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ABSTRACT Patent citations are significant components of patents, which play a vital role in the implemen-
tation of patent analysis. However, most of the existed models only focus on the text of patents and do not
realize that citations can remedy missing information in the text. A method for citation modeling in patent
analysis is proposed to generate patent citation trees in this paper. Correspondingly, a specific neural network
is designed for extracting abstract features in patent citation trees. Then, on the basis of extracted features,
a new citation-based vector space model (CVSM) combining citations with text of the patent database is
constructed for the subsequent applications. An experiment is conducted based on real patents of USPTO.
The experimental results show that the proposed CVSM has good performances in several applications,
which demonstrate the effectiveness of the proposed CVSM.

INDEX TERMS Citation modeling, neural networks, patent analysis, VSM.

I. INTRODUCTION
Recently, the number of patents is growing rapidly with the
development of science and technology. Patents are one of
the most effective indicators to evaluate the current devel-
opment status of Intellectual Property Rights (IPR) [1]–[3].
Patent analysis results can tell research engineers how to
identify current technology hotspots, predict the technology
development trend [4]–[6] and guide research and devel-
opment (R&D) project [7]. However, the huge number of
patents makes manual patent analysis a very complicated and
time-consuming task. The use of legal language and specific
consideration of IPR definition makes patent text obscure and
not easy to understand even for professionals in the related
technical areas [8], which dramatically increases the diffi-
culty of manual analysis. Several conventional methods of
using keywords can be used to improve patent search [9], [10]
or classification [11], and deal with the problem of huge data
to some extent [12], [13], the results are not satisfying due to
the limited features reflected by the keywords.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ah Hwee Tan.

Under this background, some automated patent analysis
models based on the analysis of patent text have been pro-
posed in recent years [14]–[16]. These models focused on
text representation and semantic understanding. Some early
models use traditional natural language processing (NLP)
methods to construct vector space models (VSM) and embed
a group of patents into a vector space, such as term
frequency-inverse document frequency (TF-IDF) in [17].
Moreover, machine learning can be applied to extract com-
plex and abstract features in patent text, such as convolution
neural networks (CNN) in [18]. These models have improved
the accuracy of patent analysis.

It should be noted that there are various types of data
provided by a patent besides patent text, which can be divided
into two parts, i.e., unstructured data (such as title, abstract,
description, claims) and structured data (such as filed dates,
inventors’ names, International Patent Classification (IPC)
codes, citations) [19], [20]. By analyzing such comprehen-
sive data, useful features can be abstracted for developing
a more effective model. Among the above data, patent cita-
tions are extremely important in the implementation of patent
analysis. One objective for patent citations is to distinguish
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the claimed invention from existing inventions. The other
objective is to provide background information. Citations
can tell researchers what areas of technologies the claimed
invention might involve [21]. Such citation data reflects the
relationship among the related patents and is very helpful for
patent analysis by clustering the patents and understanding
the history of given patents [22], [23]. Moreover, citations
can remedymissing information in the text. Thus, the analysis
of citations provide an important aid to the analysis of text.
However, most of the existed patent analysis models only
exploit the features based on the patent text without making
use of patent citations. As far as we know, there are very few
methods for patent citation modeling.

In this paper, a method for citation modeling is pro-
posed to generate patent citation trees. These citation trees
as the enhanced patent representation combine citation data
with text data. Correspondingly, a specific neural network,
called as citation trees convolution neural networks (CCNN),
is designed for mining abstract features from patent citation
trees. Based on the well-trained CCNN, a new VSM derived
from the patent citation trees, called as citation-based VSM
(CVSM), is constructed for subsequent applications. In the
proposed CVSM, the features of patents are abstracted by
mining both the text data and citation data of patents. Com-
pared with the existed VSMs, CVSM can utilize information
from not only an individual patent, but also the related ones.
We conduct experiments based on the U.S. patent data, and
design several applications, i.e., patent similarity comparison,
patent clustering and patent map generation, for CVSM to
validate the effectiveness of our proposed method.

The rest of the paper is organized as follows. In Section II,
backgroundwork is summarized and the challenges about this
research is expounded. Section III gives the method of cita-
tion modeling and the pre-processing step for citation trees.
In Section IV, a detailed description of the proposed CCNN
is provided to handle patent citation trees. In Section V,
the experiment of real patent database is conducted as a case
study, including collection and pre-processing of the data set,
the construction of CVSM and several applications based on
CVSM. Finally, the conclusion is drawn in Section VI.

II. BACKGROUND
In the earlier study, patent philology is the main research
strategy for patent analysis, including document statistics
and collation [1]. With the development of NLP, some tra-
ditional NLP algorithms were applied in patent analysis to
mine patent text potential information. [24] extracted the
significant and rare keywords by Term Frequency-Inverse
Document Frequency (TF-IDF) from patent text. [25] used
dependency relationships to perform semantic analysis. [26]
applied pre-trained Latent Dirichlet Allocation (LDA) mod-
els and dependency trees to conduct patents prior-art
search. [27] studied the LDA algorithm results for differ-
ent classes of patents. [28] extracted the descriptions of
sci-tech effects and morphological features based on TF-IDF
and links between words. Subsequently, the rise of machine

learning have an influence on patent analysis. [29] con-
structed classification system with support vector machine.
With the advances of deep learning, CNN was applied in text
analysis and showed good performances in sentence classifi-
cation [30]. Then, various CNN models have been proposed
to be applied to NLP and achieved good performances, such
as DCNN [31], RCNN [32], CNN-RNN [33], etc. Thus,
the VSM based on CNN, e.g., featured VSM (FVSM), was
proposed for patent analysis in [18].

VSM is a very useful patent analysis method. VSM was
first proposed for text modeling and information retrieval
in 1975 [34]. Each document was computed and mapped
into a feature vector space. A wide range of application of
VSM is the similarity comparison, such as [35]–[37]. Based
on the VSM, the degree of similarity can be directly calcu-
lated quantitatively by feature vectors. In addition, VSM was
also applied for clustering and generating patent maps [38].
There are several ways to generate VSMs. For example,
the VSM based on the IPC code was proposed in [39].
Another widely-used VSMwas generated by TF-IDF in [17].
The feature vector of each patent was obtained by calculating
the TF-IDFweight of each term. In this way, the entire United
States Patent & Trademark Office (USPTO) patents were
mapped into a single vector space. Another way to generate
VSM is based on LDA. In [40], the TF-IDF vector of each
patent was calculated so that the LDA algorithm was used to
calculate the patent-topic vector of each patent.

So far, almost all the existed VSMs are only based on the
text of patents. However, citation data is also an important
component of patents [41], [42]. In [43], citations have been
used as an important reference to quantify the degree of
patent value. By studying the network formed by citations
in specific technical fields, [23] and [44] respectively drew
the development trajectory of the technology, as an important
indicator of patent analysis. In [45], a loglinear relationship
between patent citations and patent value was studied. It has
been shown that patent citation data plays an important role
in patent analysis applications, such as tracing technology
development routes.

The citation data needs to be formulated before being
utilized in VSM. In most cases, citations are modeled as
networks or trees. For example, in order to study patents in the
field of nanotechnology, the patents made up a huge network
for patent analysis based on the relationship of citations [22].
In [46], a model for quantitative calculation of multi-stage
citation data has been proposed and been used for simple
clustering. It should be noted that different data structures of
citations will lead to diverse design ideas for the following
neural network. Considering that the tree structure is more
concise and there exists mature processing models, citations
are processed into citation trees.

Most of existed CNNs are used to process tradi-
tional data in the type of matrix, such as some classic
structures [47]–[49]. For sake of processing data in the type of
tree, a tree-based convolution neural network, i.e., tree-based
convolution neural network (TBCNN), was proposed, which
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can process the programming language process based on tri-
angular convolution kernels [50]. After being transformed to
abstract syntax tree (AST) trees, programs can be classified to
several categories. More works on TBCNNs have appeared,
e.g., sentence modeling in [51], natural language inference
and heuristic matching in [52]. Inspired by TBCNN, a neural
network model of tree-based convolution for processing cita-
tion trees to extract the features of citation data is proposed
in this paper.

III. CITATION MODELING BASED ON PATENT DATABASE
A. DESIGN OF PATENT CITATION TREES
It is necessary to observe real patent data for the appropriate
citation modeling. Most of the citation data includes two
kinds of citations, i.e., the citations by patents and non-
patents such as papers, protocols, etc. The former is also
called as citation patents, whose format is more normative
than that of the latter. In essence, the latter can be regarded as
the text data of patents, which has no specification and ismore
difficult to be dealt with than the former. Therefore, only the
citation patents are focused on in our research. Furthermore,
the citation patentsmay have their own citation patents. Based
on such relationship, the data of a tree topology structure
is suitable for citation modeling. In this way, patent citation
trees can be established layer by layer. By analyzing patent
citation trees, the meaningful patent analysis can be carried
out including tracing the development history of patents,
summarizing trends in technology, and so on.

The method of establishing patent citation trees can be
expounded by the following structure model as an example:
Assume that a specificPatent A cites two patents, i.e.,Patent
B and Patent C. Patent B cites Patent D and Patent E.
Patent C cites Patent F. The corresponding patent citation
tree of Patent A can be constructed as shown in Fig. 1. This
citation tree consists of three layers. The root node of the tree,
i.e., Patent A, is to be analyzed in the following. Patents in
the second layer of the tree are citations of Patent A, namely
First Level Citations. Patents in the third layer of the tree are
citations of First Level Citations, namely Second Level Cita-
tions. By this way, patent citation trees with several layers can
be established. However, considering that the patents across
more than two layers have not strong connection, we discard
patents after Second Level Citations and only keep the patent
citation trees of three layers.

B. REVIEW ON FVSM
The modeling rule above only clarifies the topological struc-
ture of patent citations. Next, we should establish a quan-
titative model representation. Each node in the tree stores
the origin feature vector of its corresponding patent. These
origin feature vectors can be generated by FVSM [18] or other
VSMs based on the analysis result of patent text. FVSM is
a feature vector space model of the patent database, which
is constructed by feature vectors extracted by a machine
learning method. Neural networks have strong ability to
mine abstract semantic features from patent text. Compared
with VSMs based on traditional NLP methods, FVSM can

FIGURE 1. An example for the topological structure of patent citation
trees.

FIGURE 2. The four-layers structure of CNN used for the construction of
FVSM.

analyze more sentence-level semantics, which is more com-
plex, comprehensive and high-level than word-level seman-
tics. Meanwhile, by embedding patents into a vector space
of the appropriate size, complex patent analysis tasks can
transform to simple mathematical operations.

In practical terms, since CNN has various advantages,
including simple structures, easily training, convenient
deployment, flexible scalability and good performance, CNN
is chosen to extract features from patent text in our work.
Concretely speaking, the structure of CNN consists of four
layers, as shown in Fig. 2. The first layer is word embedding
layer, which is used to embed words into a vector space
model. In this way, patent text can be quantitatively repre-
sented as matrices as the input of convolution. The second
layer is convolution layer. The sizes of convolutional kernels
are from three to five. For each size, the number of kernels
is 100. Kernels slide along the matrix and capture semantic
features from words in the sliding window. The third layer is
pooling layer, where maximum pooling is implemented as the
pooling strategy. The aim is to acquire the best pattern match-
ing. The last layer is fully-connected layer used for patent
classification as the training task. After well-traing CNN,
the output of pooling layer can be regarded as the features
mined from patent text. Based on these features, FVSM can
be constructed as the origin feature vectors, in other words,
the raw materials of patent citation trees.

C. FURTHER PROCESSING OF PATENT CITATION TREES
Considering that neural networks can extract abstract and
connotative features contained in the patent citation trees,
neural networks are introduced in our research to handle
citation trees. A specific neural network needs to be designed
for analyzing the tree structure of the patent citation data.
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FIGURE 3. Pre-processing method for a subtree. ‘‘Attention average’’ all
the child nodes into one value. The darker the color of the child node,
the bigger its corresponding weight.

Tree-based convolution kernels are suitable for the tree struc-
ture, which are applied in the neural networks to extract the
features contained in patent citation trees.

Since patent citation trees have a kaleidoscopic struc-
ture, they are not available as the input of neural networks
directly. These citation trees need to be further processed into
the canonical form of matrices. A subtree is the basic unit
of patent citation trees. Fig. 3 presents the pre-processing
method for a subtree with one parent node. Inspired by the
thoughts of attention which is firstly applied in [53] in NLP,
a strategy namely ‘‘attention average’’ is proposed to process
a subtree. The parent node can be represented as vp and child
nodes can be represented as v1, v2, . . . , vi, . . . , vn.

1) Calculate thematch scores between the parent node and
each child node. There are several ways to match two
vectors, such as inner product, cosine similarity and
Euclidean distance.

ai = Score
(
vp, vi

)
2) Conduct softmax on the match scores to generate the

weight.

a′i = Soft max (ai)

3) Weighted average all the child nodes and generate the
new child node vc.

vc =
n∑
i=1

a′ivi

The design of ‘‘attention average’’ shows the difference
between citations. The more similar the citation, the greater
its weight. By the strategy of ‘‘attention average’’, the subtree
changes to a normative subtree with one parent node and
one child node. Considering that the number of citations is
uncertain, the method of ‘‘attention average’’, i.e., weighted
averaging all the child nodes, can make our pre-processing
method general for subtrees with any number of child nodes.
Then, when designing neural networks, in each convolution
kernel one value is assigned for the weighted average value of
child nodes and the other one is assigned for the parent node.

By the above rules, each patent citation tree can be rep-
resented by a matrix as shown in Fig. 4. The root node in
the first level and nodes in the second level form the first
subtree. Then, the first subtree composes the first row of the
matrix. Two nodes in the second level and their corresponding
nodes in the third level form the second and the third subtree

FIGURE 4. The way of converting a citation tree to a matrix. The citation
tree with tree subtrees is transformed into the matrix with tree rows.

FIGURE 5. Tree-based convolution for patent citation trees. By the way of
the process from trees to matrices, tree-based convolution is equivalent
to matrix-based convolution.

respectively. Next, they compose the second and the third row
of the matrix. This matrix has the following properties, i.e.,

1) The number of rows in the matrix is the number of First
Level Citations plus one.

2) Values in the first row represent the subtree consisting
of the root patent and its First Level Citations, which is
important for designing the neural network.

3) Each row represents a subtree in the citation tree.
In each row, the first value represents the parent node
and the second value represents the attention average
value of child nodes.

IV. ARCHITECTURE OF CITATION TREES CONVOLUTION
NEURAL NETWORKS (CCNN)
A. DESIGN OF TREE-BASED CONVOLUTION KERNELS FOR
CCNN
After transformed to matrices, patent citation trees can be
the input of convolution neural networks. Fig. 5 illustrates
the tree-based convolution with the patent citation tree as
shown in Fig. 1. The size of kernels is 1 × 2. For each
kernel, the first value needs to multiply values representing
parent nodes and the second value need to multiply values
representing the attention average of child nodes. One dimen-
sional convolution is applied here, which means the width of
the convolution kernel is the same as the width of the input
matrix. Kernels slide along the longitudinal direction of the
matrix as sliding windows and employ convolution with each
row, which is called as the first convolution, i.e., Conv1. The
resulting output of Conv1 includes three values. The first
one corresponds to the first subtree (consisting of the root
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FIGURE 6. Detailed architecture of CCNN.

patent and its citation patents) in the citation tree. The second
one and the third one correspond to the second and the third
subtree in the citation tree, respectively. Thus, the three values
as the result of Conv1 are hierarchical and compose a new tree
consisting of one parent node and two child nodes. The new
subtree can be converted to a 1×2 matrix as the input data of
the next convolution. The process of the second convolution
(Conv2) is the same as Conv1. Finally, the result from the
output of Conv2 can be obtained as the abstract feature of the
patent citation tree extracted by the neural network.

For citation trees with different layers, the numbers of
convolutions are different, which equal to the number of
layers minus one correspondingly. For example, if the citation
trees have three layers, two convolutions should be performed
to extract the features. Nevertheless, the method of each
convolution and the process from trees to matrices are kept
same.

B. DETAILED STRUCTURE OF CCNN
In order to implement the above convolution method, CCNN
is designed for processing patent citation trees. As shown
in Fig. 6, CCNN mainly consists of two parts, i.e., the
encoder and the classifier. The former extracts the abstract
features of patent citation trees while the latter is used for
patent classification. In addition, there are two branches in
the encoder, i.e., text feature vector processor branch and
citation tree processor branch. The details are given as
follows, i.e.,

1) ENCODER: CITATION TREE PROCESSOR BRANCH
a: MATRIX PRE-PROCESSING
The essence of the proposed CCNN is a function that makes
mathematical transform based on feature vectors of the spe-
cific patent to be analyzed and its citations. The function
adjusts the feature vector of the specific patent through
analyzing citations and figure out the new one. We con-
sider the differences between the feature vectors of citations

FIGURE 7. An example for the influence of difference between the
citation patent and specific patent.

and the one of the specific patent have influence on the
adjustment of feature vectors. The following example shown
in Fig. 7 can illustrate this point. Assuming that features
are one-dimensional vector, it is found that the feature of
citation patent is smaller than the one of specific patent.
Therefore, the difference gives a negative contribution. In this
way, the new feature vector of the specific patent should be
smaller than the old one.

The output of the pre-processing method for citation trees,
i.e., patent citation tree matrices, is three-dimensional matri-
ces. Each node in citation trees stores the feature vector of
FVSM, i.e., the text feature vector. Matrix pre-processing
should be performed to figure out the processed matrix. The
matrix T denotes the patent citation tree matrix, i.e., T ∈
RM×N×Ω . M denotes the number of subtrees which can be
returned by splitting the patent citation tree. N is a constant
of 2 representing the parent node and the attention average of
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child nodes in a subtree.Ω denotes the dimension of vectors
in FVSM, i.e., the number of feature maps in T .

The first step is extracting the text feature vector F ∈
R1×1×Ω of the specific patent, which is represented by the
root node of the citation tree. Therefore, F can be expressed
by:

F1,1,ω = T1,1,ω, (ω ∈ {1,. . . ,Ω}) . (1)

The second step is the generation of the processed matrix.
Let the matrix X represent the processed matrix with three
dimensions, i.e., X ∈ RM×N×Ω . For each feature map,
the processed matrix X can be calculated as follows:

Xm,i,ω = Tm,i,ω − F1,1,ω, (2)

where Xm,i,ω and Tm,i,ω denotes the value of the m-th row
(m ∈ {1,. . . ,M}), the i-th column (i ∈ {1,2}) of the ω-th
feature map (ω ∈ {1,. . . ,Ω}) in X and T .

b: CONV1
Two convolution layers are the cores of the proposed CCNN.
The matrix X representing the processed matrix can be as
the input to the convolution layer. The purpose of Conv1 is
to mine semantic information and inheritance relationship in
patent citation trees, then obtain new feature trees with less
layers and more concise structures. In Fig. 6, the kernels
in Conv1 have the size of 1 × 2, i.e., filters slide through
every (M×2)-dimensional feature map along its longitudinal
direction instead of along both longitudinal and transverse
directions. The number of kernels is set to be Λ. Let W0,λ ∈

R1×2 denote the weight of the λ-th kernel (λ ∈ {1,. . . ,Λ}) and
b0 denote the bias. For the block of matrix X in the m-th row
(m ∈ {1,. . . ,M}), the feature value cm,λ can be calculated as
follows:

cm,λ = σ

(
2∑
i=1

Ω∑
ω=1

W0,λ(1,i)Xm,i,ω + b0

)
, (3)

where W0,λ(1,i) denotes the i-th (i ∈ {1,2}) value in W0.λ,
Xm,i,ω denotes the value of the m-th row, the i-th column of
the ω-th feature map (ω ∈ {1,. . . ,Ω}) in X , and σ denotes the
activation functions, i.e., Sigmoid, Tanh, ReLU, etc. In this
way, for the λ-th kernel, the feature vector cλ ∈ RM×1

can be generated as cλ =
[
c1,λ; c2,λ; ...; cm,λ...; cM ,λ

]
. The

output of Conv1, namely c ∈ RM×1×Λ, can be generated as
c = [c1, c2, . . . , cλ, . . . , cΛ], where Λ denotes the number
of future maps in c.

c: TNSOR ORGANIZING
The output c of Conv1 cannot be the input of Conv2 directly.
Therefore, the purpose of tensor organizing is transforming
c into the available input data of Conv2, i.e., transforming
the output of Conv1 into a new tree by the way in Fig. 5 and
converting the new tree to the matrix by the pre-processing
method in Fig. 4. The narrow layer, attention average layer
and concatenation layer are used to achieve the procedure of
tensor organizing.

In the narrow layer, c is divided into two parts, where the
first part cp ∈ R1×1×Λ represents the parent node in the new
tree, while the second part cc ∈ R(M−1)×1×Λ represents the
child nodes in the new tree. The separate processing of these
two parts also divides the neural network into two branches.
The first branch corresponding to cp has no follow-up oper-
ation. While the second branch corresponding to cc should
take the attention average of cc based on its first dimension by
calculating match scores with cp. The output of the attention
average layer is c′c ∈ R1×1×Λ. It can be found that the
dimensions of two resulting outputs cp and c′c of two branches
are identical.

In the concatenation layer, cp and c′c merge together based
on their second dimension. Then, the output is H ∈ R1×2×Λ

and H =
[
cp, c′c

]
. In this way, the process of the new tree is

completed. H can be used as the input of Conv2.

d: CONV2
Similar to Conv1, the purpose of Conv2 is to mine
deeper semantic information and inheritance relationship in
patent citation trees, then retrieve the abstract feature of patent
citation trees as the results. In Fig. 6, the kernels in Conv2 also
have the size of 1 × 2. The number of kernels is set to be
∆. W1,δ ∈ R1×2 represents the weight of the δ-th kernel
(δ ∈ {1,. . . ,∆}) and b1 is the bias. For matrix H , the feature
value dδ can be calculated as follows:

dδ = σ

(
2∑
i=1

Λ∑
λ=1

W1,δ(1,i)H1,i,λ + b1

)
, (4)

whereW1,δ(1,i) denotes the i-th (i ∈ {1,2}) value inW1,δ ,H1,i,λ
denotes the value of the first row, the i-th column of the λ-th
feature map inH , and σ also denotes the activation functions.
In this way, the output of Conv2, namely d ∈ R1×1×∆, can be
generated as d = [d1, d2, · · · , dδ, . . . , d∆], where∆ denotes
the number of future maps in d .

2) ENCODER: TEXT FEATURE VECTOR PROCESSOR BRANCH
The citation tree processor branch aims to extract abstract
features based on the difference between the specific patent
and its citations. Therefore, the above features should add on
the original features, i.e., the feature vector of the specific
patent. The whole process is similar to ResNet [54].

In order to make the dimensionality of the above two
feature vectors consistent, a fully-connected layer is used in
this branch, where the weight is W2 ∈ R∆×Ω and the bias
is b2 ∈ R∆×1. The input of this layer is a one-dimensional
vector f ∈ RΩ×1, which is resized from F. The output
f ′ ∈ R∆×1 can be calculated as follows:

f ′ = W2 × f + b2. (5)

The last step of the encoder is combining the features
of two branches, i.e., d′ and f ′, where d′ ∈ R∆×1 is the
one-dimensional vector resized from d . Then, the feature
vector f̂ from CCNN is obtained. f̂ can be calculated as

VOLUME 8, 2020 17469



J. Qi et al.: Patent Analytic Citation-Based VSM: Challenges and Applications

follows:

f̂ = d′ + f ′. (6)

3) CLASSIFIER
After the encoder, the classifier is used in the neural network
for patent classification. After training the neural network,
the accuracy of patent classification can be calculated as the
quantitative index for evaluating CCNN. The input data of
the classifier is the output data f̂ ∈ R∆×1 of the encoder. The
classifier includes two layers, i.e., the fully-connected layer
and the softmax layer.
f̂ is input to the fully-connected layer, where the weight is

W3 ∈ RK×∆ and the bias is b3 ∈ RK×1. The output y ∈
RK×1 of this layer is

y = W3 × f̂ + b3. (7)

Finally, y is input to the softmax layer. The resulting output
ŷ of this layer is the probability that the patent belongs to each
category. The maximum value of ŷ is selected for the output
of CCNN as the classification result, i.e.,

ŷ = Softmax (y) . (8)

Since the architecture of the proposed CCNN adopts the
idea of taking the attention average of child nodes in each
subtree, CCNN has the ability of handling any type of
three-layers tree. For any specific patent, the corresponding
matrix input into the neural network is T ∈ RM×N×Ω , where
the value of N and Ω are required to be consistent with all
the patents, and the value ofM is not fixed to patents.

C. CONSTRUCTION OF CVSM BASED ON WELL-TRAINED
CCNN
The output f̂ of the encoder is the abstract feature extracted
by CCNN. This new feature is obtained by analyzing citation
trees based on FVSM. In this way, after training CCNN and
collecting new features of all the patent citation trees in the
data set, a new VSM, i.e., CVSM, can be constructed for
further patent analysis.

V. APPLICATIONS OF CVSM
In order to validate the effectiveness of CCNN on patent
analysis, various experiments are conducted based on the data
set composed of real patents. Several application scenarios
are implemented as the case study in our work.

A. CONSTRUCTION OF EXPERIMENT DATA SET
The first step of the experiment is data set construction,
which can be divided into two steps, i.e., collection and
pre-processing of experiment data set.

1) COLLECTION OF EXPERIMENT DATA SET
Our experiments are carrrried out on the data set of U.S.
patents. The data set includes the patents in USPTO from the
year 2015 to 2017 under the IPC class of H04 (representing
electric communication technique), namely as SA [55].

FIGURE 8. An example of citations in a USPTO patent (US 9834648). Only
the first kind of citations are reserved for further experiment.

Fig. 8 gives an example of the citation information of the
USPTO patent with the number of US 9834648 [56]. There
are three kinds of citation information, i.e.,

1) USPTO patents cited by the patent of US 9834648:
Both the patent and its citation patents belong to
USPTO.

2) Foreign citation patents: They cannot be linked and
collected information directly.

3) Other types of citations instead of patents.
Since only the first kind of citations can be conveniently

collected, they are reserved for the construction of patent
citation trees in our experiment for the sake of analysis.
Moreover, for each patent in SA, its valid patent citation tree
needs to be constructed. The valid citation tree should satisfy
the following conditions. For every patent in the citation tree,
it should be discarded if it does not belong to SA. In other
words, we only keep the citation patents that belong to SA.
In this way, there are 4445 patents from SA construct their
own valid patent citation trees. These valid citation trees
compose our experimental patent data set, namely SB. For
the sake of the illustration, Fig. 9 gives an example to explain
how to construct SB. Patent B is the citation of Patent A,
and it belongs to SA as well as Patent A. Hence, Patent A
can construct a valid patent citation tree containing Patent B.
As a result, Patent A can be used as a valid experimental
record in SB. Conversely, Patent C only has a citation namely
Patent Dwhich does not belong to SA. Thus,Patent C cannot
construct a valid citation tree. As a result, Patent C is not
contained in SB. In this way, old citation patents and citation
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FIGURE 9. The generation of the data set SB. SB is a subset of SA.

patents with huge difference in technical fields are filtered
out.

2) PRE-PROCESSING OF EXPERIMENT DATA SET
After removing stop words and Porter stemming [57] for the
rest of words, the FVSM of patents in SA is constructed by
the well-trained CNN. The sizes of convolution kernels are
from three to five. The number of each size is 100. Thus,
the dimension of FVSM in our experiment is 300.

When training CNN, we have to get the labels for patent
classification. Due to the large numbers, patents could not be
manual labeled directly. The work of manual labeling is hard
and time-consuming. Besides, the purpose of the experiment
is not only to validate the effectiveness of our model, but
also perform patent analysis based on the real patent data,
which belongs to an industrial application of technology.
Thus, we hope our model have the ability of universal. In this
way, a type of ‘‘half-automatic and half-manual’’ method is
used in our work. An unsupervised NLP algorithm namely
Latent Dirichlet Allocation (LDA) [58] is chosen for auto-
matic labeling firstly. Eight topics are extracted by LDA
based on the text data of patents in SA, corresponding to eight
categories for classification. For each patent, the probabilities
of the eight categories should be calculated and the category
corresponding to the highest probability should be selected as
the result of classification. In order to improve the accuracy of
automatic labels, if a patent has some closest high probability
values, it needs to be checked manually. This is why the
method is called ‘‘half-automatic and half-manual’’.

Then, patent citation trees of patents in SB can be con-
structed. Every node in trees stores the feature vector of
FVSM of the corresponding patent. There are three layers
in our citation trees, i.e., the specific patent, its First Level
Citations and Second Level Citations. In the cases when
there is no enough to build a citation tree with three layers,
the ‘‘padding’’ operation is performed, which means padding
the virtual patents with feature vectors of 0 for construction
of the citation tree with three layers. The details of ‘‘padding’’
are shown in Fig. 10.
Finally, patent citation trees of patents in SB are trans-

formed to matrices as the input data of the following neural
network, i.e., CCNN.

B. TRAINING CCNN AND CONSTRUCTING CVSM
In order to construct CVSM, the first step is training CCNN.
The architecture of CCNN and the process of data flow is

FIGURE 10. Details of ‘‘padding’’, which means padding the virtual
patents with feature vectors of 0.

illuminated in Section IV. Fig. 11 shows the details of the
applied CCNN in our experiment, including the parameter
selection of the two convolution layers, the selection of fea-
ture vector’s dimension, etc.

For citation tree processor branch, the number of input
feature maps in Conv1 should equal to the dimension of
FVSM, i.e., Ω = 300. The number of outputting feature
maps is set to be 100, i.e., Λ = 100. After Conv1, the output
is c ∈ RM×1×100. In the narrow layer, c is split into two
parts cp and cc based on the second element of the first
dimension of c as the boundary. In attention average layer, c′c
is obtained by taking the attention average of cc based on its
first dimension. Then, cp and c′c are combined to form the new
matrix H in the concatenation layer for the input of Conv2.
In Conv2, the number of input feature maps is Λ = 100.
The number of output feature maps is set to be 30, i.e., ∆ =
30. For text feature vector processor branch, the weight of
fully-connected layer isW2 ∈ R30×300. Therefore, we regard
the output vector of the encoder, i.e., f̂ ∈ R30×1, as the feature
vector of the patent citation tree, in other words, the new
feature vector of the patent to be analyzed.

In the classifier, the vector f̂ is input to the fully-connected
layer with the weight of W3 ∈ R8×30. The output of this
layer has 8 values. After the softmax layer they become the
probabilities of 8 categories. In this way, patent classification
has finished.

To be clear, the dimension of new feature vectors are
reduced to 30 due to the following two reasons, i.e.,

1) The significance of VSM is to embed all the patents
in a data set into a vector space. Patents in SB for our
experiment are selected in SA, so their number is far
smaller than that of patents in the experiment of FVSM.
Therefore, the dimension of the vector space of CVSM
need not be set too large.

2) Larger dimension means more kernels, which can
extract more features from patents. However, too
large dimension could also bring the curse of dimen-
sions [59]. If it happens, the data is more sparsely
distributed in the vector space.

In order to obtain the scientific results, we adopted the
method of 10-fold cross-validation [60] to train CCNN ten
times. The meaning is to divide experimental data into ten
samples. Each time of training CCNN, we select one sample
as the test set for evaluation and the rest nine samples as
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FIGURE 11. The detailed architecture of CCNN in the experiment. 30-dimensional feature vector is chosen. The numbers below each layer represent
the dimension of output tensor for each layer.

TABLE 1. 10-fold cross-validation training results of CCNN. The number of iteration is 50.

the train set for training. In the training process, random
gradient descent algorithmwith update rules of AdaDelta and
a mini-batch size of 50 is used to train the neural network.

The training results of the proposed CCNN are shown
in Table. 1. The number of iteration is 50. It can be seen that
the average of train set scores can achieve 98.82%. In ten
test set scores, the highest accuracy is 99.77%, the lowest
is 94.24%, and the average is 98.01%. Experimental results
prove that CCNN can well complete the task of patent classi-
fication.

After training CCNN, the results should be collected to
construct CVSM for further patent analysis. The method of
results collection can be divided into two steps, i.e.,

1) An appropriate CCNN model should be selected
according to the test set scores in Table 1. The sixth
model corresponding to the highest score is selected for
the construction of CVSM. According to the architec-
ture shown in Fig. 6, the part of the classifier is dis-
carded and the well-trained parameters in two convolu-
tion layers, i.e., weight and bias, should be maintained.

2) Patent citation trees of patents in SB are inputted
into the above CCNN without the classifier again.
The results are the output of encoder, which are
30-dimension feature vectors extracted from citation
trees by CCNN.

In this way, CVSM is constituted based on these
30-dimension feature vectors.

C. PATENT SIMILARITY COMPARISON
Patent similarity is the typical application of the pro-
posed CVSM. By mathematical calculation based on fea-
ture vectors of CVSM, the similarity of patents can be
quantified. The data set for patent similarity is the patent
triads consisting of {P,P+,P−}. A patent triad contains
three patents. The first one P is the specific patent as
the datum and needs to be compared with the others. P+

is more similar than P− compared with P, which can be

FIGURE 12. SSE distance of 5 to 50 clusters.

expressed as similarity (P,P+) > similarity (P,P−), where
similarity (P,P+) denotes the quantized similarity between
P and P+. There are several quantitative methods to
calculate similarity (P,P+) including Euclidean distance,
i.e., d (vec (P) , vec (P+)), cosine of the angular separa-
tion, i.e., cos (θ (vec (P) , vec (P+))) and Jaccard index [61],
i.e., J (vec (P) , vec (P+)), where vec (P) comes from CVSM
or other VSMs. This is the same for similarity (P,P−).
We manually label 300 groups of the above patent

triads from SB satisfying the conditions that the simi-
larity between P+ and P is higher than that between
P− and P. Meanwhile, the similarity between P+ and
P and the one between P− and P based on CVSM,
CNN-based FVSM and TF-IDF-based VSM are calculated
respectively inside each triad. Euclidean distance and Cosine
similarity are chosen as the quantitative methods of sim-
ilarity, i.e., similarity (P,P+) = d (vec (P) , vec (P+))
and similarity (P,P+) = cos (θ (vec (P) , vec (P+))). The
result by manual is compared with the result by cal-
culation of feature vectors. If d (vec (P) , vec (P+)) <

d (vec (P) , vec (P−)) happens in the result by calculation,
this shows that P+ is more similar to P than P−, which
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FIGURE 13. Dimensionality reduction on CVSM by PCA and T-SNE. Different colors denote different patent clusters. It is
obvious to see that results by T-SNE is better than the other one.

TABLE 2. Accuracy rate in term of Euclidean distance and Cosine
similarity on manual patent triads.

means these two results are consistent. In other words, CVSM
achieves the goal of patent similarity comparison. The pro-
portion of the number of patent triads with consistent results
in the total 300 patent triads is calculated as the accuracy rate
of CVSM in the application of patent similarity. The results
are shown in Table 2.

As expected, the accuracy rates of the proposed CVSM are
consistently higher than those of CNN-based FVSM and TF-
IDF-based VSM by the computing method of both Euclidean
distance and Cosine similarity. The best experimental result
of patent similarity is 94.78%. This indicates that the
proposed CVSM can perform better in patent similarity
comparison.

D. PATENT CLUSTERING AND NOVEL PATENT MAP
GENERATION
A significant application of CVSM is to generate the patent
map based on feature vectors. By visualizing patents in a
figure, it allows researchers to perform patent analysis intu-
itively and globally. Patent map as a method of patent visu-
alization has been applied in many works, such as [62]–[64].
Compared with the patent map based on traditional VSMs
and FVSM, the patent map based on CVSM can not only
retain the original function, i.e., dividing patents into several
patent clusters representing different technical fields, but also
add new function such as analyzing the relation of citation
data. A specific patent and its citation patents are marked on

the patent map for analyzing the history of patent evolution
and grasping technology trends for reference.

K-means method is used for patent clustering of the patent
map. The number of 5 to 50 clusters is tried in our data set.
Within-cluster sum of squared errors (SSE) distance is used
to measure the performance of K-means results as shown
in Fig. 12. Known by the elbow method [65], it can be found
the result of 10 clusters has the best performance. Then,
keywords in each clusters are extracted for analyzing the
technology field of this cluster respectively. The result is
shown in Table 3.
Dimensionality reduction algorithms such as the linear

dimensionality reduction method like principal component
analysis (PCA) [66] and the non-linear dimensionality reduc-
tion method like T-distributed stochastic neighbor embedding
(T-SNE) [67] are used to reduce the feature vectors of patents
to two dimensions and draw the patent map. Since it is
obvious to see that the performance of T-SNE (Fig. 13(b)) is
better than the one of PCA (Fig. 13(a)), the result of T-SNE
is chosen for generating patent map, as shown in Fig. 14.

In the patent map, each patent cluster represents the cor-
responding technology field of these patents, which is listed
in Table. 3. The inferred technology fields of the patent clus-
ters are labeled in the patent map. Besides, each color repre-
sents a patent cluster. It can be found that the distance between
two similar patent clusters is smaller than that between two
irrelevant patent clusters, which meets our expected goals.
For example, the cluster of ‘‘network optimization’’ and ‘‘net-
work security’’ have a close relationship. Thus, they are next
to each other.

Moreover, there are several characteristic applications in
the patent map for the analysis of patent citation trees, such
as tracing the development history of patents. For example,
three patents in the patent citation tree of US 9444892 are
all related to wireless vehicle communication. However,
these patents belong to three clusters, which means different
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TABLE 3. Top eight keywords and technology fields of ten patent clusters.

FIGURE 14. The patent map of patents in SB as the experiment result.

technology fields. Concretely speaking, the technology of US
9444892 is mainly about mobile communication, while US
9398454 is associated with network optimization, and US
9252951 focuses on network security. The structure of the
citation trees can be visualized in the patent map. Even if
these three patents vary widely, the route of technological
evolution can be displayed intuitively in the patent map. It can
be found that the technology of mobile communication in US
9444892 is associated with another two technologies closely,
i.e., network optimization and network security. By way of

generating the patent map, researchers can intuitively under-
stand the technical development of a patent based on its
citation tree.

VI. CONCLUSION
In this paper, we have proposed a new method for citation
modeling to make use of both citations and text for patent
analysis and established patent citation trees as the modeling
result. On this basis, a citation-based convolution neural net-
work namely CCNN is specially designed for mining abstract
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features in patent citation trees. Several pre-processing meth-
ods which convert citation trees to matrices as the input of
CCNN have been presented. The citation trees of a subset in
USPTO patents have been constructed as the experiment data
set. Then, CCNN has been well-trained to retrieve the feature
vectors of the data set and used to construct the citation-based
VSM, i.e., CVSM. In our experiments, several applications of
CVSM, i.e., patent similarity comparison, patent clustering
and patent map generation, have been carried out to validate
the performances of CVSM. In the case of patent similarity
comparison, the accuracy of CVSM is up to 94.78% and
superior to that of FVSM. Moreover, the patent map can be
conveniently visualized based on the reduced dimensional
feature vectors from CVSM.
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