
B 2.666667 2.598840 2.598070 2.662245 2.665272 2.546570 2.578566 2.532006
\,8;/83/3| 4.884981e-14 0.067827 0.068596 0.004421 0.001395 0.120096 0.088101 0.134660
J 7.819819e-24 3.358928 116.937687 2416112 0.798651 44.381122 158.231152 343.656833
o 10.000000 10.482337 9.458302 9.711571 10.625504 9.605912 9.000000 9.636259
‘U%Oml 2.842171e-12 0.482337 0.541698 0.288429 0.625504 0.394088 0.999999 0.363740
Worst . P 28.00000 26.222595 27.048644 29.327925 27.135383 24.711447 21.868929 27.059840
% 3.367973e-12 1.777405 0.951356 1.327925 0.864616 3.288553 6.131071 0.940159
B 2.666667 2.410404 2.000000 2.891058 2.572937 2.058641 2.449754 2.503962
% 3.503864e-13 0.256263 0.666667 0.224391 0.093730 0.608025 0.216913 0.162705
J 3.750901e-23 15.501535 356.254221 10.406942 2.314511 167.399045 228.585069 453.739011
function J is calculated using the function (11): e Convegence of ifetentaigorthms over skl experiment
300 — ol
J=3" X —Yp)? (11) 5001 "o
k=1 g
. . 400 1 cmA
Parameter settings of the proposed algorithm and seven o — cco
benchmarking algorithms are described as follows. To ensure 2 300
the same restrictive conditions for different algorithms, g
the maximum number of iterations, the relative error of the 200+
stopping criterion in the convergence, and the population size
are set as 100, e = 10™*, 100 respectively. The searching 1007
ranges of three parameters are set as 9.0 < o < 11.0, 04 ==

20.0 < p <30.0, 2.0 < B < 3.0 separately. Based on afore-
mentioned parameters, there is no other algorithm-specific
parameters to set for Jaya-Powell algorithm, Jaya algorithm,
Powell algorithm, TLBO, and CCO. The algorithm-specific
parameters of PSO are set as ¢; = ¢» = 2.05 and w =
0.729 [24]. In GA, the length of the chromosome L, the cross-
over rate P,, and the mutation rate P,, are set as 3, 0.8, and
0.1 [12]. The 0 = 0.5 is set in CMA-ES, which is initial-
ized randomly. In addition, each algorithm are conducted via
20 simulation experiments under the same condition to obtain
more universal results.

C. RESULTS AND DISCUSSION

To validate the optimization performance of the proposed
Jaya-Powell algorithm, two types of comparative experi-
ments are employed. In the first type of comparison, all
algorithms are conducted via a single experiments to roughly
illustrate the corresponding convergence. As shown in Fig. 2,
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0 20 40 60 80 100

Iterations

FIGURE 2. The convergence of different algorithms over a single
experiment.

algorithms except Powell and CCO are capable to converge
to a relatively satisfactory solution. Meanwhile, the proposed
Jaya-Powell algorithm reaches the highest degree of accuracy
among all algorithms, which is around e=20.

In the second type of comparison, all algorithms are con-
ducted to for parameter estimation of o, p, and B over
20 independent experiments separately. The repeated exper-
iments make it easier to spot anomalies and offer the more
reliable performance of different algorithms. The optimiza-
tion performance via the proposed Jaya-Powell algorithm and
seven benchmarking algorithms, including the best, average,
and worst performance over 20 repeated experiments, are
summarized in Table 1. According to Table 1, it is clear
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The relative estimation error of o over 20 experiments
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FIGURE 3. The relative estimation error of parameters and the value of the fitness function for different algorithms over 20 experiments: (a) o; (b) p;

(c) B; (d) the value of the fitness function.

that the proposed Jaya-Powell algorithm outperforms seven
benchmarking algorithms on the best, average, and worst
performance. The average performance of Jaya-Powell algo-
rithm demonstrates its robustness of parameter estimation for
Lorenz chaotic system, which also validates its independence
of the random initialization. However, other benchmarking
algorithms, such as Powell, GA, CMA-ES and CCO, achieves
a poor level of robustness due to the overdependence on
well-selected initializations. If the initialization of Lorenz
chaotic system is away from the original solution or close to
local optima, it is challenging for these benchmarking algo-
rithms to search for satisfactory solutions. Fig. 3 describes
the relative estimation error of parameters and the value of
fitness function for different algorithms over 20 experiments.
As depicted in Fig. 3, the strong randomness of initializations
results in much negative effects on Powell algorithm while
less impacts on Jaya algorithm. Thus, if a relatively better
solution is obtained by Jaya algorithm, Powell algorithm can
exploit the nearby space based on the obtained solution to
achieve a more accurate solution.
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TABLE 2. The overall performance of different algorithms.

Algorithm RMSE Time/s
Jaya-Powell 1.373699¢-23 24.102933
Jaya 5.042903 20.597662
Powell 173.914969 1.358679
TLBO 3.324818 44.824379
PSO 1.084458 24.144498
GA 60.553169 12.954163
CMA-ES 187.540648 2.593789
CCo 361.918960 189.839586

To illustrate the overall performance of the proposed algo-
rithm and seven benchmarking algorithms, the root-mean-
square error (RMSE) of the fitness function and average
running time are utilized for the 20 repeated experiments.
Based on Table 2, the proposed algorithm attains the lowest
RMSE to demonstrate its robustness on parameter estimation.
There is no significant difference of the average running time
among different algorithm except CCO. Thus, the proposed
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Jaya-Powell algorithm achieves the best overall performance
on parameter estimation of Lorenz chaotic system.

VI. CONCLUSION

In this paper, a novel hybrid algorithm combining Jaya algo-
rithm and the Powell method named Jaya-Powell was pro-
posed for parameter estimation of Lorenz chaotic system.
The proposed hybrid algorithm focused on efficiently search-
ing for a satisfactory solution via balancing the exploration
and exploitation, which avoided to fall into the local opti-
mum. The two types of comparative experiments demon-
strated the superiority of the proposed algorithm on parameter
estimation of Lorenz chaotic system by comparing with seven
benchmarking algorithms. Due to the characteristics of non-
specific-parameters, it took less time for Jaya-Powell algo-
rithm to converge to the optimum based on the guarantee of
the estimation accuracy.

The numerical experiments was also conducted on the
embedded environment. We conducted the parameter estima-
tion via the proposed Jaya-Powell method on the Raspberry
Pi 3. It demonstrated the feasibility of parameter estimation of
Lorenz chaotic system on the embedded platform, which can
be applied into edge computing. Both experiments on com-
puter and Raspberry Pi 3 have validated the outperformance
of the Jaya-Powell algorithm.

The future work will extend the parameter estimation of
chaotic systems through the GPU-based implementation to
achieve the high-speed performance.
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