
Received January 2, 2020, accepted January 14, 2020, date of publication January 20, 2020, date of current version January 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968064

Improved Fitness-Dependent
Optimizer Algorithm
DANIAL ABDULKAREEM MUHAMMED 1, SORAN A. M. SAEED 2,
AND TARIK AHMED RASHID 3, (Member, IEEE)
1Computer Department, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
2Database Technology Department, College of Informatics, Sulaimania Polytechnic University, Sulaymaniyah 46001, Iraq
3Computer Science and Engineering, University of Kurdistan Hewler, Erbil 44001, Iraq

Corresponding author: Danial Abdulkareem Muhammed (danial.muhammed@univsul.edu.iq)

This work was supported by the University of Sulaimani.

ABSTRACT The fitness-dependent optimizer (FDO) algorithm was recently introduced in 2019.
An improved FDO (IFDO) algorithm is presented in this work, and this algorithm contributes considerably
to refining the ability of the original FDO to address complicated optimization problems. To improve the
FDO, the IFDO calculates the alignment and cohesion and then uses these behaviors with the pace at which
the FDO updates its position. Moreover, in determining the weights, the FDO uses the weight factor (wf),
which is zero in most cases and one in only a few cases. Conversely, the IFDO performs wf randomization
in the [0-1] range and then minimizes the range when a better fitness weight value is achieved. In this work,
the IFDO algorithm and its method of converging on the optimal solution are demonstrated. Additionally,
19 classical standard test function groups are utilized to test the IFDO, and then the FDO and three other
well-known algorithms, namely, the particle swarm algorithm (PSO), dragonfly algorithm (DA), and genetic
algorithm (GA), are selected to evaluate the IFDO results. Furthermore, the CECC06 2019 Competition,
which is the set of IEEE Congress of Evolutionary Computation benchmark test functions, is utilized to test
the IFDO, and then, the FDO and three recent algorithms, namely, the salp swarm algorithm (SSA), DA and
whale optimization algorithm (WOA), are chosen to gauge the IFDO results. The results show that IFDO is
practical in some cases, and its results are improved in most cases. Finally, to prove the practicability of the
IFDO, it is used in real-world applications.

INDEX TERMS Improved fitness-dependent optimizer, IFDO, optimization, intelligence swarm, meta-
heuristic algorithms.

I. INTRODUCTION
Since computers were developed, the focus has been on the
aspects of probing unidentified solutions and searching for
the best solution. Alan Turing utilized a search algorithm [1]
in 1945 to break the enigma cipher of Germany during the
Second World War. The advancement of practical methods
and a dramatic rise in the volume of computation have caused
difficulties in addressing real-life problems. Therefore, issues
of quickly and proficiently solving complex problems via
classic methods based on formal logic or mathematical pro-
gramming have appeared [2]. Many algorithms have been
created with a variety of methods to handle these constraints,
and optimization problems are one of these methods. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Li .

optimization procedure obtains the best solution of a function
by looking for a parameter. Existing solutions are denoted
by sets of possible values, of which one is the best solution.
Generally, solving optimization problems is the purpose of
inventing optimization algorithms [3].

Based on the environment of the algorithms, there is a
simple categorization of optimization algorithms that can sep-
arate them into two central groups: deterministic algorithms
and stochastic algorithms. The first group, the deterministic
algorithms, produces a similar set of answers when a similar
preliminary starting point is used to begin the iterations; this
is due to utilizing inclination, for instance, hill-climbing with
a strict move sequence. Alternatively, the second groups,
the stochastic algorithms, regularly produce different answers
with similar preliminary values without utilizing inclina-
tion. On the other hand, there is a minor difference in

19074 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0806-7261
https://orcid.org/0000-0001-8826-6716
https://orcid.org/0000-0002-8661-258X
https://orcid.org/0000-0002-0517-2392

D. A. Muhammed et al.: Improved FDO Algorithm

the final values; a similar best solution would match the
specified accuracy. Stochastic algorithms are categorized into
two types: heuristic and metaheuristic [4].

Heuristic algorithms utilize trial and error to look for a
solution; it is expected that they will take a feasible amount of
time to achieve a solution. Likewise, heuristic algorithms tend
to use different approaches in randomization techniques and
local explorations [5]. Additional research and improvements
on heuristic algorithms transformed them into metaheuris-
tic algorithms, and these new groups of algorithms have
superior performance compared to the heuristic algorithms;
therefore, the prefix of ‘‘meta’’, which means ‘‘higher’’ or
‘‘beyond’’, was associated with them [6]. Nevertheless, these
two terms (heuristic and meta-heuristic) are currently indis-
tinguishable to scientists, although a slight dissimilarity exists
in their meanings. Recently, meta-heuristic nature-inspired
algorithms have been used professionally and effectively to
solve recent nonlinear numerical global optimization diffi-
culties. All meta-heuristic algorithms attempt to build some
stability between local exploration and randomization [7].

Recently, existing real-world problems have become com-
plicated, and considering space, time, and cost, it is imprac-
tical to explore all the conceivable solutions. Consequently,
to solve such real-world problems, reasonable techniques
that are low-cost and fast are essential. Hence, to determine
how to address these difficulties, scientists have investigated
natural occurrences and animal behaviors, for instance, how
path selection occurs for ants, how evading the enemy and
chasing prey occur for a group of birds, flies or fish, and how
gravity works. Therefore, the name ‘‘nature-inspired algo-
rithms’’ was selected for the algorithms that were inspired by
nature [8]. There are many nature-inspired algorithms. The
University of Michigan started to develop such algorithms
in 1960 when Holland and his colleagues published a book
about their GA and republished it in 1970 and 1983 [9]. Sim-
ulated annealing (SA) was implemented by Kirkpatrick et al.
The motivation for the SA algorithm was the annealing pro-
cess of metal [10].

PSO and ant colony optimization (ACO) are two com-
monly used swarm intelligence algorithms that were pro-
posed by Kennedy and Eberhart in 1995 and Dorigo et al.,
1996, respectively. PSO is inspired by the collective grouping
behavior of birds in searching for food, and ACO is inspired
by the nature of the ant, which has the ability to hold previous
paths in its mind. [11]–[13]. The authors of the PSO thought
these behaviors would help the optimization issues; then,
other algorithms benefitted from the definitions used in the
PSO algorithm. In the last two decades, various excellent
intelligence swarms have been suggested, such as differential
evolution (DE) in 1997, which was proposed by R. Storn and
K. Price; it was a vector-based algorithm and performed better
than GA in many applications [8].

In 2005, the artificial bee colony (ABC) algorithm was
proposed by Karaboga and Basturk [14] and Li and Yin [15].
Xin-She Yang created the firefly algorithm (FA) in 2009 [16],
and then, the same year, CS was suggested by the same

author [17]. Moreover, a bat-inspired algorithm was sug-
gested by Xin-She in 2010 [18]. The artificial plant opti-
mization algorithm (APOA) proposed by Bing Yu et al.
in 2013 is inspired by the natural plant growing process. [19].
Additionally, in 2014, Li et al., offered a newly announced
algorithm, animal migration optimization (AMO), which is
inspired by swarm migration behavior in animals [20]. Later,
Mirjalili A. S. proposed three algorithms: first, DA, in 2015,
based on the behaviors related to attraction to food and eva-
sion of enemies; second,WOA, in 2016; third, the salp swarm
algorithm (SSA) in 2017 [21]–[23]. The novel ABC was
altered with two modified ABCs created by Laizhong et al.
In the first variant, an adaptive method for the population size
(AMPS) was implemented by the authors [24], and in the sec-
ond variant, the authors implemented a ranking-based adap-
tive ABC algorithm (ARABC) [25]; these variants were used
for improvement exploitation in the original ABC algorithm.
In 2019, Jaza Abdullah and Tarik Rashid developed a fitness-
dependent optimizer or FDO algorithm. The FDO algorithm
looks at the behaviors of bee swarms during reproduction
and imitates swarm activities. Finding a different appropriate
solution among various possible solutions forms a substantial
part of this algorithm [26].

There are many other meta-heuristic optimization algo-
rithms inspired by nature and utilized for difficult optimiza-
tion problems, such as the evolutionary strategy (ES) [27],
elephant herding optimization [28], fireworks algorithm
(FWA) [29], biogeography-based optimization (BBO) [30],
brain storm optimization [31], [32], earthworm optimiza-
tion algorithm [33], krill herd algorithm (KH) [34]–[41],
probability-based incremental learning (PBIL) [42], har-
mony search (HS) [43]–[45], bat algorithm (BA) [46], [47],
monarch butterfly optimization (MBO) [48], and the moth
search algorithm [49]. These algorithms cannot use all impor-
tant information from instances in former iterations to direct
their search in the present and future. Therefore, these algo-
rithms can be divided into two groups. The first group, for
instance, BBO [30]–[49] and BA [46], is strictly independent
of previous instances, and the second group, for instance,
KH [34], [35], FWA [29]–[50], and MBO [48] utilizes the
instances that were best in earlier iterations [51].

Researchers have extensively utilized the abovementioned
algorithms in many areas. However, there is no specific
algorithm that achieves the most fitting solution for all
optimization problems. Some algorithms yield better solu-
tions for some specific problems than for others. Therefore,
seeking adaptation in optimization techniques is an open
problem [52].

In this paper, an improvement in fitness-dependent
optimization (IFDO) has been developed from the FDO
algorithm. In the FDO algorithm, the authors created the
algorithm with a few characteristics of a scout. Jaza and Tarik
described the main operator of the scout to update its location
with its velocity (pace). Moreover, to manage weights, this
operator typically relies on the fitness function value, and
then, for the phases of exploitation and exploration, search

VOLUME 8, 2020 19075

D. A. Muhammed et al.: Improved FDO Algorithm

agents are guided via these weights [26]. However, in IFDO,
a scout exhibits other behaviors in addition to the pace, such
as alignment and cohesion.

Moreover, the FDO, a weight factor (wf) was used to
control the fitness weight. Nevertheless, thewf was neglected
in most cases [26]. However, in IFDO, the weight factor (wf)
is used whenever a better fitness weight is obtained.

In the following, the papers’ main contributions are briefly
presented:

1) The IFDO algorithm is constructed by adding the behav-
iors of alignment and cohesion in updating the scout location
and enhances the FDO algorithm in both the exploration and
exploitation phases by considering reasonable covering of the
search space to produce earlier convergence in the direction
of global optimality.

2) The IFDO algorithm randomizes the wf and utilizes it
for each scout in each of the iterations.

3) One additional unique feature of IFDO is that when a
better solution is obtained, a new wf is generated in a new
range to increase the chance of achieving the best solution in
a shorter time (this is discussed further in section III).

The next sections describe this research. The second
section presents the original algorithmFDO. The third section
describes our improvements to the FDO algorithm. The
fourth section shows the results and discussion; the perfor-
mance information of the IFDO compared to the selected
well-known and recent algorithms is specifically demon-
strated, and then two real-world problems are addressed. The
fifth section analyses the results and explains the role of the
operators proposed in this study. Section 6 concludes themain
points and suggests future research studies with the improved
IFDO.

II. FITNESS-DEPENDENT OPTIMIZER
The FDO can be divided into the scout bee searching process
and the scout bee movement process. In the scout bee search-
ing process, the algorithm makes the scout bees search for
a suitable hive (solution) among many potential hives (solu-
tions). Through the scout bee updating process, the algorithm
utilizes a random walk and a fitness weight mechanism to
move into a new position; accordingly, this section contains
two parts.

A. SCOUT BEE SEARCHING PROCESS
The process of scout bees searching numerous possible hives
to obtain a new proper hive means that the main part of this
algorithm focuses on that process. In this algorithm, a proper
solution is denoted by a scout bee that searches for a new hive.
Moreover, meeting optimality means choosing the best hive
among numerous hives. Furthermore, when the FDO begins
execution, it defines an artificial scout population with ran-
dom locations in anXi (i=1, 2, . . . n) space search bymeans of
upper and lower boundaries. Through the execution, the FDO
picks the global best solution. Finding a new hive (solution) in
this algorithm is represented by a scout bee position. Scouts
based on a random walk search in the search space for a

more suitable solution; when the more suitable solution is
revealed, the earlier solution is ignored. Nevertheless, if the
scout cannot achieve a more suitable solution, then it uses
the former solution with the expectation of finding a more
suitable solution next time. Finally, in the case of not finding a
more appropriate solution with the former solution, the scout
will continue with the current solution, which is the best
solution at that time.

B. SCOUT BEE MOVEMENT PROCESS
In this algorithm, the scout, to obtain a better solution, updates
its current position by adding pace. The updated artificial
scout bee can be calculated according to equation (1) as
follows:

Xi,t+1 = Xi,t + pace (1)

where i denotes the current search agent, t denotes the current
iteration, X denotes an artificial scout bee (search agent),
and pace denotes the movement rate and direction of the
artificial scout bee. The pace is typically reliant on the fitness
weight fw. Nevertheless, a random mechanism completely
relies on the direction of the pace.
In FDO, the fitness weight (fw) value is typically utilized to

manage the pace. The algorithm determines the fitness weight
(fw) for every artificial scout using equation (2).

fw =

∣∣∣∣∣ x
∗
i,tfitness

xi,tfitnees

∣∣∣∣∣− wf (2)

where x∗i,t fitness denotes the best global solution’s fitness
function value that has been revealed so far. xi, t fitness
denotes the current solution’s value of the fitness function;
wf denotes a weight factor, randomly set between 0 and 1,
which is used for controlling the fw.

Later, the algorithm considers some settings for (fw), for
instance, if fw = 1 or 0, and xi,t fitnees = 0, the algorithm sets
the pace randomly according to equation (3). On the other
hand, if fw > 0 and fw < 1, then the algorithm generates a
random number in the [-1, 1] range to make the scout search
in every direction; when r < 0, pace is calculated according to
equation (4), and when r >= 1, pace is calculated according
to equation (5).
fw=1 or fw=0 or xi,t fitness = 0, pace = xi,t ∗r (3)

fw> 0 and fw< 1

r< 0,pace=
(
xi,t−x∗i,t

)
∗fw∗−1(4)

r ≥ 0, pace=
(
xi,t−x∗i,t

)
∗fw (5)

where r denotes a random number in the range of [-1, 1],
xi, t denotes the current solution, and x∗i,t denotes the global
best solution achieved thus far. Among various applications
for random numbers, the FDO selects Levy flight because
it considers further stable movement via its fair distribution
curve [7].

The FDO pace is saved in every iteration for the accepted
solution, and then it can be used next time.

19076 VOLUME 8, 2020

D. A. Muhammed et al.: Improved FDO Algorithm

III. THE IMPROVED FITNESS-DEPENDENT OPTIMIZER
The IFDO is developed from the original FDO, which is
an evolutionary optimization algorithm that was proposed
by Jaza and Tarik [26]. The idea of this algorithm is essen-
tially based on the generative process and collective decision-
making used by bees. The bees search for many possible
hives to obtain a new proper hive. Based on the original FDO,
our proposed improved fitness-dependent optimizer is intro-
duced, and it includes two phases: the updating of the scout
bee position, which is improved by the functionalization of
certain parameters, and the randomization of the weight fac-
tor (wf) in the [0, 1] range. Accordingly, this section contains
two parts.

A. UPDATING THE SCOUT BEE POSITION
The IFDO, to create a different way of movement, applies
order and cohesion, which are two vital signifiers of group
motion; cohesion inside a group defines the distance between
members, whereas members’ alignment inside a group can be
indicated by order when it is measured as divergence. Effec-
tive movement and maximization of the benefits of grouping
for individual group members rely on better group cohesion
and divergence [53].

In the original FDO, to achieve a more suitable solution,
the scout bee adds pace to the current position in searching
for new positions, as expressed in equation (1). In the IFDO,
this equation is improved by adding two parameters, such as
alignment and cohesion, to the pseudocode of the IFDO illus-
trated (see Figure (1)). In the following, the new movement
of the artificial scout bee is expressed as:

Xi,t+1 = Xi,t + pace+ (alignment ∗ 1
/
cohesion) (6)

where i is the current artificial scout bee (search agent), t is
the current iteration; the pace is the rate of the movement
and the artificial bee direction, X is an artificial bee, and
alignment is the pace matching of scouts to that of other
scouts in neighborhoods, and cohesion, is the inclination
of scouts in the direction of the center of the mass of the
neighborhood.

This improvement has been made in the light of scout
bee behavior, which is always attracted to better solutions
and avoids decreased chances of obtaining better solu-
tions [26]. To calculate the alignment and cohesion behaviors,
the scouts’ neighbors’ search landscape should be determined
as shown in the pseudocode of the IFDO (see Figure (1)).
In the IFDO, the search landscape of the artificial scout’s
neighbors is expressed as follows:

nl =
lB

2 ∗ PI
(7)

where nl is the landscape of the neighbors, and lB is the
landscape boundary. To functionalize these two suggested
parameters to update the scout bee position, it should be
determined whether the scouts fall into the landscape of the
neighbors (ln), as shown in the pseudocode of the IFDO (see
Figure (1)). The alignment and cohesion can be calculated

FIGURE 1. IFDO Pseudocode.

according to equations (8) and (9).
n=X−Xi, n=nl or n<nl, alignmentk=

∑N
k=1 pacek
N

(8)

n=X−Xi, n=nl or n<nl, cohesionk=

∑N
k=1 Xk
N

−X (9)

where n represents a scout in the neighbors’ landscape and
the role of the variable n is signifying which scout participates
in determining the alignment and cohesion, X represents the
current scout’s position, N represents the neighborhood’s
number, pacek is the pace matching of scouts to that of other
scouts in neighborhoods, and xk represents the position of the
k th neighboring scout.

In the IFDO implementation, there are upper boundaries
and lower boundaries for the dimensions of the agents to

VOLUME 8, 2020 19077

D. A. Muhammed et al.: Improved FDO Algorithm

address weight values that are too large or small. See equa-
tions (10) and (11).{

wvb > ub,wvb = ub ∗ nrd (10)
wvb < lb,wvb = lb ∗ nrd (11)

}
where wvb is the weight value of a bee, ub is the upper
boundary of the weight value of a bee, nrd is the new random
double value, and lb is the lower boundary of the weight value
of a bee.

The IFDO randomly moves the agents. The agent who
remains still for finite time is the global best for this status;
therefore, that agent randomly moves, and its movement will
not be accepted until the agent obtains a better movement.
See equation (3).

Because the FDO algorithm is PSO-based, this paper tries
to add some PSO principles, such as alignment and cohe-
sion, to improve the FDO algorithm from the perspective of
convergence. Moreover, the IFDO has the same mathemat-
ical complexity as that of the FDO with a slight change in
space complexity. The IFDO has time complexity O (d∗p +
COF∗p) for each iteration, where d is the dimension of the
problem, p is the population size, and COFis the cost of the
objective function. On the other hand, IFDO has space com-
plexity O (COF∗p + p∗pace+(alignment∗1/cohesion))for
all iterations,where pace+ (alignment∗1/cohesion)is the best
previous pace stored. Hence, for the total number of itera-
tions, the time complexity in the IFDO is comparable. On the
other hand, for the progress of iterations, its space complexity
will be the same. Space complexity is slightly increased in the
IFDO compared to the FDO due to the addition of two addi-
tional loops to calculate alignment and cohesion, although
this increase is negligible, especially in modern computers,
which have a substantial amount of memory space and com-
putational time; this causes the IFDO to have decreased time
complexity and better convergence.

B. RANDOMIZATION WEIGHT FACTOR
The original FDO uses pace as the degree of movement and
the artificial bee direction. The regular fitness weight (fw)
value is used to manage the pace. On the other hand, random
mechanisms completely determine the pace direction. Hence,
theminimization of fw is expressed according to equation (2).

The authors of the FDO algorithm stated that the weight
factor is used to control the fitness weight and that the value of
the weight factor is either 0 or 1; if wf = 0, it is a more stable
search, and if wf = 1, it the convergence is high, and the
chance of coverage is weak. Nevertheless, the authors men-
tioned that while the fitness function value entirely depends
on the optimization problem, the reverse may also happen.
Consequently, in our improved fitness-dependent optimizer,
we use a random mechanism to control the fitness weight
by generating a weight factor in the [0, 1] range, as shown
in the pseudocode of the IFDO (see Figure (1)), to increase
the IFDO performance, as is shown from the resulting test
in section (4). In our proposed improvement, we change

equation (2), as shown in equation (12).

fw =

∣∣∣∣∣ x
∗
i,t fitness

xi,t fitnees

∣∣∣∣∣ (12)

With equation (12), we find the fitness weight value
and then check if it is less than or equal to the generated
weight factor, as shown in the pseudocode of the IFDO (see
Figure (1)); if it is, then the weight factor is ignored in
controlling the fitness weight. Otherwise, the weight factor
participates in controlling the fitness weight according to
equation (13).

fw = fw− wf (13)

This is a new way of finding the fitness weight, which is
avoided by ignoring wf in most cases, and wf reasonably
participates in many cases. In the IFDO, the weight factor is
randomly set in every iteration for each scout, and a newwf is
generated in the new [0,wf] range when a new, better solution
is accepted, as shown in the pseudocode of the IFDO (see
Figure (1)). From there, new wf limited in [0, wf] is better
while for a new solution the IFDO will be more stable and
higher coverage than the previous solution due to decreasing
wf for each iteration, as well as, it has more convergence than
the setting wf = 0.

IV. RESULTS AND DISCUSSION
This improved fitness-dependent optimizer’s performance
is verified using various standard test functions that exist
in the literature; readers who are interested in knowing
more about the methods of comparison can see refer-
ences [21]–[23], [26], [54]. Furthermore, the FDO implemen-
tation that can be found through the link https://github.com/
Jaza-Abdullah/FDO-Java was downloaded; it was coded via
the Java language. Then, the IFDO was created with the
same language, and the IFDO algorithm was tested with the
same parameter setting, the same test functions, and the same
number of iterations as used in the FDO’s tests. Moreover,
the performance of the IFDO is evaluated against six state-
of-the-art algorithms, namely, FDO, DA, GA, PSO, SSA, and
WOA. The results of the tests of the 19 classical standard test
functions and CEC-C06 tests for the different algorithms are
taken from the original FDO work [26]. In addition, two real-
world applications are optimized using the IFDO; therefore,
this section consists of five parts, as follows:

A. CLASSICAL BENCHMARK TEST FUNCTIONS
The IFDO performance is tested with three groups of test
functions [21]. There are various features for the test func-
tions, such as unimodal, multimodal, and composite. To mea-
sure the algorithm’s specific outcomes, these groups of tests
are utilized. The stages of exploitation and convergence to
infer a single optimum are verified by unimodal bench-
mark functions. On the other hand, there are many optimal
solutions for the second feature (multimodal test functions);
avoidance of local optima and stages of exploration are veri-
fied with this feature. It is worth mentioning that among the

19078 VOLUME 8, 2020

D. A. Muhammed et al.: Improved FDO Algorithm

TABLE 1. FDO and chosen algorithms [26] with IFDO classical benchmark results.

many optimal solutions, most are local optima, and there is
only one global optimum. Avoiding local optimal solutions
and moving toward a global optimum solution is essential to
an algorithm. Additionally, with the third feature (composite
test functions), various search areas can have various forms
and large numbers of local optima. Composite test functions
are generally moved, amalgamated, biased, and altered adap-
tations of other test functions. Difficulties that occur in real-
world search areas can be identified by this type of standard
function (see Tables 6, 7 and 8 in the appendix) [26].

To determine the average and standard deviation for each
algorithm in Table (1) based on searching for the optimal
solution, the algorithms in Table (1) are tested 30 times for
500 iterations and 30 scout bees each with 10 dimensions.

Parameter explanations for the DA, PSO, and the GA can
be obtained in [21]. Moreover, there is only one parameter
for the IFDO and the standard FDO, which is wf . For the
FDO, in the test functions in Table (1), in only two of the
cases (2 and 8), wf is set to 1, and for all other cases, wf
is set to 0. In contrast, in our proposed algorithm (IFDO),
wf is set randomly in the [0, 1] range for all of the cases.
However, this range will change when the algorithm detects
a more suitable solution; for more detail, see Figure (1).
During the test, only the test function TF8 is reduced
to -2917375.29380209, and all of the other test functions are
reduced to 0.0 (details of the conditions of the test functions
can be found in Appendix Tables 6, 7 and 8). To confirm
that the algorithm does not discriminate in the direction of
origin, some degree of shifting is utilized for some of the test
functions.

The IFDO results and the FDO, GA, DA, and PSO
results are illustrated in Table (1). The results show that the

IFDO in TF5, TF8, TF11, and TF12 was driven better over-
all in comparison with the selected comparator algorithms.
However, the IFDO was worse than the other algorithms in
TF6, TF7, and TF13. Moreover, the results of TF7, TF17,
and TF18 showed that the IFDO was more comparable to the
original FDO, whereas the results of TF10 and TF19 demon-
strated that the IFDO outperformed the other competitor
algorithms. Additionally, the results of TF1, TF3, TF4, TF9,
TF14, TF15, and TF16, which are highlighted in green
in Table (1), proved that the IFDO surpassed the original
FDO, GA, PSO, and DA in all the situations.

B. CEC-C06 2019 BENCHMARK TEST FUNCTIONS
To further evaluate the IFDO, the algorithm was tested on
10 current test function sets of the CEC standard. Professor
Suganthan and his colleagues enhanced these test functions
for the optimization of a single objective problem [54]. A set
of CEC standard test functions are planned to be used in
the annual optimization competition ‘‘The 100-Digit Chal-
lenge’’, which is a common name for this set of test functions
(see Table (2)). CEC01 to CEC03 are not similar to the test
functions CEC04 to CEC10, while CEC01 to CEC03 are
not shifted and rotated. However, a feature of scalability is
utilized in both CEC01 to CEC03 and CEC04 to CEC10.
Regarding the parameters, the CEC benchmark developer
provided a set of parameters; the various dimensions for
CEC01 to CEC03 are as shown in the Appendix in Table 9,
and a 10-dimensional minimization problem in the [-100,
100] boundary range was set for the functions CEC04 to
CEC10.

The CEC global optimum is entirely bound to point 1
to be more appropriate. With the FDO, the three other

VOLUME 8, 2020 19079

D. A. Muhammed et al.: Improved FDO Algorithm

TABLE 2. Results of the IEEE ECE benchmark 2019 [26].

recent algorithms for optimization, DA, WOA, and SSA,
are tested for competitiveness with our proposed IFDO.
Various motivations led to choosing these recent algorithms.
First, the improved FDO, the original FDO, and the other
chosen algorithms are all PSO-based algorithms. Second,
in previous works, these algorithms were obviously used.
Third, on both real-world problems and benchmark test func-
tions, all of these algorithms have exceptionally good results.
Fourth, the authors of these algorithms freely provided the
algorithms’ operating methods. It is worth mentioning that
the parameter settings of the chosen algorithms were not
changed during the test. The same settings were used for
all the opponents, as shown in papers [21]–[23], [26], [54].
Readers can access the MATLAB parameter setting arrange-
ment and their implementations for the algorithms in this
reference if desired [55]. Furthermore, the generated random
weight factor (wf) in the [0, 1] range is used for all test
functions; however, this wf is regenerated in [0, wf] for the
next iteration if a better fitness weight (fw) is achieved (see
the pseudocode in Figure (1)). To perform the test of IFDO
and other competitors’ algorithms as presented in Table (2),
30 agents with 500 iterations were applied to each algorithm.

In the cases of CEC02, CEC03, CEC09, and CEC10,
the IFDO was equal to the original FDO; however, the stan-
dard deviation (SD) was changed somewhat. On the other
hand, the IFDO surpasses other competitors’ algorithms in
those cases. In cases CEC04 - CEC08, except for CEC06,
the IFDO outperformed all of the opponents; however, in the
case of CEC06, the IFDO performed worse than the DA,
WOA, and SSA but better than the original FDO. Finally,
it is clear that the average IFDO, FDO, and WOA results
are equal, whereas the standard deviation of WOA is equal
to 0, which means there is no way to promote enhancement
because similar results are obtained in all cases.

C. QUANTITATIVE MEASUREMENT METRICS
Two quantitative metrics were used for further investi-
gation and detailed observation of IFDO, as shown in

Figures 2 and 3. For each quantitative metric, among the
unimodal standard functions TF1 to TF7, the first test func-
tion is chosen, among the multimodal standard test functions
TF8 to TF13, the second test function is chosen, and among
the composite standard functions TF14 to TF19, the third
test function is chosen. For each investigation, searching the
two-dimensional search space through 150 iterations was
performed using 10 search agents.

The first measurement metrics test demonstrates how the
search space is covered by the scout bee and presents the
course of the convergence. During the test, the positions of
the scout bees are logged from the start of the test to the
end. Hence, this metric is simply a scout bee search history.
At first, the whole area is rapidly discovered by the scout
bee, and then, in the direction of optimality, they steadily
move. Figure (2) presents the first quantitative metrics
test.

The second measurement metric test illustrates the itera-
tion process that measures the agent’s global best conver-
gence. When the number of iterations is increased, xi∗ (the
global best agent) is more precise, and when the scout bee
focuses on the exploitation and local search, rapid changes
are observed. See figure (3).

Generally, the IFDO has the ability to successfully explore
the search space, justifiably move in the direction of optimal-
ity and avoid local optima.

According to [56], if any algorithm’s fitness value in min-
imization problems decreases with increasing iteration num-
ber, it reaches optimality.

D. REAL WORLD APPLICATIONS OF THE IFDO
Real-world problems are solved via the IFDO and FDO; in
this section, we performed two real-world applications.

The first application is the ‘‘aperiodic antenna array
design,’’ which was already tried by the original FDO.
The second application is the "pedestrian evacuation model",
which, to the best of our knowledge, is a new optimization

19080 VOLUME 8, 2020

D. A. Muhammed et al.: Improved FDO Algorithm

FIGURE 2. Using unimodal, multimodal, and composite test functions for the IFDO algorithm search history.

FIGURE 3. Using unimodal, multimodal, and composite test functions for the IFDO algorithm convergence curve.

FIGURE 4. A thinned antenna array and a non-uniform antenna array [57].

problem that determines the best main door location inside
an open area to evacuate people with greater efficiency. The
results of the IFDO and FDO are evaluated for both real-
world problems.

E. USE OF THE IFDO ON APERIODIC ANTENNA
ARRAY DESIGNS
Developments in radio astronomy and radarmethods from the
1960s drew significant attention to aperiodic antenna arrays.
Thinned antenna arrays and non-uniform antenna arrays are
shown in Figure (4).

Real-number vectors are needed to express a position in
non-uniform arrays to optimize the element position with the
intention of achieving the highest sidelobe level (SLL).

Additionally, as shown in equation (7), a confident bound-
ary position of the element is needed to avoid discordant
lobes. Interested readers can consult [57].

The 10 elements of a non-uniform isotropic array are
shown in figure (5) and setting the outermost element to have

FIGURE 5. Ten-element arrangements in the array [58].

an average element position of davg = 0.5λ0 at position
2.25λ0 is a reason for optimizing the positions of the four
elements alone. The limitations of this optimization prob-
lem with four dimensions are expressed in equation (14) as
follows:

x_i ∈ |x_i− x_j|(0, 2.25) > min {xi} 0.25λ_0

> 0.125λ_0.i = 1, 2, 3, 4.i 6= j.

(14)

Nonetheless, there is no element that can be smaller than
0.125λ0 or larger than 2.0λ0. Due to these limitations, each
element has a boundary between 0 and 2.25 because the
element 2.25λ0 is fixed, and the neighboring elements do
not have the ability to be closer than 0.25λ0. Equation (15)
defines the problem of the fitness function:

f = max{20 log |AF(θ)| } (15)

where

AF (θ) =
4∑

i=1

cos [(cos θ − cos θs) 2πxi]

+ cos [(cos θ − cos θs) 2.25× 2π] (16)

For this work, Figure (5) shows that θs = 90
◦

[58].

VOLUME 8, 2020 19081

D. A. Muhammed et al.: Improved FDO Algorithm

FIGURE 6. The average fitness and global optimum as a result of
optimizing aperiodic antenna array designs in 200 iterations with
20 artificial scout bees using the standard FDO.

FIGURE 7. The average fitness and global optimum as a result of
optimizing aperiodic antenna array designs in 200 iterations with
20 artificial scout bees using the IFDO.

Based on the limitations stated in equation (14), for
twenty artificial scout bees within 200 iterations, the orig-
inal FDO algorithm was utilized to optimize this problem.
Moreover, based on equation (15), the average fitness
value and the global best fitness in each iteration are
shown in Figure (6). The results indicate that with the
element locations{0.713,1.595,0.433,0.130} in iteration 78,
the global best solution was achieved.

Likewise, regarding thementioned restrictions of this prob-
lem, similar to the original FDO, this problem was optimized
using the IFDO algorithm in 200 iterations for twenty search
agents (artificial bees), as shown in Figure (7), based on
equation (15), which contains the average fitness value and
the global best fitness in each iteration. The result shows
that with element locations {0.701, 1.552, 0.402,0.103},
the global best solution was achieved in iteration 29.
Consequently, from both the IFDO and FDO results, it clearly
appears that the IFDO is better for optimizing this problem
due to its increasing capability of making better decisions in
exploring better hives among the existing potential hives by
adding alignment and cohesion when the scout wants to go to
a different location in the defined space search; it also avoids
unsuitable exploitation in achieving a better solution when,
for every achieved better solution, the IFDO generates a new
wf to control the fw (see the pseudocode in Figure (1)).

F. IFDO VS THE FDO ON A PEDESTRIAN
EVACUATION MODEL
In the last two decades, scenarios involving the evacuation
of crowds and pedestrians have been studied in many works

FIGURE 8. The area of the pedestrian evacuation model.

to reduce the negative aspects of emergency situations, such
as deaths, damages, and injuries [59]. In this part of this
paper, we create a simple pedestrian evacuation model based
on a cellular automata model (see Figure (8)), fuzzy logic
ideas, and statistical equations. Readers who desire to know
how this evacuation model is created and how the ideas of
fuzzy logics and statistical equations are utilized to define the
pedestrians’ desired speeds can access reference [60]. Addi-
tionally, the evacuation time of each pedestrian is calculated
via the pedestrian’s desired speed and its distance from the
exit door as expressed in equation (17), and the average of
the evacuation time of the pedestrians is used as the average
fitness value.

evacTime = (dist/2)∗desiredSpeed (17)

where dist represents the pedestrian’s distance from the door
exit locations, which is calculated from the equation of
distance (18), and desiredSpeed represents the pedestrian’s
speed.

dist =
√
(x2 − x1)2 + (y2 − y1)2 (18)

where x2 and y2 represent the coordinates of the exit door
location, and x1 and y1 represent the coordinates of the pedes-
trian’s location.

Finally, both the IFDO and FDO algorithms are applied
to this model to achieve the global best solution by finding
the best location of the main door through which to evacuate
people during the evacuation process. The results showed
that the IFDO was more efficient and reached the optimum
solution with only 38 iterations, whereas the FDO reached
the optimum solution with 57 iterations. Figure (9) shows the
results of both algorithms.

The reasons behind the IFDO’s efficiency are related to
the selected parameters, alignment, and cohesion, in updating
the position of the artificial scout bees, which makes the
algorithm perform better explorations in finding a suitable
solution in the landscape. Second, the randomization in defin-
ing wf in every iteration for each scout bee when a better

19082 VOLUME 8, 2020

D. A. Muhammed et al.: Improved FDO Algorithm

FIGURE 9. IFDO and FDO global optimum and average fitness (a) IFDO
global optimum, (b) IFDO average fitness, (c) FDO global optimum, and
(d) FDO average fitness.

solution is achieved makes the algorithm avoid unnecessary
exploitations to gain a better solution. Third, the IFDO,
as regards covering a reasonable search space, converges
sooner to global optimality.

For both FDO and IFDO, after testing on various real-
world applications and classical and modern benchmark test
functions, it was found that their performance depended on
the number of search agents. Hence, both algorithms are

TABLE 3. Results of the IFDO vs FDO execution time for the ieee ece
benchmark 2019.

TABLE 4. Results of the IFDO vs FDO execution time for the classical
benchmark test functions.

TABLE 5. Results of the IFDO vs FDO execution time for real-world
applications.

limited to using a small number of search agents; for example,
the accuracy of the algorithms suffers noticeably when they
use fewer than five search agents. Conversely, using a large
number of search agents enhances the accuracy and rate with
more space and time.

G. IFDO VS FDO EXECUTION TIME
Here, execution time is considered for various tests, such
as classical benchmark test functions, modern IEEE CEC
2019 benchmark test functions, and two real-world appli-
cations, aperiodic antenna array designs (AAAD) and
pedestrian evacuation models (PEMs). The results of the total
time are briefly provided in Tables 3, 4,and 5.

From the results shown in table (3), the execution times
of the modern IEEE CEC 2019 benchmark test functions
for both the IFDO and FDO were relatively the same; for

VOLUME 8, 2020 19083

D. A. Muhammed et al.: Improved FDO Algorithm

TABLE 6. Unimodal standard functions [29].

TABLE 7. (10 Dimensional) Multimodal standard functions [29].

instance, the IFDO had a smaller total time of execution than
the FDO in the execution of the CEC02, CEC05, CEC07,
CEC08, and CEC10 cases; however, the IFDO took a larger

portion of the total time to execute the CEC01, CEC03, and
CEC06 cases. The IFDO and FDO took the same total time to
execute the CEC04 and CEC09 cases. Moreover, the results

19084 VOLUME 8, 2020

D. A. Muhammed et al.: Improved FDO Algorithm

TABLE 8. Composite stanadrd functions [29].

of the classical benchmark test functions in table (4) show that
the IFDO requires less time than the FDO to execute most
of the test functions, such as TF1, TF5, TF7, TF10, TF12,
TF13, TF15, TF18, and TF19, the same amount of time in
a few cases, such as TF4 and TF14, and more time in some
cases, such as TF2, TF3, TF6, TF8, TF9, TF11, TF16, and
TF17. Finally, the execution time results of the real-world
applications in Table (5) illustrate that the IFDO is more
capable than the FDO from the perspective of spending time

on PEM real-world applications, whereas it is not as powerful
as the FDO in executing the AAAD.

V. ANALYSIS OF THE RESULTS
The IFDO modified the FDO in both scout bee movements,
to update their positions, and weight factor (wf), to con-
trol the fitness weight (fw), to find a better solution. From
the results and discussion, it appears that these changes
improve both exploration and exploitation. From there, these

VOLUME 8, 2020 19085

D. A. Muhammed et al.: Improved FDO Algorithm

TABLE 9. ’’The 100-Digit Challenge:’’ CEC-C06 2019 Standards [30].

changes improve the time complexity and convergence.
To evaluate this idea, readers can reference subsection IV in
subsections 1, 2, 3, 4, and 5 to see that after the modifica-
tions, the IFDO was better in the classical benchmark test
function results than the other competing algorithms. For
instance, in TF1, TF3, TF4, TF9, TF14, TF15, TF16, as well
as in TF7, TF17, and TF18, the results showed the IFDO
was more similar to the original FDO, while the results of
TF10 and TF19 confirmed that the IFDO outperformed the
other competing algorithms. Moreover, the IFDO had better
results in cases CEC04-CEC08 than the opponents, except
for case CEC06, in which it had a worse result than the
opponents and a better result than the FDO. On the other
hand, in cases CEC02, CEC03, CEC09, and CEC10, although
the standard deviation was different from that in the original
FDO, the IFDO was equivalent to that in the original FDO.
Furthermore, the results of the quantitative measurement
metrics revealed that the IFDO had the ability to successfully
explore the search space, move toward optimality, and avoid
the local optima. Additionally, the IFDO and FDO were
used with real-world applications in 200 iterations for twenty
search agents (artificial bees), and the IFDO outperformed
the FDO algorithm. For example, in the aperiodic antenna
array designs, the IFDO reached optimality with just 29 iter-
ations, while the number of iterations needed in the FDO
was 78. In the pedestrian evacuationmodel, the IFDO reached
optimality in only 38 iterations, while the FDO required
57 iterations. From these results, it is possible to say
that IFDO generally had a better performance in reaching
optimality and better exploration and exploitation. Finally,
the IFDO was compared with the FDO from the perspective
of execution time. For this purpose, the classical benchmark
test functions, IEEE CEC 2019 benchmark test functions,
and two real-world applications, AAAD and PEM, were
utilized. From the results, both IFDO and FDO were rela-
tively similar in most of the results for the classical bench-
mark and the IEEE CEC 2019 benchmark test functions.
However, the results of these algorithms in optimizing the two

real-world applications were generally different. For
instance, the IFDO required a shorter time than the FDO
to optimize PEM: 28 seconds and 31 seconds, respectively.
Conversely, the IFDO required a larger portion of time than
the FDO to optimize AAAD: 47 seconds and 44 seconds,
respectively.

VI. CONCLUSION
Improvements have been made to the fitness-dependent opti-
mizer from two main perspectives. First, for updating the
artificial scout bee position, in the IFDO, two additional
parameters were added to the position update equation in the
original FDO: alignment and cohesion. Second, the weight
factor (wf) was changed from a stable value to a random
value in controlling the fitness weight of the FDO algorithm.
These changes were made in the IFDO with the aim of
moving the scout bees toward optimality with better per-
formance. To evaluate the performance of the IFDO, it was
tested with 19 single-objective benchmark test functions (uni-
modal, multimodal and composite test functions). Moreover,
the 10 modern benchmarks of CEC-C06 were utilized to test
the IFDO. Furthermore, quantitative measurement metrics
were used to show that the IFDO succeeded in exploring the
search space, moving towards optimality, and avoiding the
local optima. Additionally, both the IFDO and FDO were
used to execute the classical benchmark test functions, IEEE
CEC 2019 test functions, and two real-world applications.
Each test function’s total time of execution was specified
and compared. The results of the IFDO tests with the classic
and modern test functions were compared to those of the
FDO, two other distinguished algorithms (GA and PSO),
and three state-of-the-art algorithms (SSA, WOA, and DA).
According to the results, the IFDO, except for some cases in
which it had comparable results, outperformed the preferred
algorithms in most cases. It could be said that this advance-
ment was due to the modification in updating the artificial
scout position, which led to more convenient exploration
during the search for a better solution among many potential

19086 VOLUME 8, 2020

D. A. Muhammed et al.: Improved FDO Algorithm

hives (solutions), and due to the randomization of the wf for
each scout bee in every iteration, which led to a better fw
participating in making better decisions in the exploitation to
find better solutions. Additionally, the IFDO produced faster
convergence to global optimality when considering rational
coverage of the search space. On the other hand, the use of
various numbers of scout bees affected the accuracy, cost,
time, and space of the algorithm. When more than five scout
bees were used, the enhanced accuracy of the algorithm
could be clearly seen; however, a smaller number of scout
bees led to decreased accuracy of the algorithm. In addition,
to confirm that the IFDO has the ability to address real-
life applications, two real-world problems were selected: the
first problem was an existing real-world ‘‘aperiodic antenna
array design’’ problem, and the second problem was a real-
world crowd evacuation problem that we created. In both
applications, the IFDO outperformed the original FDO; in the
first application, the FDO needed 78 iterations to discover
the global optimal solution, whereas the IFDO needed only
29 iterations to obtain the global optimal solution. Addition-
ally, in the second application, the IFDO outperformed the
original FDO; although the IFDO needed only 38 iterations
to obtain the optimal global solution, the FDO needed 57 iter-
ations to achieve the same result. It is worth mentioning that
because this performance is an improvement compared with
the original FDO, the improved fitness-dependent optimizer
was selected as the official name of this improved algorithm.
This proposed algorithm is more suitable for application
fields of engineering, design, industry, helath, education,
energy, and evacuation.

In future studies, multiobjective and binary objective opti-
mization problems will be tested with the IFDO. Finally,
adaptation and hybridization of the IFDO with other algo-
rithms will be the main focus of future work. Also, the perfor-
mance of IFDO can be further evaluated against other popular
algorithms, such as WOA-BAT [61], Donkey and Smuggler
Optimisation [62], and Modified Grey Wolf Optimiser [63],
Modifications of Dragonfly Algorithm [64], Modifications of
Backtracking Algorithm [65].

APPENDIX
See Table 6–9.

REFERENCES
[1] B. J. Copeland,Alan Turing’s Automatic Computing Engine. Oxford, U.K.:

Oxford Univ., 2005.
[2] G. G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Earthworm optimisation

algorithm: A bio-inspired metaheuristic algorithm for global optimisation
problems,’’ Int. J. Bio-Inspired Comput., vol. 12, no. 1, p. 1, 2018.

[3] G.-G. Wang, L. Guo, H. Duan, and H. Wang, ‘‘A new improved firefly
algorithm for global numerical optimization,’’ J. Comput. Theor. Nanosci.,
vol. 11, no. 2, pp. 477–485, Feb. 2014.

[4] X. S. Yang, A. H. Gandomi, S. Talatahari, and A. H. Alavi,Metaheuristics
in Water, Geotechnical and Transport Engineering. London, U.K.: Else-
vier, 2013.

[5] I. Fister, X.-S. Yang, I. Fister, J. Brest, and D. Fister, ‘‘A brief review
of nature-inspired algorithms for optimization,’’ Elektrotehni2ki Vestnik,
vol. 80, no. 3, p. 116122, 2013.

[6] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, A Survey on
Metaheuristics for Stochastic Combinatorial Optimization, vol. 8. Amster-
dam, The Netherlandsl: Springer, 2008, Art. no. 239287.

[7] X. S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd ed. Frome,
U.K.: Luniver Press, 2010.

[8] R. Storn andK. Price, ‘‘Differential evolutionA simple and efficient heuris-
tic for global optimization over continuous spaces,’’ J. Global Optim.,
vol. 11, Dec. 1997, Art. no. 341359.

[9] M. Melanie, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1999.

[10] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, p. 671, May 1983.

[11] X. S. Yang and Z. Cui, ‘‘Bio-inspired computation: Success and challenges
of IJBIC,’’ Int. J. Bio-Inspired Comput., vol. 6, no. 1, p. 1, 2014.

[12] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE
Int. Conf. Neural Netw., Nov. 1995, pp. 1942–1948.

[13] G.-G. Wang, A. H. Gandomi, X.-S. Yang, and A. H. Alavi,
‘‘A novel improved accelerated particle swarm optimization algorithm
for global numerical optimization,’’ Eng. Comput., vol. 31, no. 7,
pp. 1198–1220, Sep. 2014.

[14] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007.

[15] X. Li and M. Yin, ‘‘Self-adaptive constrained artificial bee colony for con-
strained numerical optimization,’’Neural Comput. Appl., vol. 24, nos. 3–4,
pp. 723–734, Mar. 2014.

[16] X.-S. Yang and X. He, ‘‘Fire_y algorithm: Recent advances and applica-
tions,’’ Int. J. Swarm Intell., vol. 1, no. 1, pp. 36–50, 2013.

[17] X. S. Yang and S. Deb, ‘‘Cuckoo search via Lévy_ights,’’ in Proc.
World Congr. Nature Biologically Inspired Comput. (NaBIC), Dec. 2009,
pp. 210–214.

[18] X.-S. Yang, ‘‘A newmetaheuristic bat-inspired algorithm,’’ in Proc. Nature
Inspired Cooperat. Strategies Optim. (NICSO) Stud. Comput. Intell., 2010,
pp. 65–74.

[19] B. Yu, Z. Cui, and G. Zhang, ‘‘Artificial plant optimization algorithm with
correlation branches,’’ J Bioinfor. Intell. Control, vol. 2, no. 2, pp. 146–155,
Jun. 2013.

[20] M. Ma, Q. Luo, Y. Zhou, X. Chen, and L. Li, ‘‘An improved animal
migration optimization algorithm for clustering analysis,’’ Discrete Dyn.
Nature Soc., vol. 2015, Jan. 2015, Art. no. 194792.

[21] S. Mirjalili, ‘‘Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective prob-
lems,’’ Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, May 2016.

[22] S. Mirjaliliab and A. Lewisa, ‘‘The whale optimization algorithm,’’ Adv.
Eng. Softw., vol. 95, pp. 51–67, May 2016.

[23] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M.
Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for engineering
design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191, Dec. 2017.

[24] L. Cui, ‘‘A novel articial bee colony algorithm with an adaptive population
size for numerical function optimization,’’ Inf. Sci., vol. 414, p. 5367,
Nov. 2017.

[25] L. Cui, G. Li, X. Wang, Q. Lin, J. Chen, N. Lu, and J. Lu, ‘‘A ranking-
based adaptive artificial bee colony algorithm for global numerical opti-
mization,’’ Inf. Sci., vol. 417, pp. 169–185, Nov. 2017.

[26] J. M. Abdullah and T. Ahmed, ‘‘Fitness dependent optimizer: Inspired
by the bee swarming reproductive process,’’ IEEE Access, vol. 7,
pp. 43473–43486, 2019.

[27] H. Beyer and H. Schwefel, Natural Computing. Dordrecht,
The Netherlands: Kluwer, 2002.

[28] G. G. Wang, L. Dos Santos Coelho, X. Z. Gao, and S. Deb,
‘‘A new metaheuristic optimisation algorithm motivated by elephant herd-
ing behaviour,’’ Int. J. Bio-Inspired Comput. , vol. 8, no. 6, p. 394, 2016.

[29] J. Li and Y. Tan, ‘‘Orienting mutation based fireworks algorithm,’’ in Proc.
IEEE Congr. Evol. Comput. (CEC), May 2015, pp. 1265–1271.

[30] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans. Evol. Com-
put., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[31] Y. Shi, ‘‘An optimization algorithm based on brainstorming process,’’ Int.
J. Swarm Intell. Res., vol. 2, no. 4, pp. 35–62, Oct. 2011.

[32] Y. Shi, J. Xue, and Y. Wu, ‘‘Multi-objective optimization based on brain
storm optimization algorithm,’’ Int. J. Swarm Intell. Res., vol. 4, no. 3,
pp. 1–21, Jul. 2013.

[33] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Earthworm optimization
algorithm: A bio-inspired metaheuristic algorithm for global optimiza-
tion problems,’’ Int. J. Bio Inspired Comput., vol. 12, no. 1, p. 22,
2015. [Online]. Available: http://www.inderscience.com/info/ingeneral/
forthcoming.php?jcode=ijbic, doi: 10.1504/IJBIC.2015.10004283.

VOLUME 8, 2020 19087

http://dx.doi.org/10.1504/IJBIC.2015.10004283

D. A. Muhammed et al.: Improved FDO Algorithm

[34] A. H. Gandomi and A. H. Alavi, ‘‘Krill herd: A new bio-inspired optimiza-
tion algorithm,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12,
pp. 4831–4845, Dec. 2012.

[35] G.-G. Wang, L. Guo, A. H. Gandomi, G.-S. Hao, and H. Wang, ‘‘Chaotic
Krill Herd algorithm,’’ Inf. Sci., vol. 274, pp. 17–34, Aug. 2014.

[36] G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, and J. Li, ‘‘Incorporating
mutation scheme into krill herd algorithm for global numerical optimiza-
tion,’’ Neural Comput. Appl., vol. 24, nos. 3–4, pp. 853–871, Mar. 2014.

[37] G.-G.Wang, A. H. Gandomi, and A. H. Alavi, ‘‘Stud krill herd algorithm,’’
Neurocomputing, vol. 128, pp. 363–370, Mar. 2014.

[38] G.-G. Wang, A. H. Gandomi, and A. H. Alavi, ‘‘An effective krill herd
algorithm with migration operator in biogeography-based optimization,’’
Appl. Math. Model., vol. 38, nos. 9–10, pp. 2454–2462, May 2014.

[39] G.-G. Wang, A. H. Gandomi, A. H. Alavi, and G.-S. Hao, ‘‘Hybrid krill
herd algorithm with differential evolution for global numerical optimiza-
tion,’’ Neural Comput. Appl., vol. 25, no. 2, pp. 297–308, Aug. 2014.

[40] G.-G. Wang, A. H. Gandomi, A. H. Alavi, and S. Deb, ‘‘A hybrid method
based on krill herd and quantum-behaved particle swarm optimization,’’
Neural Comput. Appl., vol. 27, no. 4, pp. 989–1006, May 2016.

[41] G.-G. Wang, S. Deb, A. H. Gandomi, and A. H. Alavi, ‘‘Opposition-
based krill herd algorithm with cauchy mutation and position clamping,’’
Neurocomputing, vol. 177, pp. 147–157, Feb. 2016.

[42] Z. W. Geem, J. H. Kim, and G. V. Loganathan, ‘‘A new heuristic optimiza-
tion algorithm: Harmony search,’’ Simulation, vol. 76, no. 2, pp. 60–68,
2001.

[43] A. Rezoug and D. Boughaci, ‘‘A self-adaptive harmony search combined
with a stochastic local search for the 0-1 multidimensional knapsack
problem,’’ Int. J. Bio-Inspired Comput., vol. 8, no. 4, pp. 234–239, 2016.

[44] T. Niknam and A. K. Fard, ‘‘Optimal energy management of smart
renewable micro-grids in the reconfigurable systems using adaptive har-
mony search algorithm,’’ Int. J. Bio-Inspired Comput. , vol. 8, no. 3,
pp. 184–194, 2016.

[45] X. Yang and A. Hossein Gandomi, ‘‘Bat algorithm: A novel approach
for global engineering optimization,’’ Eng. Comput., vol. 29, no. 5,
pp. 464–483, Jul. 2012.

[46] X. Cai, X. Z. Gao, and Y. Xue, ‘‘Improved bat algorithm with optimal
forage strategy and random disturbance strategy,’’ Int. J. Bio-Inspired
Comput. , vol. 8, no. 4, pp. 205–214, 2016.

[47] G.-G. Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimiza-
tion,’’ Neural Comput. Appl., vol. 31, pp. 1995–2014, May 2015.
[Online]. Available: https://link.springer.com/article/10.1007/s00521-015-
1923-y, doi: 10.1007/s00521-015-1923-y.

[48] G.-G. Wang, ‘‘Moth search algorithm: A bio-inspired metaheuris-
tic algorithm for global optimization problems,’’ Memetic Comput.,
vol. 10, no. 2, pp. 151–164, Sep. 2016. [Online]. Available: https://link.
springer.com/article/10.1007/s12293-016-0212-3, doi: 10.1007/s12293-
016-0212-3.

[49] D. Simon, M. Ergezer, D. Du, and R. Rarick, ‘‘Markov mod-
els for biogeography-based optimization,’’ IEEE Trans. Syst., Man,
Cybern. B. Cybern., vol. 41, no. 1, pp. 299–306, Feb. 2011.

[50] Y. Tan, Fireworks Algorithm-A Novel Swarm Intelligence Optimization
Method. Berlin, Germany: Springer-Verlag, 2015, p. 323.

[51] G.-G. Wang and Y. Tan, ‘‘Improving metaheuristic algorithms with infor-
mation feedback models,’’ IEEE Trans. Cybern., vol. 49, no. 2, pp. 542–
555, Feb. 2019.

[52] M. Yazdani and F. Jolai, ‘‘Lion Optimization Algorithm (LOA): A nature-
inspired metaheuristic algorithm,’’ J. Comput. Des. Eng., vol. 3, no. 1,
pp. 24–36, Jan. 2016.

[53] L. Cui, G. Li, Z. Zhu, Q. Lin, Z. Wen, N. Lu, K.-C. Wong, and J. Chen,
‘‘A novel artificial bee colony algorithm with an adaptive population
size for numerical function optimization,’’ Inf. Sci., vol. 414, pp. 53–67,
Nov. 2017.

[54] K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan, ‘‘The 100-digit
challenge: Problem definitions and evaluation criteria for the 100-digit
challenge special session and competition on single objective numeri-
cal optimization,’’ Nanyang Technological Univ., Singapore, Tech. Rep.,
Nov. 2018.

[55] A. MirJalili. (2015). Seyedali Mirjalili. Accessed: Jun. 1, 2019. [Online].
Available: http://www.alimirjalili.com/Projects.html

[56] F. V. D. Bergh and A. P. Engelbrecht, ‘‘A study of particle swarm,’’ Inf.
Sci., vol. 176, pp. 937–971, 2006.

[57] L. Cui, ‘‘An enhanced articial bee colony algorithm with dualpopulation
framework,’’ Swarm Comput E, vol. 43, Dec. 2018, Art. no. 184206.

[58] N. Jin and Y. Rahmat-Samii, ‘‘Advances in particle swarm optimization
for antenna designs: real-number, binary, single-objective and multiob-
jective implementations,’’ IEEE Trans. Antennas Propag., vol. 55, no. 3,
pp. 556–567, Mar. 2007.

[59] D. A. Muhammed, S. A. M. Saeed, and T. A. Rashid, ‘‘A comprehensive
study on pedestrians— Evacuation,’’ Int. J. Recent Contrib. Eng. Sci.,
vol. 7, no. 4, p. 38, Dec. 2019.

[60] D. Muhammed, S. Saeed, and T. Rashid, ‘‘A simulation model for pedes-
trian crowd evacuation based on various AI techniques,’’ Ria Money
Transf., vol. 33, no. 4, pp. 283–292, Oct. 2019.

[61] H. M. Mohammed, S. U. Umar, and T. A. Rashid, ‘‘A systematic and
meta-analysis survey of whale optimization algorithm,’’ Comput. Intell.
Neurosci., vol. 2019, pp. 1–25, Apr. 2019.

[62] A. S. Shamsaldin, T. A. Rashid, R. A. Al-Rashid Agha, N. K. Al-Salihi,
and M. Mohammadi, ‘‘Donkey and smuggler optimization algorithm:
A collaborative working approach to path finding,’’ J. Comput. Des. Eng.,
vol. 6, no. 4, pp. 562–583, Oct. 2019.

[63] T. A. Rashid, D. K. Abbas, and Y. K. Turel, ‘‘A multi hidden recurrent
neural network with a modified grey wolf optimizer,’’ PLoS ONE, vol. 14,
no. 3, Mar. 2019, Art. no. e0213237.

[64] C.M. Rahman and T. A. Rashid, ‘‘Dragonfly algorithm and its applications
in applied science survey,’’ Comput. Intell. Neurosci., vol. 2019, pp. 1–21,
Dec. 2019.

[65] B. A. Hassan and T. A. Rashid, ‘‘Operational framework for recent
advances in backtracking search optimisation algorithm: A systematic
review and performance evaluation,’’ Appl. Math. Comput., vol. 370,
Apr. 2020, Art. no. 124919.

DANIAL ABDULKAREEM MUHAMMED
received the B.Sc. degree in computer science
from the University of Sulaimani, Iraq, in 2009,
and the master’s degree (Hons.) in software sys-
tems and internet technology from The Univer-
sity of Sheffield, U.K., in 2012. He is currently
pursuing the Ph.D. degree with the University
of Sulaimani, working in the field of Artificial
Intelligence in the subject of Building Evacuation
under Different Situations. He was an Assistant

Programmer for nearly two years, and then continued his study in The
University of Sheffield. After that, he joined the Department of Computer
Science, University of Sulaimani.

SORAN A. M. SAEED received the Ph.D.
degree in computer science (AI-CBR) University,
London, U.K., in 2006. In 2001, he was a rep-
resentative of Sulaimani University for Scientific
and Cultural affairs, where he is currently the Vice
President for Scientific Affairs and Higher Edu-
cation at Sulaimani Polytechnic University (SPU).
He is the Head of the Board of eCourt System at
Sulaimani Court in Iraq Developing by AKTORS
Company from Estonia. His research interests are

artificial intelligence, e-commerce, information security, business technol-
ogy, research methodology, and software engineering.

TARIK AHMED RASHID (Member, IEEE)
received the Ph.D. degree in computer science
and informatics from the College of Engineering,
Mathematical and Physical Sciences, University
CollegeDublin (UCD), in 2006. Hewas a Postdoc-
toral Fellow of the Computer Science and Infor-
matics School, University College Dublin (UCD),
from 2006 to 2007. He joined the University of
Kurdistan Hewler, in 2017. His research interests
include three fields. The first field is the expansion

of machine learning and data mining to deal with time series applications.
The second field is the development of DNA computing, optimization,
swarm intelligence, and nature inspired algorithms and their applica-
tions. The third field is networking, telecommunication, and telemedicine
applications.

19088 VOLUME 8, 2020

http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1007/s12293-016-0212-3

