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ABSTRACT QRS detection is a crucial step in analyzing the electrocardiogram (ECG). For ECG collected
by wearable devices, a robust QRS detection algorithm that yields high accuracy in spite of abnormal
QRS morphologies and severe noise is needed. In this paper, we propose a QRS detection method based
on high-resolution wavelet packet decomposition (HR-WPD) and convolutional neural network (CNN).
Firstly, we design the HR-WPD that decomposes the ECG into multiple signals with different frequency
bands to provide detailed QRS features. Secondly, all the decomposed signals are forwarded to a CNN for
comprehensive morphology analysis and QRS prediction. To further improve the robustness, a time-attention
module acting on the input signals is added to the CNN. Finally, a variable threshold is imposed to locate the
QRS. The proposed method is validated by using two noisy databases (i.e., Telehealth Database (TELEDB)
and MIT-BIH Noise Stress Test Database (NSTDB)) and one database with multiple ECG morphologies
(i.e., MIT-BIH Arrhythmia Database (ARRDB)). The experiment results show that the proposed method
achieves a comparable or even better performance compared with state-of-art methods on the TELEDB (SE
98.99%, P+ 95.57%, ER 5.61%, F1 97.25%), NSTDB (SE 99.25%, P+ 96.31%, ER 4.55%, F1 97.76%)
and ARRDB (SE 99.89%, P+ 99.90%, ER 0.21%, F1 99.89%), suggesting that it is highly applicable to the
QRS detection for ECG collected by wearable devices.

INDEX TERMS Electrocardiogram, convolutional neural network, wavelet packet decomposition, QRS
detect.

I. INTRODUCTION
The electrocardiogram (ECG) is a graphical representation of
the electric activity related to the functions of the heart. The
conventional ECG comprises a sequence of P, Q, R, S, and
T wave. Among them, the Q, R, and S waves compose the
QRS-complex, which contains precious clinical information
relates to cardiac health [1]. QRS detection directly affects
heart rate variability measurement, heartbeat classification,
diagnosis of heart diseases, etc [2].

Recently, as wearable ECG devices have been gaining
popularity, ECG data can be recorded continuously for a long
time to predict serious adverse events such as sudden car-
diac death [3]. Automatic and computerized QRS detection
is a promising research area because it could save experts’
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time. However, the morphological features of the QRS may
change due to time, individuals, diseases or environments.
Even worse, the ECG collected by wearable devices intro-
duces severe noise [4], exacerbating the detection accuracy
problem. Therefore, in the presence of multiple QRS mor-
phologies and severe noise, a robust algorithmwith high QRS
detection performance is needed.

To solve these problems, various QRS detection algorithms
have been proposed. Prior arts removes noise through fil-
ters, and highlight the QRS through means such as deriva-
tives [5], [6], sixth power [7], wavelet transform [8]–[10],
Hilbert transform [11], high-dimensional phase space [12],
empirical mode decomposition [13], template matching [14],
Savitzky-Golay filter [15], and multiple transforms [16].
All these algorithms generalize the QRS features manually.
To ease feature generalization, only one frequency band of
the ECG is selected. However, when there exists severe noise
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in this band, manually generalizing the features becomes
quite challenging. Xiang et al. [17] used the difference
to pre-process the ECG and convolutional neural network
(CNN) to automatically generalize the QRS features. Though
the difference operation suppressed some noise, it also
restrained the network from obtaining useful low-frequency
information hence being easily affected by high-frequency
noise.

Aiming at more robust QRS detection, this paper pro-
poses a method based on a high-resolution wavelet packet
decomposition (HR-WPD) and a CNN. On the one hand,
the HR-WPD decomposes the ECG into multiple signals
with different frequency bands to expose the detailed QRS
features in the frequency domain. On the other hand, the
HR-WPD guarantees that the noise only affects parts of
decomposed signals while the remaining signals can still
facilitate the QRS detection, thus reducing the effects of the
noise. All the decomposed signals are forwarded to a CNN to
comprehensively analyze the morphologies and predict the
QRS. Besides, we add a time-attention module in the CNN.
By setting a specific weight to each moment, the proposed
time-attention module helps the network allocate different
attention to the different time and further improve the robust-
ness. The robustness of the proposed algorithm is verified
using two noisy databases, namely the Telehealth Database
(TELEDB), MIT-BIH Noise Stress Test Database (NSTDB),
and one database with multiple ECG morphologies, namely
the MIT-BIH Arrhythmia Database (ARRDB).

The remainder of this paper is organized as follows.
Section II briefly introduces the databases applied to this
research. Section III presents the proposed QRS detection
algorithm. The proposed method is evaluated with various
ECG databases in Section IV. Section V discusses the exper-
imental results. Section VI draws the conclusion.

II. RELEVANT DATABASES
Three public databases are used in this paper to evaluate the
proposed QRS detection algorithm.

A. TELEHEALTH DATABASE
This ECG database is sampled at a rate of 500 Hz using dry
metal Ag/AgCl plate electrodes (which the patient holds with
each hand) and a reference electrode plate is positioned under
the pad of the right hand. There are 300 ECG single lead-I
signals recorded in a telehealth environment, 250 of which
were selected randomly from 120 patients and the remaining
50weremanually selected from 168 patients to obtain a larger
representation of poor quality data [18]. Three independent
scorers annotated the data by identifying sections of artifact
and QRSes. All scorers then annotated the signals as a group,
to reconcile the individual annotations. Sections of the ECG
signal which were less than 5s in duration were considered to
be parts of the neighboring artifact sections and were subse-
quently masked. QRS annotations in themasked regions were
discarded before the artifact mask and QRS locations being
saved. Of the 300 telehealth ECG records in Redmond et al.,

50 records (including 29 of the 250 randomly selected records
and 21 of the 50 manually selected records) were discarded
as all annotated RR intervals within these records overlap
with the annotated artifact mask and therefore, no heart rate
can be calculated, which is required for measuring algorithm
performance. The remaining 250 records will be referred to
as the TELE database [16].

B. MIT-BIH ARRHYTHMIA DATABASE
The MIT-BIH Arrhythmia Database contains 48 half-
hour excerpts of two-channel ambulatory ECG recordings,
obtained from 47 subjects studied by the BIH Arrhythmia
Laboratory between 1975 and 1979. 23 recordings were cho-
sen at random from a set of 4000 24-hour ambulatory ECG
recordings collected from a mixed population of inpatients
(about 60%) and outpatients (about 40%) at Boston’s Beth
Israel Hospital; the remaining 25 recordings were selected
from the same set to include less common but clinically
significant arrhythmias that would not be well-represented
in a small random sample. The recordings were digitized at
360 samples per second per channel with an 11-bit resolution
over a 10mV range. Two or more cardiologists independently
annotated each record; disagreements were resolved to obtain
the computer-readable reference annotations for each beat
(approximately 110,000 annotations in all) included in the
database. The annotations have been modified several times
since the database became public [19], [20].

C. MIT-BIH NOISE STRESS TEST DATABASE
This database includes 12 half-hour ECG recordings and
3 half-hour recordings of noise typical in ambulatory ECG
recordings. The three noise records were assembled from
the recordings by selecting intervals that contained predomi-
nantly baseline wander (BW) (in record ‘bw’), muscle arti-
fact (MA) (in record ‘ma’), and electrode motion artifact
(EM) (in record ’em’). Electrode motion artifact is generally
considered the most troublesome, since it can mimic the
appearance of ectopic beats and cannot be removed easily by
simple filters, as can noise of other types. The ECG record-
ings were created using two clean recordings (118 and 119)
from the aforementioned MIT-BIH Arrhythmia Database
[19], to which calibrated amounts of noise from record ‘em’
were added using ‘‘nst’’ tool provided by the PhysioNet [21].
The noise was added at the beginning after the first 5 min-
utes of each record, during two-minute segments alternating
with two-minute clean segments. The signal-to-noise ratios
(SNRs) during the noisy segments of these records are 24,
18, 12, 6, 0, −6dB [20], [21].

III. THE PROPOSED METHOD
The proposed method consists of three major steps: (a) pre-
process the ECG with the HR-WPD method, (b) predict the
QRS by the time-attention CNN and (c) locate the QRS
through a variable threshold. The block diagram of the pro-
posed method is shown in Fig. 1.
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FIGURE 1. The block diagram of the proposed QRS detection method.

FIGURE 2. The implementation of the proposed HR-WPD.

A. PRE-PROCESS WITH THE HR-WPD
Different ECG sensors use different sampling rates, which
brings challenges to QRS detection. To solve the issue,
we resample the original ECG to 250Hz to unify the QRS
detection parameters. To provide detailed QRS features in the
frequency domain without losing time resolution, inspired by
[9], we propose a high-resolution wavelet packet decompo-
sition (HR-WPD) method, as shown in Fig. 2. In the HR-
WPD, the input is first filtered by a low-pass filter H (eiω)
and a high-pass filter G(eiω) from the wavelet to get two
decomposed signals x10 and x11 . Then the impulse responses
of the filters are zero interpolated and all the signals are
further decomposed by the new filters. This step is repeated
to recursively decompose the signal. Compared with the
conventional wavelet packet decomposition [22], in which
a 2× downsampling step is required for each decomposition,
the proposed HR-WPD removes the downsampling step and
achieves higher time resolution, which helps predict the
accurate QRS occurrence time.

We decompose the signal by using the filters from the
quadratic spline wavelet [23]. Because of the unique filtering
features, these filters are considered suitable for QRS analysis
in [9]. The corresponding low-pass filter H (eiω) and high-
pass filter G(eiω) are defined as follows,

H (eiω) = eiω/2
(
cos

ω

2

)3
G(eiω) = 4ieiω/2

(
sin

ω

2

)
(1)

FIGURE 3. The amplitude-frequency responses of the equivalent filters
Q3

p(eiω) for the HR-WPD at 250Hz sampling rate.

By decomposing the ECG 3 times, we get 8 signals (i.e.,
x30 to x37 ). Let Q

3
p(e

iω) be the transform functions of the
equivalent filters in the HR-WPD shown in Fig. 2. For
example, Q3

0(e
iω) = H (eiω)H (ei2ω)H (ei4ω), and Q3

1(e
iω) =

H (eiω)H (ei2ω)G(ei4ω). The amplitude-frequency responses
of Q3

p(e
iω) at 250Hz sampling rate are shown in Fig. 3.

Each decomposed signal mainly contains the information
of a specific frequency band, and all the signals provide more
detailed QRS features in the frequency domain. Besides,
when severe noise distributes in a certain frequency region,
the HR-WPD guarantees that the noise only exists in a part
of decomposed signals. As a result, the signals which are less
polluted provide more accurate QRS features, thus reducing
the effect of noise.

To cancel the impact of the overall signal scaling, we stan-
dardize the decomposed signals, i.e. set the average of x3p to
‘‘0’’, variance to ‘‘1’’ and then get x ′3p. Fig. 4 shows three
examples of the ECG and their decomposed signals. For
ECG with some occasional premature ventricular contrac-
tions (PVCs) (as shown in Fig. 4 (a)), despite the fact that
x ′36 and x ′37 are noisy and the QRS in x ′30 is not obvious,
the QRS features in other signals are significant, especially
in x ′33 and x

′3
5. For ECG with high-frequency noise, as shown

in Fig. 4 (b), the proposed HR-WPD method obtains some
decomposed signals which are less polluted by noise, such
as x ′30, x

′3
1, x
′3
4, thus helping to analyze the morphological

features and predict the QRS. For ECGwith the EMnoise, x ′33
and x ′37 are less affected by the motion artifacts, thus helping
to detect the QRS, as shown in Fig. 4 (c).

B. CNN PREDICTION
Taking advantage of the fact that CNN is good at integrat-
ing information from multiple signals, we design a CNN
to comprehensively analyze the morphologies from all the
decomposed signals and predict the QRS. Fig. 5(a) shows the
architecture of the proposed CNN. The input signals consist
of 8 channels which are segmented from the signals x ′3p by
a window. We expect that the network input contains at least
one QRS, which is beneficial for morphological analysis. On
further considering the size of the network and the ease of
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FIGURE 4. Three examples of the ECG and the decomposed signals by
using the proposed HR-WPD. The ECG in (a) is from the recording 200 in
the ARRDB, including some occasional PVCs. The ECG in (b) is from the
recording 051 in the TELEDB, including high-frequency noise. The ECG in
(c) is from the recording 118 including 6dB EM noise in the NSTDB. The
red triangle in (c) indicates a sudden fluctuation of the EM noise which
looks like an ectopic heartbeat.

pooling data, we select 512 points (2.048s) as the width of the
network input (also the width of the segmentation window).
The network only classifies the midpoint (set as the 256th
point) of the input each time and the segmentation window
moves one point per time to reduce the effect of individ-
ual prediction errors on the QRS detection. If the distance
between the midpoint and the nearest R-peak occurrence time
is ≤15 points (60ms), this point will be regarded in the QRS
region and classified as ‘‘1’’, otherwise it will be regarded out
of the QRS region and classified as ‘‘0’’, as shown in Fig. 6.
This classification method forces the network to predict each
QRS region multiple times and keeps the distance between
two consecutive QRS regions large enough to avoid the
region overlap.

Since the network only classifies the midpoint, the impor-
tances vary with different input time. However, due to the
calculation characteristic of the convolution, it transforms
the signals from different time in the same way. Therefore,
we add a time-attention module at the begin of the network
to automatically emphasize the important time. The structure
of the proposed time-attention module is shown in Fig. 5(b).

The time-attention A = [a1, a2, . . . aW ] provides a coef-
ficient for each moment and rescales the feature map U by
the coefficient, Û = A · U, where U, Û ∈ RW×C . W
corresponds to the width of the feature map, and C cor-
responds to the channel number. Since we only apply the

FIGURE 5. (a) The architecture of the proposed network. (b) The
architecture of the time-attention module. (c) The structure of the
Convolutional unit. Where ‘‘BN’’ stands for the batch-normalization layer,
‘‘ReLU’’ stands for the rectified linear activation unit, ‘‘W’’ corresponds to
the width of the feature map, ‘‘C’’ corresponds to the channel number,
‘‘w’’ corresponds to the width of the convolution kernels or pooling, and
‘‘s’’ corresponds to the stride of the convolution or pooling.

time-attention module to the network input, theW and C are
set as 512 and 8, respectively. We add a group of trainable
variables V = [v1, v2, . . . vW ] in the time-attention mod-
ule. Each variable vj, j = 1 . . .W corresponds to a certain
moment. Given the continuity of the ECG, we first use an
average pooling operation with a width of 3 and stride of 1
to avoid excessive attention differences between adjacent
points. Then we employ a single gating mechanism with a
sigmoid activation and multiply the data by 2 to obtain the
final attention, as shown below:

ai = 2σ

1
3

i+1∑
i−1

vi

 (2)

All the variables in the time-attention module are initial-
ized to ‘‘0’’, in which case Û = U and the network pays
the same attention to all the moments before training. As the
training goes on, the network redistributes the attention auto-
matically.

We use multiple convolution units arranged in serial to pre-
liminary extract morphology features of the signal. The struc-
ture of the proposed convolution unit is shown in Fig. 5(c).
The batch-normalization (BN) and rectified linear activa-
tion units (ReLU) help the network get higher learning
rates [24], [25], and the maxpooling operations are used to
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FIGURE 6. Two cases of the network classification. The black circle is the
manually identified R-peak occurrence time. The red circle is the midpoint
of the input, which is the current classification point. The time region
colored in green indicates the distance between the midpoint and the
nearest R-peak occurrence time. The midpoint shown in (a) is in the QRS
region and labeled ‘‘1’’ and the midpoint shown in (b) is out of the QRS
region and labeled ‘‘0’’.

remove redundant information, reduce the network size and
to broaden the horizon of the next convolutional layer [26].
8 convolution units in the first two layers are adopted to
extract the limited local morphological features such as the
slope feature. Each time the data pass through two convolu-
tional layers, the number of the convolution units is doubled
to obtain more global and combined information of the QRS.
After the convolutional layers, we add a dense layer (also
called the fully-connected layer) with 2 nodes to analyze
the convolutional outputs altogether and predict whether the
midpoint of the inputs is in the QRS region. The output
of the dense layer is fed into a softmax activation layer to
produce the final prediction probabilities. During training,
we maintain the training class balance by randomly removing
redundant segments to avoid the CNN tending to predict as
the majority class [27].

C. VARIABLE THRESHOLD FOR QRS LOCATION
After the CNN prediction, we get the probabilities of each
point belonging to the QRS regions, as shown as the orange
line in Fig. 7. As there may be burrs in the sequence, we first
pass the predictions to a median filter. Then, we binarize the
predictions with an amplitude threshold Tha = 0.5 and select
all the positive time regions with the width larger than 30ms
(half the defined QRS region width) to distinguish the QRS
regions from false predictions. Since the normal heart rate
is greater than 50 beats per minute [28] (that is, the average
interval between two adjacent heartbeats is less than 1.2s),

FIGURE 7. Two examples of using the proposed variable threshold
method for QRS location from (a) recording 217 in the ARRDB
(b) recording 108 in the ARRDB. The dotted lines are the manually
identified R-peak occurrence time.

when the distance between two adjacent QRS regions is larger
than 1.2s, we have likely missed some QRS. So we slightly
lower Tha to 0.3 in this duration and search for the QRS
again, as shown in the duration circled in red in Fig. 7(a). This
variable threshold method reduces the probability of missed
detection, thus improving the detection performance. When
the distance between two predicted QRS regions is less than
0.2s which rarely happens in the real world [29], we remove
the one with a smaller width, as shown in the region circled
in green in Fig. 7(b). Finally, the midpoints of all the QRS
regions are considered to be the QRS locations.

IV. EXPERIMENTAL RESULTS
A. EVALUATION APPROACH
The proposed HR-WPD and QRS location algorithm are
implemented in Python, and the proposed time-attention
CNN is trained by Keras [30], which is a high-level Python
library. Keras allows for easy and fast prototyping of neural
networks through user-friendliness, modularity, and extensi-
bility.

We use the TELEDB, NSTDB, and ARRDB to evalu-
ate the robustness of the proposed method. Among them,
the TELEDB includes the ECG with true noise and the
NSTDB includes the ECG with EM noise which is gener-
ally considered the most troublesome [21] and the ARRDB
includes the ECGwith arrhythmia, abnormal QRSmorpholo-
gies, and high amplitude P, T waves.

We adopt the 5-fold randomized cross-validation [31] to
accurately evaluate the performance of this method on all the
recordings in the TELEDB and ARRDB. For the NSTDB,
since all the evaluation recordings are mixed with the same
EM noise, adopting the K-fold cross-validation will cause
data leakage, so we extract the unused parts of the EM noise
provided in the NSTDB and add it to recording 200-234 in
the ARRDB as the training set. All evaluation recordings
provided in the NSTDB are set as the testing set.

VOLUME 8, 2020 16983



M. Jia et al.: Robust QRS Detection Using HR-WPD and Time-Attention CNN

TABLE 1. The F1 of different networks with different convolutional layers on the TELEDB, NSTDB and ARRDB and the p-values obtained by the
independent samples t-test of F1.

Following ANSI/AAML EC38 [32] and EC57 [33], if the
predicted QRS is within 150ms of an annotated QRS, this
prediction is categorized as a true positive (TP, indicating
that a QRS is detected correctly). The QRS missed by the
algorithm is classified as a false negative (FN) and the false
detection by the algorithm is classified as a false positive (FP).
Sensitivity (SE), positive predictivity (P+), error rate (ER)
and F1-score (F1) are used as four evaluation metrics. They
are defined as equation 3. SE is the ratio of the QRS correctly
detected using the proposed method to the true beats (TB)
by the given annotation; P+ is the ratio of the TP to all the
detected QRS; ER is the ratio of false detections (FP and
FN) over the TB by the given annotation [15]; F1 provides
a comprehensive result based on SE and P+. Since ER and
F1 both consider the information of TP, FP, and FN detections
in a signal, they can be regarded as comprehensive indicators
of the QRS detection performance.

SE =
TP

TP+ FN
× 100% (3)

P+ =
TP

TP+ FP
× 100% (4)

ER =
FP+ FN

TB
× 100% (5)

F1 =
2 · SE · P+
SE + P+

× 100% (6)

B. PERFORMANCE COMPARISON OF THE NETWORKS
WITH DIFFERENT CONVOLUTIONAL LAYERS
To obtain the most suitable network structure for QRS
detection, we adjust the number of the convolutional layers
(defined as Nl) in the CNN as 2-8 and use F1 values as
the comprehensive indicators to evaluate the performance
of different networks with different convolutional layers on
the TELEDB, NSTDB, ARRDB. In addition, we apply the
independent samples t-test to evaluate the significance of the
F1 change for each additional convolutional layer. The results
are shown in Table 1.

We can see that withNl increasing, the F1 improves at first.
When Nl is 6 and 7, the network obtains the highest F1 on
all the evaluated databases. When Nl continues to increase,
the F1 drops. Thismay be because the output data width of the
8th convolutional layer has been reduced to 2, resulting in the
loss of time information. As Nl increases from 6 to 7, the p-
values of the three databases are all larger than 0.5, meaning

FIGURE 8. Examples of the proposed QRS detection on the TELEDB from
(a) recording 051, which contains high-intensity mixed noise, (b)
recording 169, which contains high-intensity powerline interference noise
and (c) recording 007, which contains both noise and high-amplitude
T-waves. The QRS detected during the time region colored in grey is
regarded as a TP.

that the QRS detection performance of the network does not
improve significantly. Taking both the detection performance
and computation amount into consideration, we choose the
network with 6 convolutional layers as the most suitable net-
work for QRS detection. The following experimental results
are all based on the network with 6 convolutional layers.

C. PERFORMANCE ON THE TELEHEALTH DATABASE
Thismethod achieves 98.99%SE, 95.57%P+, 5.61%ER and
97.25% F1 on the TELEDB. Three representative examples
of the proposed QRS detection method on the TELEDB
are shown in Fig. 8. When the ECG contains high-intensity
noise or contains both noise and high-amplitude T-waves,
the proposed method still predicts the QRS correctly and
achieves high robustness.

Table. 2 compares the performance of the proposed QRS
detection method with several other existing methods. Since
the TELEDB was available in 2016, only a few papers used
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TABLE 2. The comparison of the QRS detection performance on the
TELEDB. Where the SE, P+, ER, and F1 are calculated by the summarized
TP, FP, FN, and TB from all the ECG recordings.

TABLE 3. The detection performance of the proposed QRS detection
method on the NSTDB.

this database to evaluate the robustness of their algorithms.
To compare the proposed method with more methods, we add
the methods from [5], [6], [34], [35] reproduced by Kashif
et al in [4] for comparison. In Table. 2, though [16] achieves
higher P+, the proposed method achieves the highest SE,
F1 and the lowest ER, showing the best comprehensive detec-
tion performance.

D. PERFORMANCE ON THE MIT-BIH NOISE STRESS TEST
DATABASE
Table. 3 shows the results of the proposed method on the
NSTDB. In general, ourmethod achieves 99.25%SE, 96.31%
P+, 4.55% ER and 97.76% F1. Fig. 9 shows a representative
example of the QRS detection using the proposed method
on the NSTDB. When the ECG is contaminated by 0dB
EM noise, this method can still distinguish the QRS-complex
from the motion artifacts.

Table. 4 compares the performance of the proposed
QRS detection method with several other existing methods.
The detection performance of the proposed method on the
NSTDB is much better than other methods.

E. PERFORMANCE ON THE MIT-BIH ARRHYTHMIA
DATABASE
The proposed method achieves 99.89% SE, 99.90% P+,
0.21% ER and 99.89% F1 on the ARRDB in general. Fig. 10
shows some critical cases for QRS detection.When the evalu-
ated ECG contains PVCs, high-amplitude P, T waves or vary-
ing R-peak amplitudes, the proposed method keeps high
robustness and detects the QRS correctly.

Table. 5 compares the performance of the proposedmethod
with several other existingmethods. Xiang et al [17] excluded

FIGURE 9. An Example of the proposed QRS detection method on the
NSTDB from recording 118 containing 0dB EM noise. The QRS detected
during the time region colored in grey is regarded as a TP.

TABLE 4. The comparison of the QRS detection performance on the
NSTDB. Where the SE, P+, ER, and F1 are calculated by the summarized
TP, FP, FN, and TB from all the ECG recordings.

FIGURE 10. Examples of the proposed QRS detection method on the
ARRDB from (a) recording 117, which contains high amplitude of the
T-waves, (b) recording 200, which contains some PVCs, (c) recording 222,
which contains the high amplitude P-waves and (d) recording 228, which
contains greatly varying R-peak amplitudes. The QRS detected during the
time colored in grey is regarded as TP.

recording 102 and 104 when evaluating their algorithm with
the ARRDB. To compare the proposed method with more
methods, we use both all the recordings and the recordings
excluded 102 and 104 in the ARRDB for evaluation, as listed
in Table. 5. Since the ARRDB contains less noise, most
methods have high detection performance. The ER and F1 of
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TABLE 5. The comparison of the QRS detection performance on the ARRDB. Where the SE, P+, ER, and F1 are calculated by the summarized TP, FP, FN,
and TB from the evaluated recordings in the ARRDB.

the proposed method are the same as the lowest ER and
highest F1 in Table. 5, proving that this method yields a
comparable result to state-of-art methods for ECG with less
noise andmore abnormalmorphologies. Comparedwith [17],
which also used a CNN for the QRS detection, although
[17] has got higher P+, its SE is lower, resulting in a lower
comprehensive QRS detection performance than the pro-
posed method. Although [34] also achieved a very high QRS
detection performance on the ARRDB, [4] reproduced this
method and found that its noise tolerance is poor, as shown
in Table. 2.

V. DISCUSSION
A. SPECIFIC EFFECT OF THE TIME-ATTENTION MODULE
To enhance the influence of the input in important time and
reduce the interference in unimportant time, a time-attention
model is added in this paper. After training, we get the
time-attention A as described in Equ. 2 from the network.
Fig. 11 draws the time-attention when using the TELEDB,
NSTDB, and ARRDB for evaluation. It shows that the net-
work pays more attention to the time regions which are most
relevant to the classification, i.e., within 15 points (60ms)
from the midpoint. When the distance from the midpoint
is more than 60ms, the time-attention drops rapidly, which
helps the CNN classify the boundary of the QRS region.
Besides, the network also pays attention to the time regions
of 0.2s to 0.36s from the midpoint. It may mean that the
P, T waves help the network to predict the QRS. This is
because, when a heartbeat occurs at the midpoint, the adja-
cent P-wave and T-wave occurs likely in these two time
regions. To further explore the effectiveness of the time-
attention module, we remove the time-attention module from
the network with 6 convolutional layers and use the same pre-
processing and post-processing algorithms for QRS detec-
tion. The QRS detection results, the F1 difference compared
with the network with a time-attention module and the corre-
sponding p-values of the independent samples t-test on F1 are
shown in Table. 6. Compared with Table 2,4,5, we can see
that the time-attention module results in F1 improvements
from 0.01% to 0.14%.

FIGURE 11. The after-trained time-attention A when using the TELEDB,
NSTDB, and ARRDB for evaluation. Where the time-attention curve of the
TELEDB or ARRDB is obtained by calculating the average of all the
time-attention curves from the 5-fold cross-validation, and the
time-attention curve of the NSTDB is trained by recording 200-234 in the
ARRDB mixed with the EM noise in the NSTDB, as described in
Section IV.A.

B. THEORETICAL ANALYSIS FOR THE RESULTS IN
DIFFERENT DATABASES
For the TELEDB, in which there are many recordings
with true noise [16], the compared methods in Table 2
applied bandpass filters for pre-processing to filter out the
high-frequency and low-frequency noise. However, using
the bandpass filter loses both the low-frequency and high-
frequency information of the QRS, thus dropping the detec-
tion performance of these methods will drop when the noise
occurs in the passband of the filter. Although the proposed
method retains noise, the HR-WPD can acquire the signals
less affected by the noise when it only distributed in certain
frequency bands, and the CNN can comprehensively analyze
these signals and detect the QRS. Therefore, this method
reaches the lowest ER and the highest SE and F1.

For the NSTDB, because the EM noise widely distributed
in the NSTDB distributes in about 1-10Hz [36], the SNR of
the ECG with the EM noise in the high-frequency band is
higher than that in the low-frequency band. Losing the high-
frequency information, the QRS detection algorithms with
the conventional bandpass filters (such as [15], [16]) or the
wavelet transforms similar to bandpass filters (such as [10])
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TABLE 6. The detection performance of the proposed QRS detection
method without the time-attention module on the TELEDB, NSTDB, and
ARRDB, the F1 differences compared with the network with the
time-attention module and the corresponding p-values of the
independent samples t-test on F1.

all have poor robustness for ECG with the EM noise. This
method, however, needs to comprehensively analyze the
high-frequency part and low-frequency part of the ECG,
demonstrating higher robustness against the EM noise.

For the ARRDB, compared with the difference operation
applied before the CNN in [17], the proposed HR-WPD is
more advantageous for the CNN to obtain full frequency
band QRS features. Besides, the proposed time-attention
model helps the CNN focus on more important time regions.
So this method results in higher F1 and lower ER than [17].
However, from Table 5, we can see that the QRS detection
performance of this method does not improve a lot in the
case of a significant increase in the computation amount.
The first reason is that the simple band-pass filter is enough
to filter out the high amplitude P, T waves and retain the
QRS. The second reason is that different types of the QRS
are unevenly distributed in the ARRDB, (for example, all the
16 atrial escape beats distribute in the recording 223 [19],)
which reduces the representative of the training samples in
K-fold cross-validation, thus reducing the QRS detection
performance of the proposed method.

C. LIMITATIONS OF THE PROPOSED METHOD
Though the proposed method shows comparable or better
performance on multiple public databases, its limitations
should be recognized. First, as a machine learning algorithm,
the proposed method is highly dependent on the training data.
When there is a big difference between the training set and the
testing set, this method may not be robust enough. Second,
when the ECG does not contain noise, this method does not
improve the detection performance significantly compared
with state-of-art methods. Third, although we strive to control
the size of the network, the proposed method still needs
a larger amount of computation compared with traditional
methods. Therefore, this method is more suitable for detect-
ing the QRS on the cloud/edge server from the ECG data col-
lected by wearable devices at present. Nonetheless, with the
advancement of the neural network accelerator, this method
could eventually work on wearable devices in the future.

VI. CONCLUSION
In this paper, we have proposed a robust QRS detection
method including an HR-WPD for pre-processing and a
CNN with a time-attention module for prediction. The HR-
WPD decomposes the ECG to multiple signals and induces
the generalization of QRS features in different frequency
bands to reduce the effects of noise. Through setting a
specific weight to each moment, the time-attention module

helps the neural network allocate different attention to dif-
ferent time, hence further improving the robustness. The
proposed method is evaluated on the TELEDB, NSTDB, and
ARRDB. The experiment results indicate that our method
achieves comparable and even better performance compared
with state-of-art methods on the TELEDB (SE 98.99%, P+
95.57%, ER 5.61%, F1 97.25%), NSTDB (SE 99.25%, P+
96.31%, ER 4.55%, F1 97.76%) and ARRDB (SE 99.89%,
P+ 99.90%, ER 0.21%, F1 99.89%). For ECGwith abnormal
QRS morphologies, high amplitude P, T waves and severe
noise, the proposed method yields consistently accurate QRS
detection results, suggesting that it is highly applicable to the
QRS detection from the ECG signals collected by wearable
end-points.
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