
Received December 18, 2019, accepted January 15, 2020, date of publication January 20, 2020, date of current version February 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968221

Experimental Comparison of Velocity Observers:
A Scissored Pair Control Moment
Gyroscope Case Study
STANISLAV ARANOVSKIY 1,4, (Senior Member, IEEE), IGOR RYADCHIKOV 2,
EVGENY NIKULCHEV 3, JIAN WANG 4, AND DMITRY SOKOLOV 5
1Equipe Automatique, CentraleSupélec–IETR, 35576 Cesson-Sévigné, France
2Laboratory of Robotics and Mechatronics, Kuban State University, Krasnodar 350040, Russia
3MIREA–Russian Technological University, Moscow 119454, Russia
4School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
5Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Corresponding author: Jian Wang (wangjian119@hdu.edu.cn)

This work was supported in part by the Russian Ministry of Education and Science, under Grant 8.2321.2017, and in part by
the 111 Project, China, under Grant D17019.

ABSTRACT We consider scissored pair gyroscopes as an auxiliary stabilization system for legged robots.
A standard state-feedback control can stabilize the system if all states are available; thus, the velocity
estimation becomes the key element for the stabilization. To this end, we implement and experimentally
compare a model-free linear differentiator, a model-based full-state linear observer with time-varying gains,
and amodel-based homogeneous nonlinear differentiator.Moreover, we also show that the considered system
cannot be partially linearized via a change of coordinates, and thus is not suitable for a recently reported class
of nonlinear observers. The proposed designs are tested on an experimental scissored pair control moment
gyroscope setup constructed for a walking robot stabilization.

INDEX TERMS Scissored-pair control moment gyroscope, velocity estimation, differentiator, inverted
pendulum, bipedal gait.

I. INTRODUCTION
Bipedal walking robots are one of the fastest rising areas
of development and research in robotics. The control must
provide various modes of movement in a wide range of
enviroment (inclined planes, staircases, obstacles of variable
height, wet surface, uneven terrain, non-rigid surface etc.).
Even more, the control must take into account the wear of
the electromechanical and hydraulic components while main-
taining the stability.

Designs of bionic robots try to imitate the knee, the hip
joint and other articulations by servomotors. Bionic structures
require the reproduction of multiple, including physiologi-
cally unexplored psychomotor functions, that stabilize the
body during the gait. The complexity of muscle and joint
systems creates great structural, dynamic and computational
difficulties for the synthesis of control signals. A significant
disadvantage of the bionic movements is the difficulty of
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accounting for nonlinear effects associated with equipment
wear, backlash, and changes in friction characteristics. In the
existing implementations bionic mechanisms do not provide
the required quality of motion / maneuverability. It is impor-
tant to note that the bionic robotics comes along with the
high cost, exceeding practical applications and reasonable
manufacturing prices.

In fact, mimicking the nature is equivalent to chasing
(inevitable!) mechanical imprecisions: a human’s gait is very
precise thanks to the quality of his joints. But if he ever
tores one of his ligaments, the stability of the articulations
is immediately compromised. We do not want to mimic
animals completely: at the moment we do not know how to
build effective muscles; backlash in artificial joints is almost
inevitable.

We want to develop auxiliary stabilization systems that
would allow for a better control. For example, by placing
a control moment gyroscope ontop for a robot, we would
provide an additional support point without touching the rest
of the mechanical system. Control moment gyroscope is a
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FIGURE 1. We are developing a biped that uses four control moment
gyroscopes (highlited in red) as an auxiliary stabilization system.

widely used technological device that uses the reaction of a
spinning wheel to external torques. Due to the advantages of
a large ratio of produced torque to control torque and rela-
tively low power consumption, CMGs have a wide range of
applications, including bicycle stabilization [1], vessel stabil-
isation [2], motorcycle and robot balancing [3], balancing aid
for humans and bipedal exoskeletons [4], [5], attitude steering
system for the satellites [6] and underwater vehicles [7].

The research problem of this paper is motivated by the
walking robot we are currently developing in the Laboratory
of Robotics and Mechatronics of the Kuban State University
(refer to Fig. 1). This non-anthropomorphic robot has an
auxiliary dynamic stabilization system which consists of two
scissored pairs of control moment gyroscopes (CMG). The
scissored pairs are orthogonal and thus the problem of vertical
stabilization of the robot can be considered for each axis
separately. Therefore, stabilization of the robot for one axis
can be approximatedwith a simplified prototype. In this paper
we consider such a prototype, namely a scissored pair control
moment gyroscope inverted pendulum (Fig. 2). Note that the
robot has a modular design: the biped is equipped with four
identical CMG cubes.

The key element for stabilization of an inverted pendu-
lum is velocity estimation. Note that our robot uses mul-
tiple accelerometers to estimate its tilt angles [8], and we
rely on soft sensors for velocity estimation. Velocity estima-
tion for mechanical systems is a well-known problem, and
there exist numerous results on observers reconstructing the
whole state vector, for both linear and nonlinear systems,
see, for example, the recent work by Aranovskiy et al. [9]
and the references therein for model-based observers and
the work [10] for a recent neural-network based observer
example. However, a common engineering solution is to
consider the velocity estimation problem for each degree of
freedom separately rather than to estimate all velocities with
a single observer. From the signal processing point of view,
this approach can be considered as numerical differentiation,
where velocity estimation is seen as online differentiation
of a measured position signal, e.g., a first-order difference
used in [11]. While differentiator-based velocity observers
can be designed model-free, a better performance is typi-
cally obtained when observers use (at least partially) avail-
able model knowledge: sliding-mode exact differentiators

FIGURE 2. Left: inverted pendulum hardware that we study in this paper.
The pendulum consists of six bodies: body A (the thrust bearing), body B
(the frame), bodies C1 and C2 (the single-axis gimbals), and, finally,
bodies D1 and D2 (the flywheels). Right: corresponding notations. This
configuration corresponds to qb = −π/4 and q1

c = q2
c = π/2.

first proposed by Levant in [12], high-gain differentiators as
described by Vasiljevic and Khalil in [13], and differentiators
proposed by Perruquetti et al. [14] that ensure finite-time
convergence and robustness with respect to measurement
noises and uncertainties. In this paper, we aim at practical
comparison of some of the discussed observers.

The contribution of this paper is two-fold: first, we give
a rigorous proof that, despite its simplicity, the mechanical
system under consideration does not belong to the class of
recently reported systems [9], for which a construction of
model-based nonlinear observers is known. Next, we pro-
pose a comparison of three velocity observers, namely a
model-free differentiator, amodel-based linear observer and a
model-based nonlinear differentiator. All three observers are
tested on the hardware we have built for this purpose, and the
experimental results are provided.

The preliminary results of this research are reported in [15].
Extending that work, this manuscript presents i) more chal-
lenging mechanical system and motion dynamics with the
corresponding hardware, ii) the proof that the system does
not belong to the class PLvCC [9], iii) the velocity estimation
using an observer with time-varying gains, and iv) detailed
and extended experimental studies.

The rest of the paper is organized as follows. In section II
we present a model of the considered system. Next,
in section III we present the state-feedback controller capable
to stabilize the system if all states (including velocities) are
measured. Then, in section IV we discuss three velocity
observers. Hardware experiments and observers comparison
are provided in section V. Finally, possible further research
directions are discussed in the concluding section VI.

II. MODEL DESCRIPTION
The considered inverted pendulum is shown in Fig. 2. In
this paper we follow the notations from the manual of
the model 750 control moment gyroscope commercialized
by Educational Control Products company [16]. The pen-
dulum consists of six bodies: body A (the thrust bear-
ing, shown in green), body B (the frame, shown in blue),
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TABLE 1. Hardware parameters.

bodies C1 and C2 (the single-axis gimbals, shown in red
and orange), and, finally, bodies D1 and D2 (the flywheels,
shown in brown and black). We associate a basis with each of
the bodies: {Ea1, Ea2, Ea3}, {Eb1, Eb2, Eb3}, {Ec11, Ec

1
2, Ec3}, {Ec

2
1, Ec

2
2, Ec

2
3},

{Ed11 , Ed
1
2 ,
Ed13 } and {Ed

2
1 ,
Ed22 , Ed

2
3 }, respectively. We assume that

all the bodies are symmetric; so the inertia matrices are
diagonal. Let us denote by diag(Ic, Jc,Kc) the inertia matrix
(w.r.t the center of mass) of the bodies C1 and C2; and by
diag(Id , Jd ,Kd ) the inertia matrix of the bodies D1 and D2.
In the same manner, we denote the inertia matrix of the body
A as diag(Ia, Ja,Ka). As for the body B, the frame consists
of two identical cubes, and we denote by Ib, Jb and Kb the
principal moments of inertia of each half of the frame w.r.t.
the center of mass of each cube.

We denote by qa the angle of rotation between the ‘‘north’’
direction and the body A; the angle of the body Bwith respect
to the vertical is denoted as qb; the angle of the bodies C1

and C2 with respect to the body B are denoted as q1c and q
2
c ;

and the angle of the bodies D1 and D2 with respect to the
body C1 and C2 are denoted as q1d and q

2
d . The configuration

shown in Fig. 2 corresponds to the angles qb = −π/4 and
q1c = q2c = π/2. Note that the equilibrium position of an
actual robot depends on the configuration of the legs and may
be subject to external disturbances; therefore, for our cube we
model the equilibrium point as qb = −π/4−e, where e is the
unknown (small) bias. The notations and the corresponding
hardware parameters are summarized in the Table 1.

With these definitions, the vectors of angular velocities can
be found as:1

Eωa =

 0
0

q̇a(t)

 ,
Eωb =

 0
q̇b(t)
0

+ RAB(qb)× Eωa,
Eω1
c =

q̇1c(t)0
0

+ RBC (q1c)× Eωb,
Eω1
d =

 0
q̇1d (t)
0

+ RCD(q1d )× Eω1
c ,

1When clear from the context, in the sequel the argument of time is
omitted.

Eω2
c =

q̇2c(t)0
0

+ RBC (q2c)× Eωb,
Eω2
d =

 0
q̇2d (t)
0

+ RCD(q2d )× Eω2
c .

where RAB, RBC and RCD are the transformations between the
bases of corresponding bodies:

RAB(α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα

 ,
RBC (α) =

1 0 0
0 cosα sinα
0 − sinα cosα

 ,
RCD(α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα

 .
Then the parallel axis theorem allows us to write the total
kinetic energy of the system as:

T =
1
2

(
Eω1>
d × diag(Id , Jd ,Kd )× Eω1

d

+Eω1>
c × diag(Ic, Jc,Kc)× Eω1

c

+Eω2>
d × diag(Id , Jd ,Kd )× Eω2

d

+Eω2>
c × diag(Ic, Jc,Kc)× Eω2

c

+2 Eω>b × diag
(
Ib, Jb +

1
2
ml2,Kb

)
× Eωb

+Eω>a × diag
(
Ia, Ja,Ka +

1
2
ml2

)
× Eωa

)
.

The potential energy is given by P =
√
2mlg cos(qb +

π/4 + e). Therefore the Lagrangian can be written as L =
T − P. The idea is to apply torques τ 1c , τ

2
c , τ

1
d and τ 2d to the

bodies C1, C2, D1 and D2, respectively; thus we can find the
Euler–Lagrange equations:

d
dt

(
∂L
∂ q̇a

)
−
∂L
∂qa
= 0

d
dt

(
∂L
∂ q̇b

)
−
∂L
∂qb
= 0

d
dt

(
∂L
∂ q̇1c

)
−
∂L
∂q1c
= τ 1c

d
dt

(
∂L
∂ q̇2c

)
−
∂L
∂q2c
= τ 2c

d
dt

(
∂L
∂ q̇1d

)
−
∂L
∂q1d
= τ 1d

d
dt

(
∂L
∂ q̇2d

)
−
∂L
∂q2d
= τ 2d

(1)

These equations are very cumbersome, but we will shortly
simplify the system. To this end, we introduce the following
hypotheses.
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Hypothesis 1: A scissored pair control moment gyroscope
implies a symmetric control for the gimbals, the idea behind
it is to cancel parasitic impact on the body A. Thus we enforce
the following constraints:

τd := τ
1
d = −τ

2
d

τc := τ
1
c = −τ

2
c

Hypothesis 2: The initial conditions are also symmetric
for the bodies C1, C2 and D1, D2:

q1d (0) = q2d (0) = 0

q̇1d (0) = q̇2d (0) = 0

q1c(0) = q2c(0) =
π

2
q̇1c(0) = q̇2c(0) = 0

The initial conditions of the body A are qa(0) = q̇a(0) = 0.
Hypothesis 3: For control moment gyroscope systems,

the nominal operation mode assumes |q̇d | � max(|q̇a|, |q̇b|,
|q̇c|), and regulation of the velocity q̇d is performed by the
means of local motor controllers. We assume that these con-
trollers provide fast and accurate velocity regulation ensuring
that q̇d is constant and equals to the nominal velocity, see
Table 1, thus q̈d ≈ 0.

The symmetry of the initial conditions and the control
introduced in Hypotheses 1 and 2 results in the following
symmetry of the signals, allowing us to reduce the cumber-
someness of the equations of motion:

q1d (t) = −q
2
d (t) =: qd (t)

q1c(t) = π − q
2
c(t) =: qc(t)

Going further, it is easy to see that Hypothesis 1 (symmet-
ric control of the scissored pair) and the initial conditions
(Hypothesis 2), imply that the body A is not subject to any
torque: qa(t) = q̇a(t) = 0.
The above assumptions allow to simplify the system (1)

and write it down explicitly:

0 = 2
(
J1 + J2 cos2 qc

)
ω̇b − 2J2 sin(2qc)ωcωb

−2Jd sin(qc)ωcωd −
√
2mlg sin

(
qb +

π

4
+ e

)
,

τc = (Ic + Id )ω̇c + Jdωbωd sin qc +
1
2
J2 sin(2qc)ω2

b, (2)

where J1 := Id + Jb + Kc + 1
2ml

2, J2 := Jc − Id + Jd − Kc
and ωb(t) := q̇b(t), ωc(t) := q̇c(t), ωd (t) := q̇d (t). In this
expression we use the rotational symmetry Kd = Id of the
disk D.
In practice it means that our scissored pair (Fig. 2) can be

thought of as a single gimbal 1D inverted pendulum (refer
to Fig. 3). If these Hypotheses 1–2 are violated, than the
approximation error will appear as un unknown function
on the left-hand side of the simplified model (2). However,
the experimental studies (Section V) show that the imposed

FIGURE 3. A graphic representation of the system 3 with corresponding
notations. This configuration corresponds to qb = −π/4 and qc = π/2.

assumptions are reasonable, thus allowing for for satisfactory
velocity estimation.

This simplified system contains only three bodies B, C and
D, thus greatly simplifying the analysis. Note that even if
the constraints allow us to analyze the 1D pendulum, all the
experiments presented in the Section V are performed on the
hardware shown in Fig. 2.

Moreover, in our hardware the gimbals C1 and C2 are
controlled by the means of servo drives that ensure velocity
tracking. In this case, the velocity ωc can be considered as an
input signal. Under these assumptions the system (2) can be
rewritten as

q̇b = ωb,

ω̇b =
ωc(Jdωd sin qc + J2ωb sin(2qc))

J1 + J2 cos2 qc

+

mlg
√
2
sin
(
qb + π

4 + e
)

J1 + J2 cos2 qc
,

q̇c = ωc. (3)

III. LINEARIZATION-BASED STABILIZATION
For the system (3), the desired equilibrium is defined as

�0 :=

{
qb = −

π

4
− e, ωb = 0, qc =

π

2

}
.

In what follows we say that a control law (locally) stabi-
lizes the system (3) if under this control law the point �0
is (locally) attractive.

To proceed, it is convenient to define a new state variable
as a deviation of the actual position from the desired equilib-
rium, x :=

[
qb ωb qc

]>
− �0. Then the system (3) can be

rewritten as

ẋ = f (x, u) =

 x2
u(Jdωd cos x3−J2 x2 sin(2 x3))+

mgl
√
2
sin x1

J1+J2 sin2 x3
u

 , (4)

where u = ωc.
The state variable x3 can be computed through the mea-

surements of the signal qc; however, since the offset e is not
known, the signal x1 can not be computed. Thus, we define
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the vector of measurements as

y =

qb +
π

4

qc −
π

2

 = [x1−ex3

]
. (5)

Then the control goal is to find a control law that stabilizes
(4) at the origin using the measurements y.
A common practice to stabilize a (sufficiently well-

behaved) nonlinear system is to linearize the system around
the desired equilibrium. For the system (4) such equilibrium
is given by x = 0, u = 0. Let us define

A :=
∂f
∂x

(0, 0) =


0 1 0
mgl
√
2J1

0 0

0 0 0

 ,

B :=
∂f
∂u

(0, 0) =

 0
Jdωd
J1
1

 (6)

Then the linearization of (4) around the origin is given by
ẋ = Ax + Bu.
It is tempting to use the state-feedback static control

u := −K
[
y1 x2 y2

]
= −Kx − k1e, (7)

where K :=
[
k1 k2 k3

]
is the gain vector.

The problem, however, is that the equilibrium point would

be (A− BK )−1 Bk1e =
[
0 0 − k1

k3

]>
e.

Therefore, the stabilization goal |x| → 0 is not achieved
under the control law (7). In order to overcome the nonzero
steady-state bodyC angle problem, we add an integral action.
To this end, we introduce an auxiliary variable xe defined as
ẋe := 0 − x3, where zero stays as the reference for x3. Then
the extended state-space model is[

ẋ
ẋe

]
=

[
A 03×1

0 0 −1 0

]
︸ ︷︷ ︸

Ae

[
x
xe

]
+

[
B
0

]
︸︷︷︸
Be

u.

The pair Ae, Be is controllable and we can design the
extended control law

u := −Ke
[
y1 x2 qy2 xe

]>
= −Ke

[
x> xe

]>
− ke,1e, (8)

where Ke ∈ R1×4. Then the closed-loop dynamics is[
ẋ
ẋe

]
= (Ae − BeKe)

[
x
xe

]
− Beke,1e,

and the equilibrium is

(Ae − BeKe)−1 Beke,1e =
[
0 0 0 −

ke,1
ke,4

]>
e.

Thus, the state x converges to zero, while the integral action
xe ensures the equilibrium offset compensation.

However, to implement the control law (8), it is required
to estimate the velocity ωb. In the next section we discuss
possible velocity observers for the considered system.

IV. OBSERVERS DESIGN
A model-based nonlinear observer has been recently pro-
posed in [9] for a class of mechanical systems that are
partially linearizable via coordinate changes (PLvCC). The
observer can be applied to the mechanical system (2) if it
admits a change of coordinates allowing to rewrite the system
in such a form that the dynamics is linear in momenta. Then
a globally converging exponential momenta observer can be
constructed that yields velocity estimation. Unfortunately,
despite its simplicity, the considered system does not belong
to this class; this claim is rigorously proven in the Appendix .

In this section, we present three designs that are suit-
able for the considered system, namely a linear model-free
differentiator, a linear time-varying observer, and a nonlin-
ear model-based differentiator. The model-free linear dif-
ferentiator is based on the methods of linear time-invariant
system analysis such as Laplace transformation and
frequency-domain analysis. This approach is also known as
filtered derivative since it can be seen as a serial connection
of the (non-realizable) pure differentiator with a low-pass
filter. The second approach is motivated by the observabil-
ity property analysis for linear time-varying systems and
Kalman-Bucy filtering. To apply this approach, the consid-
ered nonlinear system is rewritten as a linear time-varying
one; thus, the estimation error dynamics is also linear and
time-varying. Finally, the third method is the nonlinear veloc-
ity estimator motivated by the recent advances on homoge-
neous systems with finite- and fixed-time convergence; the
resulting error dynamics of the observer is nonlinear.

A. A LINEAR DIFFERENTIATOR
The simplest way to get the velocity estimation is to use
a linear differentiation; however, it is well known that dif-
ferentiation can be noisy at high frequencies. To this end,
a common engineering practice for the velocity estimation
is to use a low pass filter together with the differentiator.
This can be used to reduce the consequences of noise in the
signal but care is needed to ensure that the phase lag does not
distort the results. For a 2nd order filter with a time constant
τ , the continuous-time transfer function of the model-free
differentiator can be written as G(s) = s

(τ s+1)2
, yielding the

following state-space realization

ż1 = z2,

ż2 = −
1
τ 2
z1 −

2
τ
z2 +

1
τ 2
y1,

x̂ ld2 = z2, (9)

where x̂ ld2 is the estimate of x2 provided by the differentiator.

B. A FULL-ORDER LINEAR TIME-VARYING OBSERVER
One classic solution for linear time-varying systems
is to construct a linear time-varying observer in the
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form

˙̂x =


0 1 0

0 −
uJ2 sin(2 y2)

J1 + J2 sin2 y2
0

0 0 0


︸ ︷︷ ︸

:=A′(y,u)

x̂

+


0

uJdωd cos y2 +
mgl
√
2
sin y1

J1 + J2 sin2 y2
u

− HC>(Cx̂ − y),
x̂ lo2 = x̂2, (10)

where x̂ lo2 is the estimate of x2 provided by the linear observer,

the vector of measurements y is defined in (5), C =
[
1 0 0
0 0 1

]
and the time-varying symmetric gain matrix H (t) ∈ R3×3 is
the solution of the matrix differential equation

Ḣ = HA′> + A′H−HC>CH + Q

for some H (0) = H0 > 0, and Q > 0 is the design param-
eter. It is known (see, e.g., [17], [18]) that the observer (10)
ensures exponential convergence if the system is uniformly
observable, i.e., there exist TO, δ1, and δ2, all positive, such
that for all t

δ1I3 ≤
∫ t+TO

t
8>(τ, t)C>C8(τ, t)dτ ≤ δ2I3,

where 8(·, ·) is the state-transition matrix of the linear
time-varying system ẋ = A′(y, u)x. This condition is satisfied
for the considered system since the pair

(
A′,C

)
is observable

for all values of u, y2.
Define the estimation error as x̃ := x − x̂. Then in the

absence of the bias, i.e., when e = 0, the error dynamics
becomes ˙̃x =

(
A′ − LC

)
x̃, where L(t) := H (t)C>, and the

convergence of x̃ to zero is ensured.

For the case e 6= 0 we have y = Cx +
[
1
0

]
e = Cx + Cee

and ˙̃x =
(
A′ − LC

)
x̃ − LCee. Thus, for observable system

the equilibrium differs from the origin x̃ = 0 due to the bias
e. However, it does not compromise the closed-loop stabiliza-
tion. Indeed, with the observer, the control action (8) becomes
u = −Ke

[
x̂> xe

]>
= −Ke

[
x> xe

]>
+ Ke

[
x̃> 0

]>
.

Define x̄ :=
[
x> xe

]>. The closed-loop dynamics obeys

[
˙̄x
˙̃x

]
=

Ae − BeKe BeKe

[
I3×3
01×3

]
03×4 A′ − LC

[x̄
x̃

]
+

[
04×1
LCe

]
e.

Then is straightforward to verify that the equilibrium of the
closed-loop system satisfies x = 0, i.e., the integral action
compensates the offset being used in the loop with the state
observer even if the observer provides a biased estimate.

TABLE 2. Controller parameters used in experiments.

C. HOMOGENEOUS FINITE-TIME DIFFERENTIATOR
Following Perruquetti et al. [19], the model-based homoge-
neous differentiator for the states x1, x2 of the system (4) is
constructed as

˙̂x1 = x̂2 − k1debα,

˙̂x2 =
u(Jdωd cos y2−J2x̂2 sin(2y2))+

mgl
√
2
sin y1

J1+J2 sin2 y2
− k2eeb2α−1,

x̂hd2 = x̂2, (11)

where x̂hd2 is the estimate of x2 provided by the homogeneous
observer, eb = x̂1 − y1 and debα = |eb|α sign(eb). In [19]
it is shown that if k1 and k2 are such that the polynomial
s2 + k2s + k1 is Hurwitz and α ∈ ( 12 , 1], then the estimation
error x̂ − x converges to a vicinity of the origin. More pre-
cisely, convergence to the vicinity instead of the finite-time
convergence to the origin follows from the replacement of x2
and sin(x1) in f2(x, u) in (4) with x̂2 and sin(y1) = sin(x1+e),
respectively. A more detailed analysis of the size of this
vicinity can be performed by the means of Lyapunov function
analysis in a similar way as in [20]; however, such a result is
rather technical and is not presented here for brevity.

V. EXPERIMENTS AND COMPARISON
Aswe have already mentioned, even if our assumptions allow
us to analyze the 1D pendulum, all the experiments presented
in this section are performed on the scissored pair.2 The hard-
ware for the tests (shown in Fig. 2) is assembled from off-the-
shelf components. The hardware parameters are summarized
in the Table 1. A STM32F746 discovery board was chosen
as the main computing unit. We have chosen small brushless
motors to drive the wheelsD1 andD2, the gimbals C1 and C2

are actuated by Dynamixel MX106-R servo motors. We use
two accelerometers to measure y1 as it was proposed in [8],
and we have installed a fiber optic gyroscope to have the
ground truth while comparing the soft sensors that estimate
the signal x2.

To compare the considered estimators on the stabilization
task, we first tune the gains of the estimators to have com-
parable open-loop performance. To this end, we utilize the
velocity measurement provided by the fiber optic gyroscope
and close the loop with the control law (8). Fig. 4(a) provides
the angle measurements y1 and the corresponding control
signal u. Note that after two seconds of the experiment an
external force was applied for a short period of time. Using
the collected data, we have tuned all three soft sensors to
fit the best the measured signal x2; estimated velocities are

2The accompagnying video is available here: https://youtu.
be/l7o9A0getPw.
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FIGURE 4. Observers tuning using ground truth measurements of x2.

provided in Fig. 4(b). Table 2 summarizes the control gains
as well as the parameters of the soft sensors.

At the next step, the previously tuned observers have been
compared in the closed-loop stabilization task. To this end,
the of fiber optic gyroscope has be disconnected, and the esti-
mate x̂2 provided by soft sensors has been used instead of the
signal x2. The results provided in Fig. 5, 6 and 7 correspond
to the velocity estimators (9), (10) and (11), respectively.

The presented experimental results illustrate that the best
performance can be obtained using model-based nonlinear
differentiator (11). Being model-based, it outperforms the
model-free linear differentiator (9), and at the same time it
outperforms the model-based linear observer (10). The latter
is partially dues to the significant numerical computations
required for implementation of the observer (10) as discussed
in Remark 1.

Thus, the experimental results support the choice of the
model-based nonlinear differentiator (11) as a soft sensor for
velocity estimation in the considered application.
Remark 1: It should be emphasized that implementation of

the linear time-varying observer (10) in embedded systems is
non-trivial; first of all, it is computationally heavy, since the
calculation of the gain matrix H (t) requires to solve online
several differential equations with quadratic terms that are
sensitive to numerical methods. Moreover, for our particular
system the gains in the matrix Q (refer to the Table 2) have
an asymmetry of six orders of magnitude, thus amplifying the
numerical errors.

FIGURE 5. Closed-loop stabilization using observer (9).

FIGURE 6. Closed-loop stabilization using observer (10).

Note that we have tried to implement a linear
time-invariant observer (it can be seen as a particular case of
the observer (10)), but we failed to achieve the stabilization,
thus we are not reporting these experimental results here.
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FIGURE 7. Closed-loop stabilization using observer (11).

VI. CONCLUSION
The theoretical results, obtained and confirmed by experi-
mental studies, can be used to stabilize walking biped robots.
The developed nonlinear differentiator is able to stabilize
the movement of the robot described in the introduction and
shown in Fig. 1.
At a further research direction, we intend to apply

the designed nonlinear differentiator for the biped system
described in Introduction, Fig. 2. At this step, we also intend
to incorporate a friction model into the dynamics of the
model-based velocity estimator to reduce the modeling errors
in the system.

APPENDIX.
In [21] it is proven that a mechanical system with inertia
matrix M and n degrees of freedom is partially linearizable
via a change of coordinates (PLvCC) if there exists a full-rank
matrix 9 : Rn

→ Rn×n such that for all i = 1, . . . , n the
matrices B(i) are skew-symmetric, where

B(i) :=

n∑
j=1

{[
9i, 9j

]
9>j

(
M99>

)−1
+

1
2
9ji9

∂

∂qj

(
9>M9

)−1
9>

}
.

Here 9i is the i-th column of 9, 9ij is the element of 9 with
the indices i and j, and

[
9i, 9j

]
=

∂9j
∂q 9i −

∂9i
∂q 9j is the Lie

bracket.
The system (2) can be written in the standard mechanical

system form as M (q)q̈ + C(q, q̇)q̇ + G(q) = τ , where

the inertia matrix is M (q) =
[
m1(q2) 0

0 1

]
, with m1(q2) :=

2 J1+J2 cos
2(q2)

Ic+Id
. Since the PLvCC property depends on the

inertia matrix only, we are not writing down other terms.

In our case we define 9 :=
[
a b
c d

]
, where a, b, c, and d

are the functions of q to be found. Then we obtain

[91, 92] =

[
a ∂b
∂q1
−b ∂a

∂q1
+ c ∂b

∂q2
−d ∂a

∂q2
a ∂d
∂q1
−b ∂c

∂q1
+ c ∂d

∂q2
−d ∂c

∂q2

]
,

[92, 91] = − [91, 92] , [91, 91] = [92, 92] = 0,

To satisfy the PLvCC property, the matrices B(1) and B(2)
must be skew-symmetric. The equation B(2)2,2 = −

∂d
∂q2
= 0

dictates that d does not depend on q2, i.e., it is a function of
q1 only. Now let us focus on the following subsystem:

B(2)1,1 =
1

2m2
1

(
−2m1

∂b
∂q1
− d ∂m1

∂q2

)
= 0

B(2)1,2 + B(2)2,1 = −
1
m1

(
∂d
∂q1
+ m1

∂b
∂q2

)
= 0.

Since m1(q2) > 0 for all q2, we have:
∂b(q1,q2)
∂q1

= −
d(q1)

2m1(q2)
∂m1(q2)
∂q2

∂b(q1,q2)
∂q2

= −
1

m1(q2)
∂d(q1)
∂q1

.

The trivial solution is d = 0 with b = b0, but it leads to a
singular matrix 9; let us check if the system has non-trivial
solutions. We can differentiate both equations:

∂

∂q2

∂

∂q1
b(q1, q2) = −

d(q1)
2

∂

∂q2

(
1

m1(q2)
∂m1(q2)
∂q2

)
∂

∂q1

∂

∂q2
b(q1, q2) = −

1
m1(q2)

∂2d(q1)

∂q21
.

The symmetry of second derivatives leads to:

depends on q1︷ ︸︸ ︷
−
d(q1)
2

∂

∂q2

(
1

m1(q2)
∂m1(q2)
∂q2

)
︸ ︷︷ ︸

depends on q2

= −
1

m1(q2)︸ ︷︷ ︸
depends on q2

depends on q1︷ ︸︸ ︷
∂2 d(q1)

∂q21
.

Therefore, it leads us to the condition

m1(q2) ·
∂

∂q2

(
1

m1(q2)
∂m1(q2)
∂q2

)
= constant.

Since m1(q2) is a known function, it is easy to verify that this
condition does not hold, and therefore the above system does
not admit any (non-trivial) solution. Thus we conclude that
this mechanical system is not PLvCC.
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