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ABSTRACT In recent years, ‘‘free travel’’ has been increasingly popular. How to plan personalized
travel routes based on the perspective of tourists, rather than that of tourism intermediaries, is in great
need. However, some factors reflecting tourists’ preferences are ignored in the related work. What’s more,
the evaluation about scenic spots is incomplete. Besides, real data sets are seldom used in existing works.
We propose a novel route-planning method that considerate multiple factors (that is, the distance between
sites, initial travel position, initial departure time, time duration of tour, total cost, scores and popularities
of sites) comprehensively, and routes were rated by what we call a comprehensive attractiveness index.
We conducted comprehensive case studies based on the real-world data of sites from the Baidu and Xiecheng
websites and found that our proposed method is feasible. It is also found that the genetic algorithm
outperformed two baseline ones in terms of run time.

INDEX TERMS Personalized tourism, route planning, comprehensive attractiveness index, genetic algo-
rithm.

I. INTRODUCTION
With the continuous maturity of cloud computing technol-
ogy and intelligent terminal technology, the personalized
demands of users will be greatly satisfied. And people can
get a real-time travel route through mobile terminals, such as
cell phone or Pad.

In recent years, ‘‘free travel’’ tourism mode has been
increasingly popular. How to plan personalized travel routes
based on the perspective of tourists (rather than the perspec-
tive of tourism intermediaries) remains to be studied. Assume
a scenario in which several undergraduates intend to visit
Beijing to complete their graduation trip, but, due to the
limitations of travel time and travel costs, how can they visit
as many scenic spots as possible in a limited travel time?

At present, there are several problems in the related
research, which makes them difficult to satisfy the person-
alized tourism. Firstly, the related researches mainly con-
sider the types of scenic spots, travel costs and the distance
between scenic spots. However, some other factors reflect-
ing tourists’ preferences are ignored, such as the starting
time, the starting place and travel time. And these factors
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might play a decisive role in the planning of travel routes.
Therefore, individualized travel routes can be planned for
different tourists after considering these factors. Secondly,
the related works usually indicate the attraction of a single
scenic spot by scoring. However, other people’s evaluation
about scenic spots is not taken into account, such as Baidu
Index (http://index.baidu.com/), the rating of scenic spots on
Meituan website (https://www.meituan.com/), the number of
photographs in the sight reviews on the Xiecheng website
(https://www.ctrip.com/), etc. These factors are vital in the
evaluation of scenic spots’ attraction. Thirdly, few related
works use real data sets for travel route planning.

In this paper, consideration should be given not only to
travel costs, the distance between scenic spots and other
popular factors, but to all the factors that tourists pay attention
to. Only when all the above factors (the opening time of the
sites, their travel budget, the length of the tour, the initial
travel location and so forth) are considered can the planned
travel routes satisfy tourists’ demands. In addition, the pop-
ularity of scenic spots in the paper is measured mainly by
the Baidu index (http://index.baidu.com/), the number of
photographs in the sight reviews on the Xiecheng website
(https://www.ctrip.com/). Therefore, this study used a com-
prehensive attractiveness index to incorporate the attraction
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of scenic spots and tourism costs as a target function. In terms
of constraints on the model, we considered many factors
including the opening times of the sites, initial departure time,
initial travel position, and travel expenses. We tried to make
the planned routes realistic and satisfy the tourists’ demands
as much as possible. Finally, the experiments were based
on the real data set we have built. In this study, a genetic
algorithm (abbreviated as GA) was adopted to achieve the
above goals and then plan travel routes more aligned with the
real situation and tourist demands.

The main contributions of this study can be summarized
as follows. Firstly, the innovation lies in the consideration of
multidimensional user preferences. We combined the open-
ing time, the popularity of the sites, the length of the travel
duration, initial departure time, and initial travel position to
construct a comprehensive attractiveness index that incorpo-
rates the attraction of sites as the target functions, so the
planned travel routes were closer to reality. This made routes
more suited to tourists demands.

Secondly, the popularity of the scenic spots was measured
mainly by the Baidu index and the number of photographs in
the sights reviewed on the Xiecheng website. Those criteria,
based mainly on user comments and Internet search records,
can better reflect the popularity of sites. Planned routes which
use those criteria can better meet the demands of tourists in
the actual situation and have strong practicability.

Thirdly, this study used real data on the classic sites in
Beijing. The data were obtained from the Baidu andXiecheng
websites. There are 24936 photographs in the Xiecheng web-
site reviews. Real data improves the effectiveness of the
model and algorithm proposed in this paper.

The rest of the paper is organized as follows. Section II
describes relatedworks about travel route planning from three
aspects. Section III introduces the research approach using a
concept graph and some related definitions. A mathematical
model is constructed in Section IV. Section V introduces
a GA. Section VI analyzes the experiments and their results.
The conclusion is presented in Section VII.

II. RELATED WORK
In 1959, the famous mathematician Dantzig proposed a solu-
tion to the traveling salesman problem (TSP) that found
the shortest route to be used by salesmen to sell products
in different cities. The solution has been widely used. The
TSP is described as follows. Through coordinate calculation,
the coordinates of a set of n cities and the distances between
each pair of cities are known. A merchant is to start from and
return to the same city using the shortest route and visiting
each city only once [1].

In recent years, travel route planning has attracted a great
deal of research attention from such fields as operations
research, computer science and applications, graph theory,
and mathematics [2]. The related works fall into three cate-
gories: related works of considering factors, research onmod-
eling methods, and research on route-planning algorithm.

A. RELATED WORK OF CONSIDERING FACTORS
The results of investigation and analysis are combined to
determine the main influencing factors of tourists’ choice
about scenic spots, including scenic spot types and hard
work index. This work establishes a relatively complete
optimal route-planning model based on tourists’ expecta-
tions. The grey entropy evaluation method is introduced into
the model. The influencing factors are regarded as multiple
attributes of uncertain decision-making and the evaluation
indexes of scenic spots are analyzed in the work. Also,
Dijkstra algorithm is applied to obtain optimal tourist route
in [3].

Lu Guofeng and other scholars have designed a com-
prehensive scoring mechanism, which can be considered as
attraction. The scoring mechanism introduces three factors:
the rating of scenic spots, the rating of time arriving at
scenic spots and the rating of scenic spots’ opening time.
These factors are defined separately and integrated with a
general formula in this paper. The improved greedy algorithm
is used to plan tour routes which are more realistic [4].
An ensemble model which combines the model-based CF
and neighborhood-based CF is proposed to solve several
defects that limit the application of the CF-basedmethods [5].
In order to fully utilize hidden features, this paper proposes
a new matrix factorization (MF) model with deep features
learning, which integrates a convolutional neural network
(CNN) [6]. As the authors say, this model achieved con-
sistently higher accuracy, both in low data densities and
high data densities. A novel quality of service prediction
approach based on probabilistic matrix factorization (PMF)
is proposed, which has the capability of incorporating net-
work location (an important factor in mobile computing)
and implicit associations among users and services [7]. Yuyu
Yin and his team propose a novel service recommendation
method, which utilizes network location as context informa-
tion and contains three predictionmodels using randomwalk-
ing [8]. Chen et al. [9] propose a data-intensive service edge
deployment scheme based on genetic algorithm (DSEGA)
and the experimental results show that this algorithm can get
the shortest response time among the service, data compo-
nents and edge servers. Zhang et al. [10] utilize a strategy
based on the density of internet of things (IoT) devices and
k-means algorithm to partition network of edge servers and
proposed an algorithm for IoT devices’ computation offload-
ing decisions. Xiang et al. [11] focus on improving perfor-
mance of the service provisioning system by deploying and
replacing services on edge servers. A cost-driven services
composition approach is proposed for enterprise workflows
that employs formal verification to recommend appropriate
services for abstract workflows [12]. To cope with the chal-
lenge of how to manage services, Gao et al. [13] present
an extension of data, information, knowledge and wisdom
architecture as a resource expression model to construct a
systematic approach to modeling both entity and relationship
elements.
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R Fdhila and W Elloumi use their algorithm (pMOPSO)
to solve the TSP problem by two contradictory objectives
as minimize the total distance traveled by a particle and
minimize the total time [14]. SA Bouziaren and B Aghez-
zaf suppose a new novel approach called TSPP that is an
extension of the famous traveling salesman problem (TSP)
in which a prize is associated with each vertex. The Branch
and Cut algorithm is used to find a route that simultane-
ously minimizes the tour length and maximizes the collected
prize [15]. The related work solves the single-depot multi-
ple TSP (SD-MTSP) that is a simple extension of the stan-
dard TSP, in which more than one salesman is allowed to
visit the set of interconnected cities, such that each city is
visited exactly once (by a single salesman) and the total cost
of the traveled tours is minimized using the multi-objective
Ant Colony Systems [16]. The quality of points of interest
and the traffic distance between points of interest are the
factors of the travel route optimization in. In the proposed
TripPlanner model, the choice of scenic spots needs to con-
sider not only the traffic time, but also the quality of scenic
spots and the preferences of tourists. Travel routes planned
through TripPlanner need more traffic time, but the routes
are more in line with the special demands of tourists [17]. The
quality of scenic spots is considered in planning travel routes.
In route planning, the scholars believe that the average quality
of scenic spots included in the route needs to meet certain
standards. Through the ETOTP method, tourists can get a
travel route with the shortest time and the average quality of
interest points meeting the requirements [18].

In summary, the most popular factors used in these related
works include rating of scenic spots for the users, the staring
time of each scenic spots and the traffic distance between
scenic spots. Besides these popular factors, our work consid-
ered some other important factors that are closely related to
the real situation, including the number of pictures of each
site on the Xiecheng website’s reviews, the Baidu index, and
the ticket prices of the sites.

B. RESEARCH ON MODELING METHODS
At present, the establishment of mathematical optimization
model is the main method to get the best travel route in
solving the problem of travel route planning. In relatedworks,
there are two mathematical optimization model single-
objective optimization model and multi-objective optimiza-
tion model.

1) SINGLE-OBJECTIVE OPTIMIZATION MODEL
The rating of scenic spots, the rating of time arriving at scenic
spots and the rating of scenic spots’ opening time are intro-
duced in the scoring mechanism constructed by Lu Guofeng
and so on. These factors are combined into an objective
function to obtainmore realistic travel routes in themodel [4].
R Necula solves the multiple TSP (SD-MTSP) problem of
single warehouse, which is a simple extension of basic TSP.
The objective function of the model is to minimize the total
cost of travel expenses [16].

2) MULTI-OBJECTIVE OPTIMIZATION MODEL
R. Fdhila and W. Elloumi use their algorithm (pMOPSO) to
solve the TSP problem through two contradictory objectives.
The objectives are to minimize the total distance traveled by
a particle and to minimize the total time used to minimize
it [14]. SA Bouziaren and B Aghezzaf propose a new method
called TSPP, which is an extension of the famous Travel
Salesman Problem (TSP). They use branching and cutting
algorithms to find travel routes which meet the conditions:
simultaneously minimizing travel length and maximizing
prize collection [10]. Wang Yongzhen uses the improved
grouping genetic algorithm to solve the multi-traveling
salesman problem [19]. Based on the multi-objective
evolutionary algorithm NSGA-II, a dual-objective evolution-
ary algorithm is designed to solve the problems ofminimizing
distance and minimizing cost [20]. Chen Biao proposes an
evolutionary multi-objective optimization method for solv-
ing traveling salesman problem. A bi-objective optimiza-
tion model with path length and average outlier distance as
objectives is established. Also, an improved non-dominated
sorting genetic algorithm NSGA-II is used to solve the
model [21]. Liang Xingxing constructs a multi-objective
and multi-traveling salesman problem model to solve Pareto
problem. Its optimization objective is to minimize the num-
ber of traveling salesmen and to minimize the access path
of multi-traveling salesmen. The improved multi-objective
simulated annealing (IMOSA) algorithm and traditional
multi-objective genetic algorithm are used to solve the prob-
lem [22]. An improved particle swarm optimization is intro-
duced into the quality service evaluation of dynamic service
composition to meet the mobility requirements of hybrid
networks [23]. This method is used as a monitoring mech-
anism and can guarantee the availability and reliability of the
service composition. Gao et al. [24] propose a service selec-
tion method for workflow reconfiguration based on interface
operation matching.

In summary, the single-objective optimization model and
the multi-objective optimization model are used to obtain
better travel routes. It can be seen that there are no
differences between the two mathematical optimization mod-
els. In choosing the optimization model, more considera-
tion is given to the relevant factors affecting travel route
planning.

C. RESEARCH ON ROUTE-PLANNING ALGORITHM
Many studies have focused on optimizing the route-planning
algorithm to improve planning results and reduce the duration
of route planning. Qi and Thomas Weise provided two easy
and general methods to represent the time-solution qual-
ity relationships of anytime algorithms: function fitting and
artificial neural network training. Through a detailed case
study on the TSP, they showed that such models have a
wide variety of viable and easy-to-implement applications.
Those models are particularly suitable for basic repre-
sentation of experimental data for benchmarking, perfor-
mance comparison, and algorithm behavior analysis [25].
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Weichen Liu and Thomas Weise introduced the concept of
hybridizing two local search (LS) methods by combining
them with a crossover operator. They explored the usefulness
of this method for solving the TSP. They came to three
conclusions through experiments. The newLS–LS–Xhybrids
were faster than their pure LS algorithm and LS–LS hybrid
components. Their new evolutionary computation (EC)–LS–
LS–X hybrids were faster than the LS–LS–X algorithms and
the EC–LS and EC–LS–LS hybrids. Different LS–LS hybrids
had different suitable crossover operators [26]. Yuezhong
Wu and Thomas Weise thoroughly compared Lin–Kernighan
(LK), mixed neighborhood selection (MNS), and their hybrid
versions with evolutionary algorithms (EAs) and population-
based ant colony optimization (PACO). That was the first
statistically sound comparison of the two efficient heuris-
tics and their hybrids with EAs and PACO over time based
on a large-scale experimental study. They not only showed
that hybrid PACO-MNS and PACO-LK were both very effi-
cient, but also found that a full runtime behavior comparison
provided deeper and clearer insights than focusing on final
results, which could lead to a deceptive conclusion [27].
A new hybrid method was proposed to optimize parameters
that affect the performance of the ant colony optimization
algorithm using particle swarm optimization. In addition,
a 3-opt heuristic method was added to the proposed method
to improve local solutions. Experimental results showed that
in most cases, the performance of the proposed method,
which used fewer ants than the number of cities for the TSP,
had better solution quality and robustness than compared
methods [28]. Another paper [29] introduced a new
hybrid algorithmic nature-inspired approach based on hon-
eybee mating optimization for successfully solving the
Euclidean TSP. It showed that the honeybee mating opti-
mization algorithm could be used in hybrid synthesis with
other metaheuristics for the solution of the TSP with
results remarkable for both quality and computational effi-
ciency [30]. Also, Yin et al. [31] propose a group-wise
itinerary planning framework to improve the mobile users’
experiences and save travel cost.

The existing literature shows that many scholars havemade
great achievements in travel route planning, but there are
still some problems. The first problem is that most scholars
considered the improvement of the route-planning algorithm
rather than the factors affecting the route. In real travel route
planning, more factors must be considered to improve the
resulting travel route. Specifically, this study considered the
popularity of the sites, the length of the tour, the opening
times of the sites, the initial departure time, and the initial
travel place. Considering these factors can make the mathe-
matical problems complymore closely with the real situation.
The second problem is that some scholars used virtual data
sets, which could not produce an algorithm as effective and
applicable for real-life route planning as could real data on the
sites. The third problem is that most scholars studied only the
shortest-route-planning model, so the planned travel routes
were not dynamically adjusted to the demands of tourists.

FIGURE 1. Conceptual framework.

FIGURE 2. Example.

III. OVERVIEW
The concept graph in Fig.1 clarifies the concepts of the study,
and the aim of this study was to determine travel routes to
classic tourist destinations dynamically. As we can see from
this graph, when the users have different demands such as ini-
tial travel positions, initial departure times and the durations
of tours, we use a genetic algorithm to recommend different
top routes with high comprehensive attractiveness based on
the information we have got fromwebsites.We get evaluation
scores of sites from Meituan, baidu index from Baidu, pho-
tographs of sites from Xiecheng and distance between sites
from Beijing map and use these information to maxmize the
comprehensive attractiveness index at the same time meeting
the users diverse demands.

A. PROBLEM DEFINITION
Considering the dynamics of such factors as the initial travel
positions, the initial departure times, and the durations of
tours, we use a genetic algorithm to recommend different
travel routes.For example,in Fig.2, starting his travel at place
A, jack can choose route1—the green one if he wants to min-
imize his cost. Also he can choose route2—the orange one
if he wants to spend more time on travel duration. Likewise,
when the departure time is considered, hemay choose another
different route to meet his schedule.

B. BASIC CONCEPTS
The following definitions introduce the basic concepts
needed, and you can query the meaning of a symbol quickly
using the Table1.
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TABLE 1. Definitions.

Definition 1 (Site Information): For every site s∈S, the
information that site s has can be built as a vector s
(t, c, e), where t is the stay time (duration) at the scenic
site recommended by the Meituan or Baidu website for a
user unfamiliar with the site, c is the ticket price for the site,
and e is the Xiecheng website’s rating for the site, ranging
from 1 to 5.
Definition 2 (Travel Duration Between Every Pair of Sites):

The paper assumes TT (si,sj) = TT (sj,si); that is, the travel
durations to and from the sites are the same. In addition,
the travel duration between two sites can be approximately
expressed by a formula that divides the distances between
sites by a reasonable average speed, Vaverage. TT (si, sj) can
be defined as (1):

TT(si,sj) = distance(si,sj)/Vaverage. (1)

Definition 3 (Travel Route):We defined the travel route as
tp=< sf,sf+1, . . . , sf+n >, which includes one or more sites.
n is the number of sites in a trip; that is, (|tp| =n). ∀sf+2 ∈S,
f > 1, AT (sf+2) is the time to reach the site sf+2. AT (sf+2)
can be defined as (2):

AT (sf+2) = AT(sf+1) + t(sf+1) + TT(sf+1,sf+2). (2)

Eq. (2) calculates the duration the tourist requires to reach
the site sf+2, where t (sf+1) is the stay time (duration) at the
scenic site recommended by the Meituan or Baidu website
for a user unfamiliar with the site t (sf+1). In addition, it is the
sum of the time arriving at the site sf+1, the duration of the
stay at the site sf+2, and the travel duration from the site sf+1
to sf+2. It is a cumulative calculation.
Definition 4 (Travel Duration): Take sf as the starting point

of the travel route. For a travel route tp = < sf,sf+1, . . . ,
sf+n >, travel duration TPT (sf, tp) indicates how long the
tourist spends on the trip. It can be calculated using (3):

TPT(sf) =
∑n−1

j=0
TT(sf+j, sf+j+1)+

∑n

i=1
t(sf+i) (3)

The total time to visit n sites starting at sf includes the travel
duration from sf to the first site, the travel duration between
every two sites in the travel route, and the sum of the stay
durations at all the sites.
Definition 5 (Travel Cost): For a travel route tp = <

sf,sf+1, . . . , sf+n >, travel cost TPC (tp), the amount of money
the tourist will spend on the trip can be calculated by (4).

TPC(tp) =
∑n

i=1
c(sf+i). (4)

Definition 6 (The Proportion of the Number of Pho-
tographs of a Given Site to That of all Candidate Sites): For
a site, the number of photographs on a travel website such
as the Xiecheng site reflects the spot’s popularity. Therefore,
the ratio determined by dividing the number of photographs
of a certain site by the number of photographs of all the
candidate sites can be used to reflect the popularity of the
site. We used PP (si) defined by (5) to represent popularity:

PP(si) = num(si)/
∑n

i=1
num(si) (5)

Definition 7 (The Proportion of the Baidu Index): The
Baidu index is composed of the search index r(s) and the
information index z(s), both of which can reflect the popu-
larity of a site. Therefore, for one site s, its Baidu index can
be calculated by (6).
The information index comprehensively measures the pas-

sive attention of net citizens about intelligent distribution and
recommendation content. The search index reflects the search
scale of a key word in search engines. And it represents the
active concern of netizens.
We make the follow parameter setting: the weight of the

search index is 0.8 and the weight of the information index
is 0.2. There are two main reasons this setting: Firstly, the
search index represents the active attention of netizens, while
the information index represents the passive attention of
netizens. When planning travel routes, people often obtain
information by browsing relevant travel notes or searching
relevant information about tourist scenic spots on Baidu web-
site on one’s own initiative. But few information is obtained
through intelligent distribution or information recommenda-
tion. So we give higher weight to the search index. Secondly,
from the real data set obtained from Baidu website, the aver-
age value of the information index is 9 times that of the search
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TABLE 2. The Baidu index.

index, as can be seen from table2. In order to weaken the
impact of magnitude gap, we give the information index a
lower weight.

To carry out normalization, we defined the proportion of
the Baidu index of a site as R(s), calculated by (7):

i(s) = 0.8 ∗ r(s)+ 0.2 ∗ z(s) (6)

R(s) = i(s)/max i(s) (7)

Definition 8 (Composite Index c(s)): The composite index
is an index that takes account of both the photograph ratio
and the proportion of the Baidu index. Weight allocation
of these two factors is achieved through questionnaires.
By investigating 200 tourists with the Richter scale method,
we find that the weight allocation of the two factors are both
around 0.5. The composite index reflects the popularity of
sites more comprehensively. It can be calculated by (8):

c(s) = 0.5 ∗ PP(s) + 0.5 ∗ R(s). (8)

Definition 9 (Departure Time and Travel Duration): The
departure time at the initial location sf is the initial departure
time TIf, and the travel duration is IN. TIf can be set to 6:00,
7:00, 8:00, 9:00, and so on. IN can set to 8 h, 10 h, 12 h,
or 14 h.
Definition 10: The time of arrival at a site sf+k can be

determined using (9). It can be represented by a directed
graph (Fig. 2).

TIf+k =(
∑k−1

j=0
TT

(
sf+j, sf+j+1

)
+

∑k

i=1
t(sf+i))+ TIf (9)

Definition 11 (Initial Location): The initial location sf is
defined as the bus station, train station, or airport where the
tourists start their trip.
Definition 12 (Cost Budget): The cost budget of a trip is

the sum of all the sites’ ticket costs. Cost budget can be set to
U 100, U 150, U 200, U 250, or U 300.

IV. OPTIMIZATION PROBLEM MODELING
To plan travel routes that meet the demands of tourists,
we considered multidimensional user preferences. In the
model, these preferences were represented as target functions
and constraints. This section describes how we combined
these factors to build a comprehensive attractiveness index of
the travel route as the target function and the corresponding
constraint conditions to replace the real travel route planning
problem with a mathematical model.

A. BASELINE ALGORITHMS
1) GREEDY ALGORITHM
Greedy algorithm is a heuristic algorithm to solve the problem
without backtracking. It divides the whole solving process

into several stages, and then obtains the global optimal solu-
tion by solving the local optimal solution of each stage.
Therefore, when using the greedy algorithm to solve the
problem, the following two conditions should be satisfied:
first, the problem can be decomposed into several stages
of small problems; second, the overall optimal solution can
be obtained step by step through the local optimal solution,
and the optimal solution can be found in each stage. In fact,
the optimal solution obtained by greedy algorithmmay not be
the global optimal solution, but it must be close to the global
optimal solution.

Greedy algorithm is an algorithm without backtracking.
It is often used to calculate problems with multiple stages.
In somemathematical problems, greedy algorithm can get the
optimal solution, but in some other mathematical problems,
greedy algorithm can only produce local optimal solution.
This is also the shortcoming of greedy algorithm. The advan-
tages of greedy algorithm are clear thinking, short running
time and less code.

2) SIMULATED ANNEALING ALGORITHMS
Simulated annealing algorithm was first introduced into the
field of combinatorial optimization in 1982 by Kirkpatrick
according to the ideas of N. Metropolis et al. It originated
from the similarity between the annealing process of solid
substances and combinatorial optimization problem.

Compared with the greedy algorithm, the simulated
annealing algorithm has a certain probability of jumping
out of the local optimal solution and finally tending to the
global optimal solution. The advantage of simulated anneal-
ing algorithm is that the running time is short and the global
optimal solution can be obtained, but its disadvantage is that
the parameters are not easy to debug. Although there is a
probability of jumping out of the local optimal solution, it still
needs to undergo multiple experiments and is still the local
optimal solution in most cases.

The implementation mechanism of simulated annealing
algorithm that has the opportunity to jump out of the local
optimal solution is that it has a certain probability to accept
the solution worse than the current solution, so that the global
optimal solution can be found by searching the solution
around it, but the global optimal solution may not be obtained
every time. In the implementation of simulated annealing
algorithm in this chapter, the annealing probability is set
as 0.64, which is the general setting value for realizing the
tourism route planning problem.

B. COMPREHENSIVE ATTRACTIVENESS OF TRAVEL ROUTE
1) SCORING BASED ON RATINGS FOR SITES
We standardized the expectations of all sites so they could be
valued between 0 and 1. We defined them as ECI, which can
be calculated from

ECI(sf+k) = (e(sf+k)/5+ c(sf+k))/2. (10)

where e (sf+k) means the Xiecheng website’s rating for the
site sf+k, and c (sf+k) is the ticket price for the site sf+k.
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2) SCORING BASED ON TRAVEL DURATION TO SITES
We used the GPS coordinates on the Baidu map to calculate
the distances between the sites by converting the standard
geographic coordinates to the actual distances. Then we cal-
culated the travel duration between every two sites using the
average speed (60 km/h) of vehicles inside and outside cities.
We assumed that the shorter the travel duration to the site,
the greater its appeal and the higher the allocated score. In the
same way, we also standardized the grading; the score was
defined as DCI, which was between 0 and 1. We calculated
DCI using (11) and (12):

DCI(sf+k) = avg(TT(sf+k−1, sf+k))/(avg(TT(sf+k−1, sf+k))

+TT(sf+k−1,sf+k)). (11)

avg(TT((sf+k−1,sf+k)) =
n∑

i=1

TT(sf+k−1,sf+i)/n. (12)

3) SCORING BASED ON OPENING TIME OF SITE
For each site sf+k, we define a rating β (sf+k, TIf+k) based
on 24 hours. TIf+k was the arrival time at the site sf+k.
β was considered from two aspects. The first aspect was what
time period was suitable to visit the site. We knew the daily
opening and closing times for each site. During the open time,
the sites were allowed to be visited. The second aspect was
which period during the open time was more attractive to the
tourist. We assumed that the tourists would have the most
visiting time in the middle of the open time regardless of
early or late arrival, so the score should be highest at that
time. In addition, the closer the time was to the opening or
closing times, the less the interest of the tourists. Similarly,
we normalize β to make it between 0 and 1. β (sif+k, TIf+k)
can be calculated by

β
(
Sf+k ,TI f+k

)

=



2TI f+k − 2timef+k min
timef+k max − timef+k min

timef+k min

≤ TI f+k <
timef+k max + timef+k min

2
2timef+k max − 2TI f+k
timef+k max − timef+k min

timef+k max + timef+k min
2

≤ TI f+k < timef+k max
0 TI f+k < timef+k minorTI f+k > timef+kmax

(13)

where timef+kmin is the opening time of the site, and
timef+kmax is the closing time?

4) ATTRACTION SS (SF+K )
Attraction SS (sf+k) of the site sf+k can be defined as

SS(sf+k) = β(sf+k,TIf+k) ∗ (α ∗ ECI (sf+k)

+(1− α) ∗ DCI (sf+k)). (14)

The higher the value of α, the greater was the influence of
the rating data of the site and the comments of past tourists.
The lower the value of α, the greater was the influence of the
distance to the site.

The comprehensive attractiveness index of a travel route,
which we termed TSS, was the sum of the sites’ attractions.
TSS can be defined as

TSS(SS (si)) =
∑i=f+n

i=f+1
SS(si). (15)

We wanted to choose a travel route with the maximum
value of TSS (SS (si)) when all the constraints were satisfied.

C. CONSTRAINT CONDITIONS
1) INITIAL DEPARTURE TIME TIf
2) PLANNED TOTAL TRAVEL DURATION
The planned total travel duration was the time constraint and
the sum of the travel and visiting durations:

AT(sf+n) <= IN. (16)

3) BUDGET
The budget considered only the site ticket prices:

TPC(tp) <= cost. (17)

4) INITIAL LOCATION OF TRAVEL ROUTE SF
D. MODEL
The purpose of the model was to find the travel route that
satisfied the following constraints and maximized the com-
prehensive attractiveness index.

Max TSS (SS (si))

S.T . TI f = Sometimes

AT (sf+n) ≤ IN

TPC (tp) ≤ cost

sf = Someplace. (18)

V. GENETIC ALGORITHM
This section shows how we used a genetic algorithm (GA)
to solve the above model and determine the best travel
route. After comparing the GA with the greedy and simu-
lated annealing algorithms, we concluded that for this model,
the GA was the most suitable for determining the best travel
route.
A GA is a computational model based on the natural selec-

tion and genetic mechanism of Darwin’s theory of biological
evolution. Themodel searches for an optimal solution by sim-
ulating the natural evolution process. It was first proposed by
Professor J. Holland of the American University of Michigan
in 1975. With the publication of the influential monograph
Adaptation in Natural and Artificial Systems, the genetic
algorithm gradually became known. The GA proposed by
Professor J. Holland is a simple version.
The basic process of solving a problem using a GA is as

follows. First, the program is used to code the parameters of
the problem and form a certain number of ‘‘chromosomes.’’
These chromosomes are the initial populations that must be
solved by the algorithm. Next, the iterative method is used
to generate better chromosomes through selection, crossover,
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and mutation among the initial populations. The best chro-
mosome populations that meet the optimal target function
eventually remain. In this study, we used a basic GA to plan
travel routes. Algorithm 1 is the GA code adopted in this
paper.

Algorithm 1 Genetic Algorithm
Input: travel duration, IN; travel expenses, cost; place of
departure, sf ; departure time, TI f ; number of sites in the
travel route, n.
Output: travel route, tp; comprehensive attractiveness,
TSS (SS (si)); run time.
1: initialize P (0);
2: t = 0; # t is the actual evolutionary algebra; T is the
expected evolutionary algebra
3: while t <= T do
4: for i = 1 to M do # M is the number of
individuals of the initial population, M = 500
5: Evaluate fitness of P(t);
6: end for
7: for i = 1 to M do
8: Select operation to P(t);
9: end for
10: for i = 1 to M/2 do
11: Crossover operation to P(t);
12: end for
13: for i = 1 to M do
14: Mutation operation to P(t);
15: end for
16: for i = 1 to M do
17: P(t+1) = P(t);
18: end for
19: t = t + 1; # t<= T: t← t+1 transfer
to step 2
20: end while

Lines 1 and 2 initialize the algorithm. When the GA
satisfies the condition, the cycle process of lines 3–20 is
carried out. Lines 4–6 calculate the fitness of the population
(comprehensive attractiveness index). Lines 7–9 make selec-
tion operations of the populations. Lines 10–12 make a
crossover operation among the populations. Lines 13–15
make a mutation operation on the populations. Lines 16–18
make a roulette operation on the population. After the above
operations, lines 19 and 20 output the best two groups (travel
routes) in the population.

VI. EXPERIMENTS
To evaluate the performances of the GA and the model that
determines the multidimensional users’ preferences, we did
three sets of experiments to evaluate the effectiveness of the
travel route planning model. In the first set, we changed the
number of sites and compared the results of the GAwith those
of other methods. In the second set, we changed the planned
total travel duration constraint and compared the results of
the GA with those of the other methods. In the third set,

we changed the budget constraints and compared the results
of the GA with those of the other methods.

A. EXPERIMENTAL DATA
The data used in the experiments were directly obtained from
the Internet. This ensured the authenticity and validity of the
data. The specific sources of the related data are as follows:

The longitudes and latitudes of 20 classic sites in
Beijing were obtained from the Baidu map site at
http://api.map.baidu.com/lbsapi/getpoint/index.html.

The photographs of sites in Beijing were extracted from
the comments of various sites on the Xiecheng website
(https://www.ctrip.com/). We extracted 24 936 photographs
in total.

The detailed information (opening times, ticket prices, best
visiting hours, and so forth) and the Baidu index of 20 classic
sites in Beijing were obtained from the Baidu website.

The evaluation score of 20 classic sites in Beijing were
obtained from the Meituan website.

B. EXPERIMENT SETUP AND EVALUATION METRICS
We processed the algorithms using Python 3.6 64-bit. Exper-
iments were implemented on a computer with the following
configuration: Intel Core i5-3317U CPU at 1.70GHz and a
RAM of 4.00GB.

The evaluation metrics used in this experiment were the
run time (s) and the comprehensive attractiveness score of the
travel routes obtained by each algorithm.

C. EXPERIMENTAL RESULTS
The real data of 20 classic sites in Beijing were used to
carry out the experiments. The GA was used to plan the
travel routes under certain constraints. The baseline algo-
rithms were the greedy and simulated annealing algorithms.
The evaluation metrics were the run time and the comprehen-
sive attractiveness score. This experiment verified the route-
planning results of the three algorithms with various numbers
of sites contained in the route, budget constraints, and planned
total travel duration constraints.

1) EXPERIMENT SET 1: INFLUENCE OF NUMBER
OF SITES IN THE ROUTE
The following experiments and graphs from Fig.4 to
Fig.7 show the effects on running time and comprehensive
attractiveness of the number of sites in the routes.

Fig. 4 shows that the run time of the GA was longer
than that of the greedy and simulated annealing algorithms.
Keeping other factors constant, the run time of the greedy and
simulated annealing algorithms were basically unchanged
with the increase in the number of sites included in the
route. However, the run time of the GA increased because
an increasing number of sites prolonged the time to judge the
constraints.

Fig. 5 shows that the comprehensive attractiveness score
of the GA was higher than that of the greedy and simu-
lated annealing algorithms. Thus, it can be seen that the
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FIGURE 3. Schematic of calculations of arrival times at sites.

FIGURE 4. Effect on running time of the number of sites in the route.

FIGURE 5. Effect on comprehensive attractiveness of the number of sites
in the route.

GA can plan better travel routes than those of the other
algorithms. In addition, as the number of sites in the travel
route increased, the comprehensive attractiveness scores of
the three algorithms increased. This is in line with the real
situation, where tourist satisfaction was improved by visiting
more sites within a limited period.

Because the iterative algebra of the GA went through 500
generations, its final comprehensive attractiveness score was
also higher than that of the other two algorithms. However,
it is more effective to compare the run time of the greedy
algorithm with that of the GA which achieved the same
comprehensive attractiveness score as the greedy algorithm.
In Fig. 6, it can be seen that that difference was larger with
the increase in the number of sites included in the route.
Fig. 7 shows that the run time of the GA was much longer
than that of the simulated annealing algorithm when the
GA achieved the same comprehensive attractiveness score as

FIGURE 6. Effect on run time of the number of sites in the route.

FIGURE 7. Effect on run time of the number of sites in the route when the
GA’s attractiveness score was equal to the greedy algorithm’s.

FIGURE 8. The effect of IN on run time.

that of the greedy algorithm in most situations. Thus, it can
be concluded that the GA compares well with the simulated
annealing algorithm in comprehensive attractiveness score.

2) EXPERIMENT SET 2: INFLUENCE OF TIME CONSTRAINT
The following experiments and graphs from Fig.8 to
Fig.11 show the effects on running time and comprehensive
attractiveness of planned travel duration.

Fig. 8 shows that the run time of the GA was longer
than that of the greedy and simulated annealing algorithms.
However, the run time of the three algorithms were basically
unchanged with the increase in the planned total travel dura-
tion constraints in the travel route.

Fig. 9 shows that the comprehensive attractiveness score of
the GA was higher than those of the other algorithms. Thus,
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FIGURE 9. The effect of IN on comprehensive attractiveness.

FIGURE 10. The effect of IN on run time.

it can be seen that the GA algorithm can plan the best travel
routes. In addition, with increasing planned total travel dura-
tion constraints, the comprehensive attractiveness score of
the travel routes obtained from the greedy algorithm and GA
algorithm remained basically unchanged. However, the com-
prehensive attractiveness score of the simulated annealing
algorithm fluctuated with the increase in planned total travel
duration and became stable after reaching a certain value.
This is due to the limit on the number of sites in the travel
route.

Fig. 10 shows that the run time spent on the GA that
achieved the same comprehensive attractiveness score as the
greedy algorithm was close that of the greedy algorithm.
From Fig. 11, it can be seen that the run time spent on the GA
that achieved the same comprehensive attractiveness score as
the simulated annealing algorithm was shorter than that of
the simulated annealing algorithm in most situations. It can
be concluded that the GA planned better routes than those of
the simulated annealing algorithm based on the run times and
comprehensive attractiveness scores.

3) EXPERIMENT SET 3: INFLUENCE OF BUDGET
CONSTRAINT
The following experiments and graphs from Fig.12 to
Fig.15 show the effects on running time and comprehensive
attractiveness of cost.

Fig. 12 shows that the run time of the GA was longer
than that of the greedy and simulated annealing algorithms.

FIGURE 11. The effect of IN on run time.

FIGURE 12. The effect of cost on run time.

FIGURE 13. Theeffect of cost on comprehensive attractiveness.

Also, the run time of the three algorithms remained basically
unchanged with the increase of the budget constraint on the
travel route.

The comprehensive attractiveness score of the route
obtained by the GA was higher than that of the other algo-
rithms. In addition, the comprehensive attractiveness score
of the greedy and simulated annealing algorithms was quite
close, as seen in Fig. 13. From this, we can see that the GA can
plan the best travel route. In addition, with an increasing bud-
get constraint, the comprehensive attractiveness score of the
route obtained from the greedy algorithm remained basically
unchanged; however, the comprehensive attractiveness score
of the GA and simulated annealing algorithms fluctuated with
an increasing budget constraint.
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FIGURE 14. The effect of cost on run time.

FIGURE 15. The effect of cost on run time.

Fig. 14 seems to show that the GA had a run time which
achieved the same comprehensive attractiveness score as the
greedy algorithm was longer than that of the greedy algo-
rithm. Fig. 15 seems to show that the GA had a run time
that achieved the same comprehensive attractiveness score
as the simulated annealing algorithm took much less time
than did the simulated annealing algorithm in most situations.
It can be concluded that the GA’s run time and comprehensive
attractiveness score was better than those of the simulated
annealing algorithm.

In summary, the results of the three sets of experiments
show that the GA’s run timewas longer than that of the greedy
and simulated annealing algorithms, but the comprehensive
attractiveness score of the GA’s travel route was far higher
than that of the other two algorithms. Therefore, the GA was
slightly slower, but it planned travel routes that would satisfy
tourists. In addition, from the run time and the comprehensive
attractiveness score, the run time of the GA that achieved
the same comprehensive attractiveness score as the greedy
algorithm was much longer than the greedy algorithm’s run
time. However, the run time of the GA was close to the
run time of the simulated annealing algorithm. Therefore,
the GA was better than the greedy and simulated annealing
algorithms for the two-evaluation metrics used in travel route
planning.

As the size of dataset may be not big, we hold the view that
it does not matter so much since it only affects the run time

and have nearly no influence on comprehensive attractiveness
index.

VII. CONCLUSION
Most travel route planning research focuses only on planning
the shortest route and optimizing the TSP algorithm. How-
ever, in real life, the best route needs to satisfy the tourists’
personalized demands. Therefore, this research was based
on the multidimensional preferences of tourists, including
travel distances among sites, the popularity and evaluation
scores of sites, the total travel duration and cost, the initial
departure time, and the initial travel location. We constructed
a comprehensive attractiveness index as the target function
of the model. Also, the GA was used to do experiments using
real data from 20 classic sites in Beijing and to obtain the
corresponding travel routes. Our work considered multidi-
mensional tourist preferences to improve the travel routes, but
future improvements can be made in three aspects. The first
would be to combine the personal preferences of different
tourists and then plan routes that meet those interests [32].
Second, the GA should be improved to reduce its run time.
This can avoid tourists having to wait too long and can
improve their satisfaction [33]. Third, more experiments are
needed using more classic sites in Beijing or other cities to
verify the effect of the model and the GA in the future.
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