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ABSTRACT Content-adaptive steganography intends to hide data in the complex texture content of the
image. Recently, some secure steganographymethods have been proposed to identify the textural complexity
of an image. However, most of the techniques do not take into account the information of pixel variation
around the central pixel in all possible directions and therefore they are unable to accurately analyse the
texture complexity. This work offers a quality-enhanced and secure method of content-adaptive image
steganography. The proposed method is divided into three sequential steps: image segmentation, pixel
complexity identification, and data embedding. An input cover image is initially divided into small local
regions and the pixel-complexity is identified based on the proposed Complex Block Prior (CBP) criterion.
In a local block, a high pass filter (HPF) bank is applied and eight residual responses are obtained. Following
the CBP criterion, a complexity level out of nine levels is assigned to an individualized pixel block. The pixels
are then arranged in the priority of complexity from highest to lowest. Data embedding for the corresponding
complexity level then takes place using the proposed adaptive embedding algorithm. Experimental results
verify the preservation of visual quality of stego images produced by the proposed method. Three image
datasets: Standard test images, BOWS2 and BOSS-base are used for the experimentation and comparison
with prior state-of-art methods. Highest values of the IQ (image quality) parameters e.g., SSIM andWPSNR
show the effectiveness of the proposed method.

INDEX TERMS Noisy texture, content adaptive, pixel selection, data embedding, complex block, complexiy
estimation.

I. INTRODUCTION
With the advancement in networking technology, the digiti-
zation and use of high-speed communication links have given
rise to immense possibilities [1]–[3]. As a result, the data
communicated over the internet is increasing day by day.
The communication over insecure network links is vulner-
able to attacks from eavesdroppers. These attacks include
illegally copying, modifying and misusing the information
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in felonious activities [4]–[7]. Consider the following appli-
cation areas: Password transmission in a client-server envi-
ronment, personal document sharing, biometric data transfer,
medical record storage, bank account details storage, social
media content sharing, TV broadcast, storage of data in cloud
platforms, etc. With the aim of confidential communica-
tion over an insecure network, significant amount of efforts
has been made under the field of security systems [8], [9].
A generic security system aims to achieve two goals: infor-
mation access control and data integrity [10]. The clas-
sification of the field of security systems is as follows:
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1) Information encryption and 2) Information hiding. Cryp-
tography is an information encryption technique and is the
process of altering secret data such that the data is not mean-
ingful [11]. There is no separate cover medium to carry the
secret data. Although the information is uninterpretable, this
unintelligent representation raises suspicion and therefore
is prone to cryptanalysis attacks. In contrast, information
hiding techniques such as watermarking and steganography
uses a cover medium to embed secret data and therefore,
the existence of the message is hidden behind the cover. In the
context of this work, information hiding has one of two
definitions. It is defined as: ‘‘imperceptibly embedding in
a cover’’ e.g., watermarking or ‘‘making the existence of
data secret’’ e.g., steganography. Watermarking is defined as
‘‘the process of altering a cover medium to embed message
about the cover’’. The aim of a watermark is to protect the
copyright (ownership) information of the marked signal and
may be made visible to claim the ownership. Steganography,
on the other hand, is defined as ‘‘the process of altering
a cover medium to embed a secret message’’. The aim of
steganography is to keep the existence ofmessage secret other
than the intended person. Therefore, the objective behind the
embedding of secret data differentiates watermarking and
steganography. A generic image steganographic system is
shown in Fig. 1. It consists of following basic components.
1) Medium/carrier
2) Secret message
3) Embedding algorithm
4) Steganographic key
5) Extraction algorithm

FIGURE 1. A generic image steganographic system representing the basic
components of image steganography.

In digital steganography, a digital object/medium is used for
hiding data e.g. text, audio, image, video and data packets,
etc. A good carrier signal must have two necessary qualities.
1) presence and usage in abundance so that it is difficult to
select the signal for detection of message. And 2) redundancy
in data representation. Currently, themost secure and efficient
medium of steganography is the image. Images are widely
communicated over the internet and have the psychovisual
redundancy [12] which is used to conceal the secret infor-
mation without losing visual quality. A steganographic algo-
rithm is used to embed secret payload in the digital object.
The object before embedding is known as cover and after
embedding the object is called stego. At the extraction side,
a known key is used by a person which specifies the locations
in which data is hidden. The key is either hidden inside
the image or is shared through some other means. Image
steganography can be carried out in both spatial and transform

domain [13], [14]. Spatial domain steganographic algorithm
directly embeds in the pixels of the cover image. Transform
domain steganography consists of transforming the spatial
representation of an image in frequency domain and then
using the coefficients for data embedding. Spatial domain
steganography provides more capacity of embedding while
transform domain techniques perform better in security anal-
ysis. The performance of an embedding algorithm is analyzed
based on the following three factors: payload capacity, visual
quality, and undetectability.

Embedding payload is the maximum capacity that can
be embedded in an image. An image’s visual quality is
defined as the perceived distortion or visual artifacts which
are generated when the image pixels are modified. Gen-
erally, the more the embedding capacity the more is the
visual distortion introduced in the image and the poor is the
visual quality. Another parameter that plays a significant role
in determining a steganographic algorithm’s performance is
the undetectability of a stego image in steganalysis domain.
Steganalysis is the counterpart of steganography. It tries to
detect the presence of hidden data in a given image. The
most successful steganalysis in today’s literature is carried
through the statistical detection methods implemented using
machine learning [15]. The state of the art steganalysis meth-
ods are based on the estimation of local pixels. It is easy
for a detector to predict local pixels which lie in a smoothly
varying region. Hence, the pixels in such areas if used for
embedding are vulnerable. The highly varying regions of the
image are safe for embedding since the detectors are unable
to accurately predict the pixel value. Following the idea,
the concept of content-adaptive steganography is developed
which selectively embeds into high texture content of the
image.

In order to understand the content-adaptive approach
of image steganography, we first discuss a non-adaptive
approach e.g., the simple LSB substitution (LSBS) method.
A pseudorandom number generator selects the embeddable
pixels equally from the smooth and textured regions for data
embedding [16]. The LSB of chosen pixels is then replaced
with the message bit. LSBS degrades the visual quality of
the cover image since the embedded pixels in the smooth
region become prominent and appear as a visual artifact.
LSBS also introduces a structural asymmetry in the cover
image. When the LSB of an even pixel is replaced with
a message bit, the number of even and odd pixels in the
cover image are unbalanced and the structure of the cover
image is disturbed. The structural steganalysis attacks such as
weighted stego, RS analysis and sample pair analysis exploit
this structural asymmetry and easily detect the existence of
distortion caused by data embedding [15]. The statistical
steganalysis attacks (SPAM and SRM) on the other hand
use the information of the smoothness of the image and
can predict the pixels especially in the smooth areas of the
image. The security of simple LSBS based methods can
be improved when the structural asymmetry is reduced and
embedding changes are restricted to the complex texture areas
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of the image. These two approaches when combined provides
high visual quality as well as high security.

An edge-adaptive scheme based on LSB Matching Revis-
ited (EA-LSBMR) is presented in [17]. LSBMR achieves
reduced modification rate as compared to simple LSBS.
LSBMR embeds two bits of data in a pixel pair in such a
way that first data bit is embedded in the first pixel and next
bit is embedded in even-odd relation of the pixel pair. The
modification rate is reduced to 0.375 bits/pixel compared to
0.5 bits/pixel in LSBS. The edge adaptivity is introduced
in the steganographic scheme. A 1x2 high pass filter (HPF)
is utilized to measure the business of the pixel pair and a
difference threshold is used to select only the busiest pixel
pairs. The threshold is adaptively changed according to the
size of secret data. An improved edge detection method
is presented in [18]. The edge adaptive image steganog-
raphy (EIS) scheme uses a canny edge detector to locate
embedding pixel locations and adopts a 2-bit LSBS method
for data embedding. High-security performance is achieved
as compared to HUGO, EA-LSBMR, PVD, and HBC while
comparable security is achieved compared to S-UNIWARD.
Another improved edge detectionmethod is presented in [19].
A modified median edge detector (MMED) is used to exploit
the edges in two directions (horizontal and vertical). The
highest edge value is used for further processing and thus only
the sharper edge is chosen. The MMED operator is applied
for every pixel and an MMEDmatrix is formed which is then
divided into three groups based on the edge intensity. The
threshold levels for the division of the edge intensity matrix
is determined adaptively based on message length. The first
groupwhich contains the sharpest edges is used for 3bit LSBS
while the second and third groups are used for 2 and 1-bit
LSBS respectively. A pixel value difference (PVD) based
technique in combination with LSBS is proposed in [20]. The
scheme partitions an image into non-overlapped 3x3 blocks
and uses the nine pixels in each block for data embedding. For
each pixel in a block, six higher bit planes or the ‘‘quotient
value’’ (in decimal terms) is utilized for PVD embedding
while two lower bit planes are utilized for LSBS. In the case
of PVD embedding, the difference of center pixel quotient
value is evaluated in eight directions. The difference values
are updated with the decimal value of a set of message bits
and the number of message bits are determined based on
pre-defined capacity values. The embedded differences are
transformed to the corresponding stego quotients and a mean
center quotient is obtained from the eight stego quotients.
The neighboring quotients are also updated according to
the mean center quotient. In parallel to PVD embedding,
LSBS embedding is performed in the two lower bit planes.
If the falloff boundary (FOBP) occurs as a result of data
embedding then the whole embedding process is undone and
a simple 4-bit LSBS embedding is performed on the lower bit
planes. The presented scheme achieves a very high capacity
of 4.5 bpp while resisting RS and PDH steganalysis.

The aim of this paper is to present a quality-enhanced and
secure methodology of image steganography. This requires

accurate identification of the local texture complexity. To ana-
lyze the texture, the underlying assumption is: the more the
neighborhood pixels of the targeted region are included in the
texture analysis, the accurately is the texture analyzed. There-
fore, we propose a method of the computation of complexity
of a local block for adaptive pixel-selection. Following are
the contributions of the paper.

1) The presented algorithm achieves more embeddable
pixels by partitioning the image into small blocks of
variable size depending on the neighbors of the central
pixel. Moreover, with the use of overlapping blocks
the texture complexity estimation is now achieved for
every pixel.

2) High capacity of embedding is achieved in terms of the
multibit embedding and the quality enhanced result of
steganographic algorithm.

3) We use an eight directional high pass filter bank to com-
pute the eight difference values of the pixel block. The
filter is designed to calculate the difference between the
central pixel and each of its eight neighbors.

4) We define a novel complex block prior (CBP) crite-
rion which defines nine complexity levels. Following
the criterion, a threshold/difference range classifies the
eight differences into two groups. Based on the number
of differences in a group, a complexity level is assigned
to the pixel block.

5) We use a method of combining the eight difference
responses in the CBP criterion and use the single value
to arrange the pixel blocks in the order of complexity
from highest to lowest.

6) We derive an expression to combine eight difference
values into a single value and use the value to estimate
the number of bits to be embedded per pixel.

7) An adaptive setting is devised which selects the embed-
ding algorithm based on single or multibit embedding.

Remaining contents of the paper are organized as follows.
Sect. II reviewsmethodology of important related techniques,
Sect. III discusses the proposed method of content-adaptive
image steganography, Sect. IV presents a numerical example
for embedding and extraction, Sect. V details the experimen-
tal setup, while Sect. VI concludes the paper.

II. RELATED WORK
A method to limit the steganographic distortion by utilizing
an adjustable data hiding algorithm is presented in [21]. The
method starts by dividing the image into 2x2 overlapping
blocks. Each block is expanded to a 3x3 block and the empty
pixels are interpolated using the four corner pixels. Once the
whole cover image is interpolated, this expanded image is
considered for data embedding. The cover image is again
divided into 2x2 sized and this time non-overlapping blocks.
A 2x2 pixel patch consists of a corner pixel and three embed-
dable pixels. The difference between the embeddable pixels
and a corner pixel is calculated and three difference values
are obtained. A secret payload size is determined for each
pixel by taking the binary logarithm of respective differences.
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To limit the distortion to an acceptable level, the secret bits are
taken to be no more than a maximum value n. The message
size and the parameter n are embedded in the cover image as
side information after the secret message is embedded. This
side information is required to extract the hidden information
at the receiver’s side. When stego image is received at the
other end, the interpolated values are recalculated. The deci-
mal equivalent of secret bits is extracted by taking the differ-
ence between interpolated and embedded pixels. The number
of secret bits embedded per pixel is determined using the
parameter n and the hidden data is retrieved by calculating the
binary equivalent values. The bits are concatenated to form
the secret message stream. The steps are repeated until the
whole secret message is extracted. One limitation to the above
method is that the pixel variation is not analyzed in all possi-
ble ways. The pixel difference should have been considered
in all three directions, since the interpolated values are known
at the receiver’s end.

An adaptive steganography method is presented in [22]
which is based on block complexity estimation and matrix
embedding. An input cover image is considered to be com-
posed of small non-overlapping segments of size 2x4. Each
local segment is then converted to a 1D representation to
obtain seven overlapping pixel pairs. The pixel difference
computation is performed for each pixel pair and difference
outcomes are obtained for an individualized segment. A total
of eight complexity levels are defined, and an embedding
strategy is set for each level based on the payload length.
Consequently, only the higher complexity levels are utilized if
the payload length is small. A secret payload is estimated for
each level by solving an optimization problem. Efficient data
hiding method such as matrix embedding is then utilized in
the data embedding step. One limitation of the above scheme
is that, in a 1D local segment, the difference of non-corner
pixels is computed in two directions while the corner pixel’s
difference is computed in a single direction.

An efficient edge-adaptive embedding algorithm is pre-
sented in [23] which is based onXOR coding. The edge detec-
tion method allows for preserving the edge intensity map
before and after embedding. Initially, an image is partitioned
into 3x3 non-overlapping blocks, and the pixel difference is
exploited in three directions e.g., horizontal, vertical and
diagonal using only the corner pixels. Amaximum edge score
from the four computed edges is assigned to the block. After
the assignment of edge scores, the blocks are then arranged in
the order of the edge score from highest to lowest. A threshold
is selected adaptively based on the payload length which
determines the number of blocks that are used for data embed-
ding. The four pixels (other than corner pixels) are used for
data embedding. The four pixels are paired in an adjacent
manner such that three pairs are formed. XOR operation
is performed between the LSBs of pixels in each pair and
three binary results are achieved. The three binary outcomes
are compared to three message bits using XOR operation.
A mapping table containing eight combinational possibilities
of matching is used to switch the LSB of pixels such that it

represents the message bits. The XOR embedding scheme is
also extended to edge adaptive version where the mean edge
intensity of the block determines the number of data bits to
be embedded in a single pixel. Noticeably, the scheme utilizes
only four pixels in the edge intensity calculation however the
central pixel can also be included in the calculation. There-
fore, the scheme does not provide an accurate identification of
texture complexity.Moreover, only the four pixels are utilized
in embedding of data and the fifth pixel is left unembedded
therefore wasting the embedding capacity. The use of mean
edge intensity is not appropriate way to determine the bits per
pixel since two blocks having same average difference may
have different complexity levels. The above arguments are
validated in the experimental results section.

An adaptive steganography technique based on Tree-Based
Parity Check (TBPC) is proposed in [24]. In a cover image,
every two adjacent pixels are paired to form 1x2 sized
non-overlapping blocks. The absolute pixel difference in an
individualized block is then computed. Six kinds of blocks
are defined and each block is evaluated to qualify for one
out of six complexity levels. Data embedding is then per-
formed on the respective blocks using TBPC embedding
algorithm. Noticeably, the use of non-overlapping blocks
in the edge-detection step limits the hiding capacity of the
scheme.

A content-adaptive image steganography method for color
images is presented in [25] which analyses the texture of a
3x3 block of image bymeans of an energymeasuring function
based on the Ising spin glass model. The energy function
calculates energy of a pixel centered in a 3x3 window in
a similar way as applying a point detection kernel on an
image segment. The image is masked to represent the 4 higher
bit planes before energy calculation so that the data can be
accurately recovered in the extraction stage. The authors have
achieved embedding capacity of 4bpp and their scheme can
withstand the first-order statistical test (dual statistics test and
stirmark analysis). However, the design of energy function
does not consider the individual pixel correlation with respect
to the central pixel. Instead, the energy of a pixel depends on
the sum of difference between the eight neighborhood pixels
and the central pixel. Thus, the energy outcomemay be biased
by a high difference value in a single direction.

To summarize, the above techniques are designed for
content-adaptive image steganography. However, most of the
techniques do not take into account the information of pixel
variation around the central pixel in all possible directions
and therefore they are unable to accurately analyse the texture
complexity. In the light of above discussion, in this paper,
an accurate methodology of texture analysis is proposed
that provides high embedding capacity, visual quality and
security.

III. PROPOSED METHOD
The proposed method starts by dividing the cover image
into small overlapping blocks. A complexity identification
method is then applied on an individualized pixel block.
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FIGURE 2. The flow diagram of the proposed texture complexity estimation method.

Amulti-directional HPF bank is utilized to calculate the pixel
variation among the central pixel and all neighboring pixels.
A Complex Block Prior (CBP) criterion evaluates the pixel
differences and assigns one out of nine complexity levels to
a pixel block. The blocks are arranged in descending order
of the complexity level and the same level pixel blocks are
rearranged in the order of the maximum difference. Data is
embedded in the central pixel using a new adaptive algorithm
depending on either single or multi-bit embedding. The num-
ber of secret bits per pixel is estimated based on themaximum
of the pixel differences in a pixel block. The proposedmethod
follows the road map in Fig 2. The details of the presented
embedding algorithm are discussed as follows.

A. IMAGE SEGMENTATION
Given an input cover, proceed horizontally to partition the
image into small overlapping blocks. Three types of pixel
blocks are obtained based on the number of neighboring
pixels. The pixels on the periphery of the image are the corner
pixels and non-corner pixels. The corner pixels have three
neighbors, therefore they form a block of size 2x2 (type 1).
The periphery pixels other than the corner pixels have five
neighbors, therefore they form a block of size 2x3 (type 2) on
the horizontal edge and block of size 3x2 (type 2) on the
vertical edge. The non-periphery pixels have eight neighbors,
therefore a block of size 3x3 (type 3)is formed. Fig. 3 shows
the three types of pixel blocks. The pixel with a blue dot
represents the central pixel. Please note that the image is
partitioned into overlapping blocks so that each pixel can
take part in embedding and the embedding capacity can be
improved. Given a pixel block, the next step is to identify
the texture complexity or the pixel variation occupied by the
central pixel.

B. TEXTURE COMPLEXITY ESTIMATION
To identify the degree of complexity occupied by a central
pixel in a local region, the underlying assumption is: In a
local region, the central pixel must vary (to a certain degree)
in all directions. The desirable variation improves the visual
quality of stego image and reduces the probability of the pixel

FIGURE 3. An 11x11 image representing the three types of pixel blocks.
The pixel blocks are classified based on the number of neighbors of the
central pixel. The central pixel is represented by a blue dot.

FIGURE 4. A 3x3 pixel block representing central (solid border) and
neighboring (dashed borders) pixels.

to be estimated by statistical steganalysis attacks [26]. In the
light of the above assumption, the proposed method aims to
calculate the pixel variation with respect to all neighbors.
A 3x3 block of pixels is shown in Fig. 4. The difference
of central pixel pc is calculated with respect to its eight
neighbors (pi, i = {1, · · · 8}). The eight central differences
(dcis) are grouped under a difference set D as shown in (1).
This set plays a significant role in determining the complexity
of a pixel block. For the type 1 and 2 blocks, the central dif-
ferences are also taken to be eight in number. The differences
for the neighbors that do not exist in the two types of blocks
are taken as zero. The methodology of the computation of
the pixel variation in multiple directions is represented in the
proceeding sub-section.

D = [dc1, dc2, dc3, · · · dc8]. (1)
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1) GENERATE RESIDUAL RESPONSES
Before discussing the methodology, it is important to mention
that the computation of pixel variation is performed only
on the higher bit planes of the cover image. In this way,
the texture complexity remains invariant before and after
embedding and data can be accurately extracted based on the
complexity of the region. The number of higher bit planes
for texture complexity computation is calculated based on a
parameter ε which defines the maximum number of secret
bits embedded per pixel. Since in our case the total number
of bit planes is eight, therefore given a value of ε then the
number of higher bit planes h for the calculation of residual
responses is calculated as:

h = 8− ε (2)

FIGURE 5. High pass filter bank (a) the theoretical eight high pass filters
required to compute pixel difference in eight directions (b) the original
four high pass filters to compute pixel difference in eight directions.

Now, for every pixel block, the central pixel variation is
exploited in all possible directions using a high pass fil-
ter (HPF) bank. Fig. 5(a) presents the eight 3x3 sized high
pass filters which are built as first-order linear filters. The
central pixel pc at which a filter is evaluated is marked with
a dot and paired with a symbol representing the neighboring
pixel. Since in a 3x3 block, there are eight neighboring pixels
therefore, a total of eight filters are formed. The integer (-1)
accompanying the dot represents the order of the filter. This
is a theoretical representation of the HPFs to compute the
pixel difference in eight directions. However, for efficient
filtering only four HPFs with smaller size are required to
generate the eight residual responses. The sliding property of
a filter allows each filter to compute pixel difference along
two directions as shown later in (1). These four HPFs are
presented under the set c4h,v,d in Fig.5(b). The notation for
the HPF bank is FnDs, where F specifies the central pixel
e.g., central (c). n represents the number of filters in the filter
bank. For example, there are eight filters in the c8h,v,d and
four filters in the c4h,v,d filter bank. The notation D specifies
the direction in which the pixel difference is calculated. For
example, c4h,v,d computes central pixel difference in three
directions e.g., horizontal (h), vertical (v) and diagonal (d).
The additional notation s in the sub-filters of c4h,v,d denotes
the size of filter e.g., in c4h,12 the filter size is 1x2 and in

c4d,2 the filter is a square matrix so a single 2 represents the
size 2x2. The application of HPF bank on a cover image I is
represented mathematically as follows:

M1 =
∣∣I ~ Hc4h,12

∣∣ for i = {4, 5}.

M2 =
∣∣I ~ Hc4v,21

∣∣ for i = {2, 7}.

M3 =
∣∣I ~ Hc4d,2(1)

∣∣ for i = {1, 8}.

M4 =
∣∣I ~ Hc4d,2(2)

∣∣ for i = {3, 6}. (3)

where~ denotes the convolution operation and Hx represents
a sub-filter x belonging to set c4h,v,d. Equation (3) results
in four residual matrices Mns, each providing two difference
values (dci) between the central pixel and the ith neighbor-
ing pixel in the block. Next, we prioritize the blocks for
embedding by assigning complexity levels based on a sign
function and arranging the blocks in each level by analyzing
the residual responses. This is performed by our proposed
Complex Block Prior (CBP) criterion as described in next
section.

2) COMPLEX BLOCK PRIOR (CBP) CRITERION
By the definition, if the pixels in a block have high local
variation then a high complexity level is assigned to the
block. On the contrary, if the pixel variation is less, a low
complexity level is assigned to the block. The CBP criterion
uses a threshold th1 to divide the eight residual responses into
two groups. The number of residual responses in a group then
determines the complexity level of the pixel block. Consider
a vector D containing the eight residual responses. Then the
complexity level γ is calculated as defined in (4).

γ =

8∑
i=1

f (dci − th1). (4)

where f(.) is a sign function and is defined as follows.

f (x) =

{
0 x < 0
1 x ≥ 0

(5)

As an example, suppose D = [15, 10, 12, 4, 2, 21 22, 23]
and th1 = 10 then the complexity level γ = 1+ 1+ 1+ 0+
0+1+1+1 = 6. Here, the threshold th1 plays the role of an
adjustment scale. By changing th1 the complexity level of a
block is changed. If th1 increases, more andmore pixel blocks
jump from higher complexity levels to lower levels. On the
other hand, if th1 decreases, more and more pixels jump from
lower complexity levels to higher levels. Therefore, for better
accuracy, we keep the value of th1 moderate e.g., between
8 and 12, not too high and not too low. From (4), if all eight
residual responses are greater than or equal to th1 then a
complexity level of 8 is assigned to the pixel block. Similarly,
a complexity level of 0 is assigned to the block whose all
responses are less than th1. Therefore, there are a total of nine
complexity levels.

Fig. 6 shows three example pixel blocks, each repre-
senting a different complexity level. After the complexity
level assignment, the blocks are arranged in the order of γ
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FIGURE 6. Three blocks with complexity level 7, 6 and 0, respectively.

FIGURE 7. The visual quality (measured in terms of WPSNR) analyzed on
five standard images e.g., Barbara, Cameraman, Boat, Car, and Elaine,
embedding a fixed payload into pixels of each γ separately.

form level 8 to level 0. This is to prioritize the higher-level
blocks for embedding since embedding in the highly complex
blocks provides good visual quality of stego image along
with the high-security performance in feature steganalysis.
For better insight, consider embedding in the pixels of a
specific complexity level (γ ). Fig. 7 shows the visual quality
(measured in terms of WPSNR) analyzed on five standard
images e.g., Barbara, Cameraman, Boat, Car and Elaine
when embedding a fixed payload into pixels of each γ sepa-
rately. Noticeably, the visual quality reduces as the γ of the
pixel blocks decreases. Therefore, we prefer the higher-level
blocks for embedding.

Another step which needs to be taken for the better visual
quality of the stego image is to rearrange the pixel blocks
belonging to the same complexity level in descending order
of the maximum residual response. This is to prioritize the
same-level pixel blocks with the highest pixel variation for
embedding. The maximum residual response Dmax of a pixel
block is calculated as follows.

Dmax = max(dc1, dc2, dc3, · · · dc8) (6)

where max (.) is a maximum operator. Here it is important to
mention that the sorting of same-level blocks is not required
for all the levels. The selection of a complex level for such
sorting depends on the size of secret message. If all pixels
associated with a complex level are not utilized for embed-
ding, then we sort the pixel blocks to prefer the highest vari-
ation blocks for embedding. Hence, the method is efficient

TABLE 1. Comparison of visual quality of stego images produced with
sorted blocks vs unsorted blocks.

in application as well. Table 1 presents the comparison of the
visual quality of stego images produced with sorted blocks vs
unsorted blocks. Noticeably, the visual quality results using
the sorted blocks are better than the ones produced using the
unsorted blocks.

Next step is the data embedding step.

3) DATA EMBEDDING
This section presents a new adaptive data embedding algo-
rithm which is designed to select a hiding scheme based on
either single or multibit embedding and a capacity limiting
parameter ε. The flow diagram of the adaptive algorithm
is presented in Fig. 8. The input to this algorithm is a set
of sorted pixel blocks generated form the proposed CBP
algorithm along with the maximum residual response Dmax
of each block. The embedding procedure starts as follows:

1) The blocks are processed in sequence from top to bot-
tom and we estimate the number of bits to be embedded
per pixel. This is done by taking log-base 2 of theDmax .
The bits per pixel a estimation is expressed mathemat-
ically as follows.

a = blog2Dmaxc (7)

where b x c outputs the biggest integer no larger than x
e.g., floor. It is important to mention that the mean of
the residuals as used previously in [5] is not appropriate
for estimation of bits per pixel since two blocks having
same average difference intensity may carry different
pixel complexity. It is worthwhile mentioning here
that this observation has not been discussed before in
related techniques.

2) The parameter ε is introduced in the equation which
acts as a capacity limiter and is used to set an upper
bound on a. Thus Eq. 2 is modified as:

a = min(blog2Dmaxc, ε) (8)

where min(.) is a minimum operator. The parameter ε
can take any value between 1 and 8. Since we have used
an 8-bit image representation therefore, a maximum of
eight bits and minimum of one bit can be embedded
in a single pixel. The visual quality of stego image is
maximum at ε = 1 and it reduces as the ε is increased.
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FIGURE 8. The flow diagram of the embedding and extraction procedure.

One can increase the visual quality at the expense of
smaller embedding capacity.

3) Once the number of secret bits per pixel a is estimated
for all the blocks, we now divide the central pixels into
ε number of sets. For example, if ε = 3 then the pixels
are divided into three sets. Each set contains the pixels
with the same a.

4) Given a set, gather the secret bits from the secret bit
stream. Replace the least significant bits LSBs of the
central pixel using highly efficient embedding scheme.
Since the visual quality of a stego image also depends
on the modification rate of the embedding algorithm,
therefore we present two efficient embedding schemes
which provide a low modification rate for single and
multibit embedding. Although the use of efficient
embedding further improves the visual quality of the
stego image. However, in section 4, we demonstrate
the effectiveness of our proposed texture complexity
estimation method by using simple LSB replacement
embeddingwhich does not provide a reducedmodifica-
tion rate. The adaptive embedding proceeds as follows.
For the set with a = 1, the embedding is performed

in the using the subtractive relation of a pixel pair. For
this, arrange the pixels of set 1 and onwards in adjacent
pairs. In each pair, the first secret bit is embedded in
the first pixel and the second secret bit is embedded
in the subtractive relation of the two pixels. Suppose
m1 and m2 are the two secret bits and q1 and q2 are
the LSBs of the two cover pixels x1 and x2. Then the
subtractive relation X of the two pixels is taken as
follows:

X =


b

∣∣∣x1
2
− x2

∣∣∣c ifx1 ≥ 2x2

d

∣∣∣x1
2
− x2

∣∣∣e ifx1 < 2x2
(9)

The LSB of the subtractive relation X is q = LSB[X].
The embedding is followed as:
Case 1:
if q1 = m1 and q = m2 no change in cover pixels
required.
Case 2:
if q1 = m1 and q 6= m2, change x2 as x′2 = x2 ± 1
Case 3: if q1 6= m1 and q = m2 change x1 as

x ′1 =

{
x1 + 1 if x1 is even or zero
x1 − 1 if x1 is odd

Case 4: if q1 6= m1 and q = m2, change x1 as

x ′1 =


x1 + 1 if x1 is odd
x1 + 2 if x1 is zero
x1 − 1 if x1 is even

Embedding in this manner reduces the average modi-
fication form 5/4 bits of LSBR to 3/4 bits. Therefore,
further improvement in visual quality is achieved. The
embedding continues until the end of secret bits or until
all the pixels in set 1 have been utilized.

For the sets with a > 1, the multibit embedding
scheme using the XOR coding is utilized for data hid-
ing. First, the condition of ε is checked. If ε = 2 then
the pixels of set 2 and onwards are utilized for 2-bit
embedding. If ε = 3 then the pixels of set 2 are utilized
for 2-bit embedding and the pixels of set 3 and onwards
are utilized for 3-bit embedding and so on. Multibit
XOR embedding uses four cover pixels to embed three
secret bits in each of the bit planes. We arrange the
pixels in set 2 and onwards in a group of four. The four
cover pixels in each group are arranged in three pairs
and XOR operation is performed between the bits of
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each of three-pixel pairs using the following equations.

k1p = q1p ~ q2p.

k2p = q3p ~ q4p.

k3p = q1p ~ q3p. (10)

where, p represents the bit plane fromwhich the bits are
considered. The resulting bits k1p, k2p and k1p for the
pth bit plane are compared with the three secret bitsm1,
m2 andm3. A mapping table is used to decide the cover
bit modification. The mapping table is shown in Fig. 9.
XOR embedding is applied to each group until the end
of secret bits or until all the groups have been utilized
for embedding. The average modification is reduced
form 1.5 bits of LSBR to 1.25 bits.

FIGURE 9. The mapping table of XOR embedding defining the embedding
strategy.

In order to enable the receiver to correctly extract the
secret bits, the size of secret bit stream M, the limiting
parameter ε and the threshold th1 is sent alongside the
stego image. This side information synchronization can
be achieved by embedding four bytes concatenated at
the start of the secret message using four pixels.

4) EXTRACTION STAGE
The extraction of secret data is simpler and more efficient
than the embedding process. The proposed algorithm allows
the extraction of data without the need for an original cover
image. Fig. 7 represents the flow diagram of the data extrac-
tion process. Given the stego image Is which results from the
embedding algorithm described earlier, the algorithm starts
by dividing the image into overlapping blocks in the same
fashion and manner as described in the embedding step. The
message length, the value of parameter ε and the threshold
th1 is retrieved from the four starting pixel blocks. The num-
ber of higher bit planes of the stego image are then calculated
using (2) as h = 8 − ε. After masking the lower bit planes
of the stego image, the texture complexity of each block is
estimated using the proposed texture complexity estimation
method. The HPF bank c4h,v,d as shown in fig 3(b) is applied
on the masked image and the residual matrices are generated
as follows.

M1 =
∣∣I ~ Hc4h,12

∣∣ for i = {4, 5}.
M2 =

∣∣I ~ Hc4v,21
∣∣ for i = {2, 7}.

M3 =
∣∣I ~ Hc4d,2(1)

∣∣ for i = {1, 8}.
M4 =

∣∣I ~ Hc4d,2(2)
∣∣ for i = {3, 6}. (11)

The four residual matrices Mcns, each providing two dif-
ference values (dci) between the central pixel and the ith
neighboring pixel in the block. A complexity level out of nine
levels is assigned to each of the pixel blocks using (4).

The CBP algorithm assigns the same complexity level to
each pixel block as was assigned previously in the embedding
step. Therefore, the texture complexity of all the pixel blocks
remains exactly invariant after data embedding. The CBP
algorithm arranges the pixel blocks in the order of complexity
level from highest to lowest and the same level pixels are
sorted according to their maximum residual difference Dmax .
We know the secret message size therefore, only the pixels
of the complexity level for which the secret message ends
amid will be considered for sorting. Now, the data extraction
proceeds as follows:

1) The blocks from the complexity identification step are
processed in a sequence starting from top to bottom and
the number of secret bits per pixel for each block is
estimated based on its Dmax .

2) The central pixels are divided into ε number of sets
where ε is obtained from the previous parameter recov-
ery stage. Each set contains pixels with the same num-
ber of secret bits per pixel a. For the set with a = 1,
arrange the pixels of set 1 and onwards in adjacent
pairs. In each pair, the first secret bit is retrieved from
the first pixel and the second secret bit is retrieved from
the subtractive relation of the two pixels. The extraction
continues until all the secret bits in set 1 have been
extracted.

For the sets with a > 1, the condition of ε is checked.
If ε = 2 then the 2-bits are extracted from the pixels of
set 2 and onwards. If ε = 3 then the 2-bits are extracted
from the pixels of set 2 and 3-bits are extracted from
the pixels of set 3 and onwards and so on. We arrange
the pixels in set 2 and onwards in a group of four. The
four cover pixels in each group are arranged in three
pairs. The three secret bits are retrieved by performing
XOR operation between the bits of pth bit plane of
each of three-pixel pairs as followed by the following
equations.

m1 = q1p ~ q2p.

m2 = q3p ~ q4p.

m3 = q1p ~ q3p. (12)

XOR embedding is applied to each group until the end
of secret bits.

3) Concatenate the secret bits extracted from the sets in
the following sequence.
(bits from set 1) || (bits from set 2) || (bits form
set 3) · · ·

IV. NUMERICAL EXAMPLE OF EMBEDDING
AND EXTRACTION
Consider an example for the illustration of the proposed
content-adaptive embedding scheme. Suppose a cover image
is partitioned into overlapping blocks as shown in Fig. 10(a).
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For convenience only type 1 pixel blocks are considered. The
pixel intensities of the four blocks are presented in binary
form in Fig 10(b). As discussed earlier, the residual responses
are generated by using only the (8 - ε) higher bit planes.
Here, two embedding cases are presented e.g., for ε = 1 and
ε = 2. The pixel blocks for the two cases are presented in
Fig 10(c) and (d), respectively. Please note that the embed-
ding scenario is presented for the same complexity-level γ
when th1 = 8 and is verified in the proceeding section.

FIGURE 10. Example of four pixel blocks (a) original pixel blocks, (b) Bit
planes (c) Pixel intensities for ε = 1 and (d) Pixel intensities for ε = 2.

A. SINGLE-BIT EMBEDDING WITH ε = 1
When ε = 1, the first seven higher bit planes are used for the
calculation of residual responses. The residual resposes for
the four cover blocks are calculated using (3). The difference
vector Dn for nth block is thus D1 X {14, 40, 132, 22, 58,
4, 22, 42}, D2 = {14, 14, 14, 10, 2, 22, 24, 100}, D3 = {8,
10, 4, 8, 100, 32, 30, 14} and D4 = {30, 20, 10, 0, 10, 12,
12, 20}, respectively. The complexity level γn when th1 =
8 for nth block can then be computed using (4). Hence γ1 =
1+ 1+ 1+ 1+ 1+ 0+ 1+ 1 = 7, γ2 = 1+ 1+ 1+ 1+ 0+
1+ 1+ 1 = 7, γ3 = 1+ 1+ 0+ 1+ 1+ 1+ 1+ 1 = 7, and
γ4 = 1+1+1+0+1+1+1+1 = 7, for n={1, 2, 3, 4}. Now,
we obtain the maximum residual difference for nth block as:
Dmax,1 = 132, Dmax,2 = 100, Dmax,3 = 100 and Dmax,4 =

30. The pixel blocks are arranged in the order of maximum
residual difference Dmax . Next step is to calculate the bits per
pixel a using (8) as follows:

a1 = min(blog2 132c, 1) = 1

a2 = min(blog2 100c, 1) = 1

a3 = min(blog2 100c, 1) = 1

and

a4 = min(blog2 30c, 1) = 1

Following the flow diagram of Fig. 8(a), since all blocks
have same a, the pixel blocks are kept in set 1 and arranged

in adjacent pairs. Now the embedding procedure starts as
follows: Given a message sequence M = {1 0 0 0 1 0}.
Now, consider the first pair of central pixels (x1, x2) =
(158, 158). Thus, q1 = 0. The subtractive relation X is cal-
culated as follows:

X =
⌈ ∣∣∣∣1582 − 158

∣∣∣∣ ⌉ = 77

Here q = LSB[77] = 1. Comparing the cover bits with
message bits it is concluded that q1 6= m1 6= 1 and q 6= m2 6=

0. Therefore, case 4 is followed and x′1 = x1 - 1 = 158 - 1 =
157. Therefore, embedding of two bits require modification
of single cover pixel. Similarly embedding is performed for
next pixel pair as follows. Given the second pixel pair (x1,
x2) = (166, 200). Thus, q1 = 0. The subtractive relation X is
calculated as follows:

X =
⌈ ∣∣∣∣1662 − 200

∣∣∣∣ ⌉ = 117

Here q = LSB[117] = 1. Comparing the cover bits with
message bits it is concluded that q1 = m1 = 0 and q =
m2 6= 1. Therefore, case 2 is followed and x′2 = x2 - 1 =
200 - 1 = 199. At the data extraction stage, since only the
higher bit planes are used for residual responses therefore,
the complexity level remains invariant and the blocks are
arranged in similar manner as at the trasmitters end. The
blocks for set 1 are arranged in pairs and the message bits
are recovered from the subtractive relation of pixels.

B. MULTI-BIT EMBEDDING WITH ε = 2
In the case with ε = 2, the maximum allowable embed-
ding bits per pixel is 2. Therefore, 2-bit embedding is
performed. The residual responses are calculated using
the first 8 - 2 = 6 bit planes. The pixel blocks for residual
responses are shown in Fig. 10(d). The difference vector Dn
for nth block is thus D1 = {16, 40, 132, 20, 60, 4, 20, 44},
D2 = {16, 16, 16, 12, 4, 20, 24, 100}, D3 = {8, 12, 4, 8,
100, 32, 28, 12} and D4 ={32, 20, 12, 0, 8, 12, 12, 20},
respectively. The complexity level γn and th1 = 8 is same as
in first case. Similarly, the Dmax is also same as in case 1 and
thus the arrangement of pixels is also same. Next step is to
calculate the bits per pixel a using (8) as follows:

a1 = min(blog2 132c, 2) = 2

a2 = min(blog2 100c, 2) = 2

a3 = min(blog2 100c, 2) = 2

and

a4 = min(blog2 30c, 2) = 2

Following the flow diagram of Fig. 8(a), since all blocks have
same a, the pixel blocks are kept in set 2 and arranged in
a group. Given the message sequence M = {1 0 0 0 1 0},
the embedding procedure starts as follows: The capacity for
each central pixel is 2 bits therefore, 2-bit XOR embedding is
used. The procedure of embedding presented in sub-section
4 is followed as follows: Given the four cover pixels
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TABLE 2. Embedding capacity comparison of the proposed method with the technique [21].

x1 = 156, x2 = 156, x3 = 164 and x4 = 200. The two bits
from the lower bit planes thus are: q11 = 0, q12 = 1, q21 = 0,
q22 = 1, q31 = 0, q32 = 1, q41 = 0 and q42 = 0. Now, perform
XOR operation among the bits of cover pixels in the first bit
plane (p = 1).

k11 = q11 ~ q21 = 0~ 0 = 0

k21 = q31 ~ q41 = 0~ 0 = 0

k31 = q11 ~ q31 = 0~ 0 = 0

Similarly, the XOR operation among bits of second bit plane
(p = 2) is performed as:

k12 = q12 ~ q22 = 1~ 1 = 0

k22 = q32 ~ q42 = 1~ 1 = 0

k32 = q12 ~ q32 = 1~ 1 = 0

The resulting six bits are compared with the message bits and
the mapping table of Fig. 9 is used to decide for cover bit
modification. From the comparison for p= 1, it is concluded
that k11 = m1 = 0, k21 = m2 = 0 and k31 = m3 = 0. Which
leads us to compliment q21. Therefore, q′21 = 1. Similarly,
for p = 2 k12 = m4 = 0, k22 6= m5 6= 1 and k32 = m6 =

0. This leads us to compliment q42 thus q′42 = 0. At the data
extraction stage, since only the higher bit planes have used
for residual responses therefore, the complexity level remains
invariant and the blocks are arranged in similar manner as
at the transmitter’s end. The blocks for set 2 are arranged in
group of four and the message bits are recovered from the
XOR relation of pixels as follows.

m1 = q11 ~ q′21 = 0~ 1 = 1

m2 = q31 ~ q41 = 0~ 0 = 0

m3 = q11 ~ q31 = 0~ 0 = 0

m4 = q12 ~ q22 = 1~ 1 = 0

m5 = q32 ~ q′42 = 1~ 0 = 1

m6 = q12 ~ q32 = 1~ 1 = 0

Thus, the extracted message sequence is M = {1 0 0 0 1 0}

V. EXPERIMENTAL SETUP AND RESULTS
This section provides a description of the effectiveness of
the proposed method in terms of providing high embedding
capacity, high image quality and the ability of the proposed
method to resist the statistical attacks. In the experimental
setup, we take three image datasets. The first image dataset
contains a set of standard images from the SIPI dataset and
other online sources [27]. These eight standard grayscale
images include the Lena, Cameraman and Barbara image.
The size of each image is 512x512. The other two datasets are
the BOWS2 [28] and BOSSbase dataset [29]. Both datasets
contain 10,000 grayscale natural images of size 512x512.
The example images from the three datasets are shown
in figure 10. The proposed algorithm is implemented in Mat-
lab. A pseudo-random number generator is used to generate
a bitstream of secret message. A comprehensive comparison
with the latest related techniques [21] is given. In addition we
also present the description of effectiveness of the proposed
complexity estimation method. The security analysis of the
proposed method with related techniques is also presented.

A. EMBEDDING CAPACITY AND IMAGE
QUALITY ASSESSMENT
Embedding capacity (EC) is the total number of secret bits
embedded in the cover image. EC is an essential unit of
measurement since it gives an idea of how the proposed
method helps to hide more and more data in the cover image.
Table 2 presents the embedding capacity achieved by the
proposed method in comparison with [21]. The EC is esti-
mated for seven standard images over varying-parameter n.
The proposed method provides highest EC for all values of n.
In terms of the percentage increase, the EC of the proposed
algorithm is on average 46.46%, 28.73%, and 36.51% higher
than [21] for n = 1,2 and 3 respectively. There are two
reasons behind such an improved payload capacity: 1) the
use of separate bit planes for complexity computation and
embedding allows to preserve the pixel differences before and
after embedding thereby allowing all the pixels to take part in
embedding. 2) The use of variable pixel block size for the
periphery pixels further adds 1024 pixels to be used in the
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embedding process. On the contrary the technique of [21]
uses only three out of four pixels for embedding in every
2x2 block. Consequently only 75% of the image is available
for embedding and remaining 15% is used for calculation of
the number of bits per pixel.

The image quality (IQ) parameters such as PSNR,
Weighted PSNR (WPSNR) and SSIM are used to quantify the
modification in the stego image with reference to the cover
image. The mathematical expression of PSNR is expressed
as follows:

PSNR = 10 log10
2552

E
. (13)

where E is the mean square error and is defined as follows.

E =

∑H
h=1

∑W
w=1(C(h,w)− S(h,w))

2

H ×W
. (14)

The PSNR is measured in dB. For a perfectly distortion less
image PSNR is infinity. The weighted PSNR is a modified
version of simple PSNR. The WPSNR takes into account the
texture content of the image as perceived by the human visual
system (HVS) and thus measures the visual quality of the
image by considering the relationship of the pixels among
each other in a local region. There are manymodels presented
in literature that are designed to measure perceptibility of an
image as perceived byHVS. In the presented work, we pursue
one of the existingmodels known as ‘‘noise visibility function
(NVF)’’ [16]. The WPSNR is presented in the following
equation.

WPSNR=10 log10
2552 × H ×W∑H

h=1
∑W

w=1(C(h,w)− S(h,w))2 × n2
.

(15)

where HxW represents the size of the image and NVF n is
calculated on the cover image as follows.

n(C(h,w)) =
1

1− σ 2
h,w

(16)

It is clear from the expression of NVF that for a local region
centered around pixel (h,w), a high texture content will yield
an NVF close to 0 while the smooth texture content will
represent an NVF of approximately 1.

Another IQ metric is the Structural SIMilarity index
SSIM [30]. It is a measure of the perceptual structure of
a stego image with reference to cover image. Low order
moments such as mean, variance and correlation coefficient
are used to compute structure similarity between an original
and distorted image. The underlying assumption is that HVS
perceives an image by extracting its structural information.
Structure information includes luminance, contrast, and cor-
relation. Luminance is estimated by quantifying the mean
of an image. Contrast is estimated by the standard deviation
and correlation among the two signals is quantified by using
the covariance or the correlation coefficient expression. The
following notations are used for the above low order moments

e.g. mean as m, standard deviation as std and correlation as
corr and are mathematically represented as follows:

The luminance similarity among the cover and stego image
can then be represented as:

lum(C, S) =
2mcms + c1
m2
c + m2

s + c1
. (17)

The contrast is represented as:

std =
(∑N

i=1(Ci − mc)
2

N − 1

)1/2

. (18)

The contrast similarity expression is then represented as
follows:

cont(C, S) =
2stdcstds + c2
std2c + std2s + c2

. (19)

Similarly, the variation similarity is expressed by the follow-
ing relation:

vari(C, S) =
stdcs + c3

stdc + stds + c3
. (20)

where, stdCS is given as:

stdcs =
1

N − 1

N∑
i=1

(Ci − mc)(Si − ms). (21)

The constants c1, c2, and c3 are equal to (k1xL)2, (k2xL)2,
and (k3xL)2, where L is the dynamic range of pixels and k1,
k2, and k3 � 1. SSIM index is now calculated as:

SSIM (C, S) = lum× cont × vari. (22)

SSIM is calculated in a smaller window of size 8x8 for each
pixel in the image. Once the SSIM map is obtained, a mean
value of the map is calculated. SSIM ranges between [−1 1],
a value of 1 represents the ideal similarity while a value of 0
represents no similarity.

Table 3, 4 and 5 respectively represent the PSNR, WPSNR
and SSIM values of the proposed algorithm in comparison
with the technique [21]. The performance of the proposed
method is evaluated using the EC for [21] given in Table 2.
Referring to Table 3, it can be seen that the proposed
algorithm achieves a higher value of PSNR in comparison
with [21] for all n. An average increase of 5.25 dB, 5.54 dB
and 6.05 dB is achieved over [21] for n = 1, 2 and 3 respec-
tively. For n = 1 the proposed embedding algorithm embeds
in the cover pixels with a reduced modification rate and
therefore further limits the embedding distortion. This setting
allows generating a high-quality image as reflected by the
highest average PSNR value over [21]. Similarly, for n>1 the
proposed embedding algorithm provides the highest average
PSNR values over [21].

Table 4 presents the WPSNR metric comparison with the
technique [21] over varying n. From the table, it can be
seen that the proposed algorithm achieves a higher value
of WPSNR in comparison with [21] for all n. An average
increase of 5 dB, 8 dB and 5 dB is achieved over [21] for
n = 1, 2 and 3 respectively. The high-performance margin of
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TABLE 3. PSNR comparison of the proposed method with the technique [21].

TABLE 4. WPSNR comparison of the proposed method with the technique [21].

TABLE 5. SSIM comparison of the proposed method with the technique [21].

WPSNR is achieved since the proposed embedding algorithm
adaptively embeds in the highest complex pixels. Moreover
the proposed method accurately estimates the embedding
capacity per pixel by calculating pixel difference in eight
directions and then using the highest difference value for each
complexity level while the technique of [21] estimates the

embedding capacity by calculating pixel difference in only a
single direction. The highest averageWPSNR value over [21]
displays the effectiveness of the proposed complexity estima-
tion method as well as the reduced modification embedding
provided by the embedding step. In order to present the
description of the performance of the proposed complexity
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FIGURE 11. The WPSNR performance analysis for the proposed and adaptive LSBS method over (a) n = 1, (b) n = 2 and (c) n = 3.

estimation step alone, we present the WPSNR comparison of
the adaptive n-LSBS with the proposed method. The adaptive
n-LSBS uses the proposed complexity identification method
to compute the pixel complexity. The only difference lies in
the embedding method in the data embedding step which
is the simple LSB substitution method. Fig. 11 displays the
comparison results over a variety of embedding capacity for
n = [1, 2, 3]. The results are averaged for the same seven
standard test images as mentioned in Table 2. It is clear
from the figure that the WPSNR value is reduced with a
difference of less than 2.5 dB for n = 1 as compared to the
proposed algorithm. A difference of less than 1 dB is noticed
for n = 2 and 3. The slight difference in the WPSNR value
of the two algorithms is due to the embedding method used
in the data embedding step. The embedding methods of the
proposed algorithm provide a high embedding efficiency,
therefore, the WPSNR of the proposed method is high while
the method used by the n-LSBS algorithm does provide any
embedding efficiency and therefore the WPSNR value is
reduced. In terms of the percentagemodification rate, the pro-
posed algorithm for n= 1 introduces 9% fewer modifications
than LSBS while the modifications for n > 1 are 6% less
than n-LSBS. The overall performance of both algorithms
is still higher than the technique [21] which highlights the
significance of the role played by the proposed complexity
identification step in providing the high visual quality of the
stego image.

Finally, the visual quality of the stego image as generated
by the proposed data hiding algorithm is measured in terms
of SSIM. The SSIM values over varying n are presented
in Table 5. From the table it can be seen that the proposed
algorithm achieves a higher value of SSIM in comparison
with [21] for all n. An average increase of 0.0005, 0.0021 and
0.0071 is achieved over [21] for n = 1, 2 and 3 respectively.
An example of cover and stego images (Barbara and Camera-
man) is presented in Fig. 12. The embedding is performed in
the cover images using ε = 1. From the figure it is observed

that both the cover and stego segments are visually similar
and HVS cannot detect the embedding distortion.

For a comprehensive comparison, Table 6 presents the
high visual quality performance of the proposed algorithm
with respect to three techniques e.g., PVD (Pixel Value Dif-
ference) [31], TBPC (Tree-Based Parity Check) [24] and
ATBPC (Adaptive TBPC) [24]. Each given image is eval-
uated with respect to the PSNR, WPSNRthe and SSIM at
the embedding capacity EC of 30% and 50% for 1bpp case.
It can be observed that a similar PSNR is achieved for the
methods TBPC and ATBPC. Since both the techniques use a
similar embedding approach of Tree-based parity check. The
method ATBPC results in a higher WPSNR and SSIM as it
is a content-adaptive approach. While the content-adaptive
approach of the proposed technique performs better than
ATBPC by achieving the highest WPSNR and SSIM at the
given embedding capacity.

Fig. 12 shows the PSNR and WPSNR performance of the
proposed method for multibit embedding on BOWS2 dataset.
The comparison is made between three techniques e.g., adap-
tive PVD [33], Tri-PVD (TPVD) [34] and Edge-XOR embed-
ding [23] for a variable embedding capacity of 10-70%. The
performance of the proposed method is evaluated using the
parameter n = 3 which employs the nbpp embedding upto
3 bits per pixel. It is clear from the figure that the pro-
posed embedding algorithm produces highest quality stego
images in comparison with the previous methods. The PSNR
results in Fig. 8a shows that the proposed method is efficient
in embedding by achieving PSNR value almost equal to
that of Edge-XOR embedding method. On the other hand,
the WPSNR results show that the proposed method achieves
the highest visual quality by achieving highest WPSNR value
for all embedding capacity. The reason for such high mar-
gin is that unlike previous approaches the proposed method
utilizes the pixel difference in all directions and employs
the most suitable difference for the calculation of embed-
ding capacity per pixel. On the other hand, the technique of
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TABLE 6. PSNR, WPSNR and SSIM comparison of proposed method with three techniques [24], [31] and [32].

FIGURE 12. Subjective analysis of visual quality of stego images of the
proposed content-adaptive image steganography.

Edge-XOR embedding calculates pixel difference in limited
directions and then uses the average of the differences for
the calculation of embedding capacity per pixel. The average
of differences is not an appropriate way of calculating the
data capacity per pixel since two blocks carrying varying
intensity may have same average difference. In conclusion
the results on BOWS2 dataset shows that the accuracy of
the proposed complexity estimation method produces highest

quality stego images by utilizing the highest complex pixels
for embedding.

B. UNDETECTABILITY IN SPAM STEGANALYSIS DOMAIN
The subtractive pixel adjacency model is chosen for the mea-
surement of detectability of the steganographic distortion.
SPAM features reflect the pixel correlation in eight directions
using a high pass filter in a small window and these noise
residuals are then modeled as a higher-order Markov Chain.
The resulting matrix of transition probabilities is utilized as a
feature vector for the classifier. The steganographic distortion
forces the cover properties to deviate from the SPAM model
and thus the pixels where the correlation is high will be easily
detected by this method. Given the cover and respective stego
images from the BOSSbase image dataset, the 2nd order
SPAM features of dimensions 686 are calculated and fed to an
ensemble classifier. The data set is split into half training and
the remaining half for testing dataset. The ensemble classifier
consists of a batch of classifiers to which the feature set is
randomly and equally distributed. A final decision is made
based on the results from all the classifiers using majority
voting. An out of bag error (OOBE) is the probability of
false detection and is expected to be a high value for a secure
steganographic method.

Table 7 shows the classification results as a measure of
OOBE of the proposed method in comparison with the tech-
niques EA-LSBMR [17] and MPBDH [35]. From the table,
it can be seen that the proposed technique performs better
than the two techniques. This shows that the proposedmethod
accurately identifies the high texture regions in the cover
image and the SPAM steganalysis thus lacks in predicting the
embedding locations. The technique of MPBDH identifies
the randomness in the bit plane of the cover image and uses

VOLUME 8, 2020 21627



A. Saeed et al.: Accurate Texture Complexity Estimation for Quality-Enhanced and Secure Image Steganography

TABLE 7. The classification results in terms of the OOBE in the SPAM
steganalysis domain.

the block data hiding for embedding into each bit plane.
However, the technique is not secure since the randomness
in the bit plane of a cover image does not translate to a highly
complex texture in the spatial domain. The edge adaptive
technique [17] identifies the unidirectional edges and uses the
LSB matching revisited technique for embedding, therefore
the security performance is better as compared to MPBDH.
The proposed technique, however, uses an eight directional
approach for the texture identification of a region and there-
fore performs best among the two approaches.

VI. CONCLUSION
A content-adaptive steganographymethod is presented which
aims to identify the complexity of the texture content of
the image for data hiding. The complexity of the content is
analyzed based on a high pass filter bank which computes
pixel correlation in eight directions. In a local region, a high
pass filter (HPF) bank is applied and eight residual responses
are obtained. Following the proposed CBP criterion, a com-
plexity level out of nine levels is assigned to an individualized
pixel block. The pixels are then arranged in the priority
of complexity from highest to lowest. Data embedding for
the corresponding complexity level then takes place using
proposed adaptive embedding algorithm. Experiments are
performed for the analysis of embedding capacity, image
quality and security on three datasets. Highest values of the
IQ (image quality) parameters e.g., SSIM and WPSNR show
the effectiveness of the proposed method.

In future the aim is to exploit the pixel variation to an
increased pixel block size to further improve the texture
analysis of the proposed method. We also aim to perform
the security analysis of the proposed method using latest rich
steganalysis models.
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