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ABSTRACT The objective of this article is to propose and statistically validate a more general additive
non-Gaussian noise distribution, which we term McLeish distribution, whose random nature can model
different impulsive noise environments commonly encountered in practice and provides a robust alternative
to Gaussian noise distribution. In particular, for the first time in the literature, we establish the laws of
McLeish distribution and therefrom derive the laws of the sum ofMcLeish distributions by obtaining closed-
form expressions for their probability density function (PDF), cumulative distribution function (CDF),
complementary CDF (C2DF), moment-generating function (MGF) and higher-order moments. Further, for
certain problems related to the envelope of complex random signals, we extend McLeish distribution to
complex McLeish distribution and thereby propose circularly / elliptically symmetric (CS / ES) complex
McLeish distributions with closed-form PDF, CDF, MGF and higher-order moments. For generalization
of one-dimensional distribution to multi-dimensional distribution, we develop and propose both multivariate
McLeish distribution and multivariate complex CS / ES (CCS / CES) McLeish distribution with analytically
tractable and closed-form PDF, CDF, C2DF and MGF. In addition to the proposed McLeish distribution
framework and for its practical illustration, we theoretically investigate and prove the existence of McLeish
distribution as additive noise in communication systems. Accordingly, we introduce additive white McLeish
noise (AWMN) channels. For coherent / non-coherent signaling over AWMN channels, we propose novel
expressions for maximum a priori (MAP) and maximum likelihood (ML) symbol decisions and thereby
obtain closed-form expressions for both bit error rate (BER) of binary modulation schemes and symbol error
rate (SER) of various M-ary modulation schemes. Further, we verify the validity and accuracy of our novel
BER / SER expressions with some selected numerical examples and some computer-based simulations.

INDEX TERMS Additive white McLeish noise channels, coherent / non-coherent signaling, conditional bit
error rate, conditional symbol error rate, McLeish distribution, McLeish Q-function, multivariate McLeish
distribution, Non-Gaussian noise.

LIST OF ACRONYMS
ASE Amplified Spontaneous Emission
ASK Amplitude Shift Keying
AWGN Additive White Gaussian Noise
AWLN Additive White Laplacian Noise
AWMN Additive White McLeish Noise
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BDPSK Binary Differential Phase Shift Keying
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DS Direct Sequence
DSL Digital Subscriber Line
ES Elliptically Symmetric
FSO Free-Space Optical Communications
ILT Inverse Laplace Transform
IQR Inphase-to-Quadrature Ratio
M-ASK M-ary Amplitude Shift Keying
M-DPSK M-ary Differential Phase Shift Keying
M-PSK M-ary Phase Shift Keying
M-QAM M-ary Quadrature Amplitude Modulation
MAI Multiple Access Interference
MAP Maximum A Posteriori Decision
MGF Moment-Generating Function
ML Maximum Likelihood Decision
MUI Multiple User Interference
MOM Method of Moments Estimation
OOK On-Off Keying
PDF Probability Density Function
PLC Power-Line Communications
PMF Probability Mass Function
Q-function Quantile-function
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
SER Symbol Error Rate
SNR Signal-to-Noise Ratio
WSS Wide Sense Stationary

I. INTRODUCTION
The additive white noise in communication systems
[1]–[5, and references therein] is commonly defined as an
arbitrarily varying undesired signal that additively corrupts
signal transmission over communication channels. In the
last few decades, many modern techniques have been devel-
oped or improved to overcome and eliminate the problem
of reliable transmission over noisy communication chan-
nels. Such techniques constitute both theoretical informa-
tion and experimental results on source / channel coding
and modulation schemes. In order to bring the theory and
practice together concerning reliable transmission, scientists
and researchers have evaluated the analyses of most of the
techniques for various noisy channels where it is widely
agreed to have signal transmission corrupted additively by
thermal noise. The most significant property of thermal noise
is that it is abstracted by a complex Gaussian distribution in
consequence of the application of central limit theorem (CLT)
on the sum of infinitely small noise sources [3]–[7]. The
Gaussian abstraction of additive noise, usually termed as ad-
ditive Gaussian noise, provides an insight into the underlying
behavior of communication channels, while it ignores some
other impairments that are common in the nature of various
communication channels. For instance, rather than the ther-
mal noise, the presence of undesirable interference signals,
which arise in the form of random bursts for a short period
of time, induces random fluctuations in the power of additive
noise. Such additive noise with random power fluctuations

is called additive non-Gaussian noise, sometimes termed as
impulsive additive noise and is of particular concern in many
communication systems.

From the experimental point of view, there are many com-
munication systems in which signal transmission is ex-
posed to additive non-Gaussian noise. For example, in digital
subscriber line (DSL) communication system, the random
noise-power fluctuations, predominantly caused by electro-
magnetic interference due to electrical switches and home
appliances, are an example source of additive non-Gaussian
noise [8]–[11]. Also, power-line communication (PLC) is
another communication system suffering from additive non-
Gaussian noise. As such, in PLC system, the impulsive na-
ture of additive non-Gaussian noise inherently forms due to
switching transients among different appliances and devices
[12]–[17]. Even if signal transmission over PLC networks
has been verified as a good technique, the impulsive na-
ture of non-Gaussian noise is often observed as a hindrance
for more efficient PLC-based transmission [17]–[19]. Addi-
tive non-Gaussian noise is also experienced in underwater
acoustics channels, which results from interference and ma-
licious jamming [20]–[27]. Other types of communication
channels, where signal transmission is subjected to addi-
tive non-Gaussian noise, typically include wireless fading
channels such as urban and indoor radio channels [28]–[34],
ultra-wide band communications (UWB) [35]–[37], fre-
quency / time-hopping with jamming [38], [39], millimeter-
wave (around 60 GHz or higher) radio channels [40]–
[42], wireless chip-to-chip communications (WCC) [43]–
[47], and wireless transmissions under strong interference
conditions [36], [39], [48]–[52]. Further, some impulsive sce-
narios such as engine ignition, rotating machinery, lighting,
as well as some impulsive multi-user interference and multi-
path propagation can also produce additive non-Gaussian
noise in wireless channels [29]–[32], [53]–[57]. Impulsive
effects that introduce additive non-Gaussian noise can also be
found in cognitive radio (CR) [58]–[64] due to the simultane-
ous spectrum access under miss-detection events [65]–[68].
Themiss-detection event occurs when a cognitive user fails to
detect an active primary user. In this event, collisions happens
and generates additive non-Gaussian noise in the signal trans-
mission, which considerably strikes the performance of cog-
nitive links. In addition, in recent years, the impulsive nature
of additive noise in free-space optical communications (FSO)
has received much attention [69]–[71, andreferencestherein].
An essential aspect in optical communications is the exis-
tence of the amplified spontaneous emission (ASE) noise
[72], [73]. It has been experimentally shown in [74] and
theoretically predicted in [75]–[78] that the ASE noise fol-
lows a non-Gaussian distribution. It is also worth mentioning
that, in wireless-powered communications (WPC) [79]–[83],
we typically observe that wireless power transmission causes
some random fluctuations in the power supply voltage of
wireless powered radio circuits, which arbitrarily shifts the
optimum circuit operating point. Thus, additive noise inWPC
typically follows a non-Gaussian distribution.
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Consequently, due to the facts and observations mentioned
above, we can undoubtedly notice and easily deduce that ad-
ditive non-Gaussian noise is extremely common in commu-
nication channels. Thus, to design different communication
techniques and protocols properly, this ubiquitous presence
also makes the performance evaluation more challenging
for different coherent / non-coherent signalling over additive
non-Gaussian noise channels. However, to the best of our
knowledge, there is no statistical framework in the literature
to investigate the performance evaluation for additive non-
Gaussian noise channels.

A. NON-GAUSSIAN NOISE DISTRIBUTIONS
From the theoretical point of view, it is worth noting that ad-
ditive noise following Gaussian distribution has been shown
in [84], [85] and operationally justified in [86] to be the
worst noise distribution for communication channels while
minimizing the capacity of signal transmission with respect
to a noise variance constraint. Hence, the nature of additive
non-Gaussian noise in communication channels has impul-
sive effects that can be properly characterized by its excess-
Kurtosis [87], where the excess-Kurtosis is zero for Gaussian
noise distribution. A noise distribution with a positive excess-
Kurtosis has a heavier tail than the Gaussian distribution and
hence is identified (strictly considered) as a non-Gaussian
distribution. In order to adequately capture different impul-
sive noise effects, many non-Gaussian distributions such as
Bernoulli-Gaussian, Middleton Class-A, Class-B and Class-
C, Laplacian, symmetric α-stable (SαS) and generalized
Gaussian distributions are proposed in literature. The fact that
non-Gaussian distributionmay ormay not providemathemat-
ically tractable and analytically closed-form statistical results
has attracted less attention from research community.

In literature, Bernoulli-Gaussian distribution has been used
as an approximation of impulsive noise in communication
channels [11], [88]–[93]. Also, Middleton Class-A, Class-
B and Class-C distributions [57] distinguish impulsive noise
according to the frequency range occupied by the impulsive
effects compared to the receiver bandwidth and have been
extensively studied in the literature [94], [94]. Laplacian dis-
tribution is another non-Gaussian distribution used to model
the additive impulsive noise effects in signal process-
ing / detection and communication studies [36], [39], [50],
[51], [71], [95]–[101]. Another popular non-Gaussian distri-
bution is SαS distribution providing a considerably accurate
model for impulsive noise [55], [102]–[107]. On the top of
Laplacian and SαS distributions, the generalized Gaussian
distribution is one of the most versatile non-Gaussian dis-
tributions in the literature. It is commonly used to model
noises in several digital communication systems [108]–[113].
Each non-Gaussian noise distribution mentioned above can
be considered as an alternative (but feeble alternative) to
Gaussian noise distribution and cannot be appropriately in-
terpreted as the sum of large number of independent and
identically distributed impulsive noise sources with small
power. From the experimental point of view, unlike Gaussian

distribution, each non-Gaussian distribution has heavy-tail
behavior modeled by positive excess-Kurtosis as mentioned
previously. The presence of positive excess-Kurtosis makes
some statistical moments infinite and therefrom makes it im-
possible to fit into many real-world phenomena. For instance,
the variance of SαS distribution is infinite for all α< 2. The
lack of characterizing the real-world phenomena of impulsive
noise sources from Gaussian distribution to non-Gaussian
distribution is the crucial weakness of non-Gaussian noise
distributions mentioned above. In this context, we propose
that the distribution proposed by McLeish in [114], [115] can
be used as non-Gaussian distribution as a robust alternative
to Gaussian distribution. As such, this distribution closely
resembles that of the Gaussian distribution; it is symmetric
and unimodal and not only has support the whole real line but
also has tails that are at least as heavy as those of Gaussian
distribution. More importantly, it has all moments finite, and
its excess-Kurtosis is always positive (i.e., its Kurtosis is
greater than or equal to that of the Gaussian distribution).
We readily deduce from these features that, possessing the
important features of Gaussian distribution, this distribu-
tion is very useful in modelling impulsive noise phenomena
with somewhat heavier tails than the Gaussian distribution
has. However, to the best of our knowledge, the laws of
this distribution have so far not attracted the attention of
theoreticians, practitioners and researchers not only in the
field of wireless communications but also in other fields of
engineering.

B. McLeish NOISE DISTRIBUTION
Suggested in [114], [115] as a robust alternative to Gaussian
distribution is the generalization of Laplace distribu-
tion and therefore inherently called generalized Laplacian
distribution [116]–[122]. However, in literature, generalized
Gaussian distribution is also called generalized Laplacian
distribution [121, Sec. 4.4.2], [123, Sec. 6], [124]–[133],
[133]–[135]. In order to avoid this confusion and in honor
of D. L. McLeish for his excellent paper [114] and his
technical report [115], the distribution suggested in [114],
[115] has been recently renamed by us as McLeish distribu-
tion in [136] and by Marichev and Trott in Wolfram’s blog
posts [137]. Particularly, we propose McLeish distribution as
a versatile additive non-Gaussian noise distribution whose
statistical description is typically defined on two main ob-
servations, one of which is that additive noise spontaneously
emerges as the sum of many impulsive noise sources with
small power, where each impulsive noise source is found to
be properly characterized by a Laplacian distribution. The
other main observation is that, according to the CLT [138],
the summation of many impulsive noise sources converges
to Gaussian distribution as their number infinitely increases.
Thus, we conclude that McLeish distribution provides an
excellent fit not only for Gaussian distribution but also heavy-
tailed non-Gaussian distribution and thereby captures dif-
ferent impulse noise environments (i.e., different impulsive
noise distributions are of all special cases or approximations
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ofMcLeish distribution) [136]. The evolution of its impulsive
nature from Gaussian distribution to non-Gaussian distribu-
tion is explicitly parameterized in a more nature-inspired
way, especially than those of Laplacian, SαS and generalized
Gaussian distributions.

C. OUR MOTIVATIONS AND CONTRIBUTIONS
In this article, before explaining the motivation behind our
contributions, it is worth mentioning that we propose novel
contributions starting from Theorem 1 to Theorem 86 with
exact and closed-form (analytical) expressions.

Gaussian distribution has indeed emerged in almost all sci-
entific problems. It is therefore fundamental to all branches of
science and engineering and has been well studied within
the literature of probability and statistics. Since it provides
closed-form expressions, it allows us to better understand the
technical and conceptual problems inherent in science and
engineering. On the other hand, although it has been used over
and over to solve the scientific problems, it cannot provide
solutions for the problems where impulsive statistics (effects)
leading to heavy-tailed non-Gaussian distribution are well
observed. While paying attention to non-Gaussian distribu-
tions mentioned in Section I-A for compatible analysis and
synthesis of impulsive effects, we subsequently provide evi-
dence that a non-Gaussian distribution in which the properties
of Gaussian distribution are desirable is mostly needed in
the literature. This strong piece of evidence motivates us to
propose McLeish distribution [114], [115] in Section III-A
as a non-Gaussian distribution which has the well-known
desirable properties of Gaussian distribution yielding closed-
form results [136]. After showing in Section III-A that some
special cases of McLeish distribution are Dirac’s distribu-
tion, Laplacian distribution and Gaussian distribution, for
the first time in the literature, we present the principles behind
the laws of univariate McLeish distribution. Accordingly,
we propose closed-form expressions for the moments in
Theorem 1. After introducing McLeish’s quantile-function
(Q-function) and in Theorem 3 deriving its closed-from ex-
pression usingMeijer’s G and Fox’s H functions [139]–[141],
we propose the cumulative distribution function (CDF) in
Theorem 2 and complementary CDF (C2DF) in Theorem 4.
Moreover, we obtain the lower- and upper-bound approxima-
tions for McLeish’s Q-function. As our other contributions,
we propose a closed-form expression for the moment-
generating function (MGF) and compare its special cases
with the results in the literature. To the best of our knowledge,
there is no statistical framework in the literature for com-
parative analysis and synthesis of a univariate non-Gaussian
distribution. Accordingly, we bridge the gap by proposing the
framework for the laws of univariate McLeish distribution in
Section III-A.
It is worth noting that many situations arise in all branches

of science and engineering, where the sum of distributions
is inevitable. For instance, for a reliable signal transmis-
sion through additive noise channels, the additive noise can
be typically explored to be the sum of noise distributions.

The two most important of these situations are diversity
combining and cooperative communications [1]–[3]. In case
of impulsive effects which yields heavy-tailed non-Gaussian
noise distribution, there is a demanding need to investigate
the statistical laws of the sum of non-Gaussian distributions.
This fact highly motivates us to propose in Section III-B
closed-form expressions for the laws of the sums of mutually
independentMcLeish distributions, each of which is typically
derived for arbitrary parameters for statistical characteriza-
tion purpose. In particular, we propose the MGF in Theo-
rem 6 and thereby propose the probability density function
(PDF) and CDF in Theorem 7 and Theorem 8, respectively.
Moreover, we propose the moments in Theorem 9 using
Theorem 1. As our other contributions, we derive the special
cases of the novel expressions and compare them with the
ones available in the literature.

For our motivation behind the novel contributions in both
Section III-C and Section III-D, it should be mentioned that,
for the first time, complex Gaussian distribution was intro-
duced by Itô in [142]. Later, the trend in the design and anal-
ysis of future concepts, novel ideas and new applications have
led to widespread use of complex Gaussian distribution in
almost all branches of science and engineering. For exam-
ple, in the branch of electrical engineering, the received signal
in both radio frequency (RF) communications [1]–[5, and
references therein] and optical communications [143]–[145,
and references therein] is represented by a complex signal
whose inphase and quadrature parts are jointly subject to
bivariate Gaussian distribution [3, Eq. (2.3-78)] with a simple
linear correlation structure that is either circularly symmetric
(CS) with zero correlation or elliptically symmetric (ES) with
non-zero correlation between their real and imaginary parts.
The CS and ES features have attracted the attention of many
theoreticians, practitioners and researchers and led to an ac-
tive research area for reliable transmission over additive noise
channels. However, to the best of our knowledge, for such
problems associated with a complex signal whose inphase
and quadrature parts are subject to non-Gaussian noise, there
is a demand in the literature for a complex non-Gaussian
distribution yielding closed-form distribution laws. This fact
motivates us to propose complex (bivariate) McLeish dis-
tribution. According to the correlation structure between its
inphase and quadrature parts, our other contributions in both
Section III-C and Section III-D can be particularly summa-
rized as follows.
• In Section III-C, we introduce in Theorem 10 a complex
McLeish distribution, similar to complex Gaussian dis-
tribution, whose inphase and quadrature parts are jointly
uncorrelated while its envelope and phase are mutually
independent. A complex distribution is called CS or cir-
cular if rotating the complex distribution by any an-
gle does not change its PDF [3, P. 64-66]. In accor-
dancewith that, we propose complex and circularly sym-
metric (CCS) McLeish distribution and further obtain
the laws of CCS McLeish distribution with closed-form
expressions for the PDF, CDF, MGF and joint moments
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in particular from Theorem 11 to Theorem 14 as our
other contributions.

• In Section III-D, we extend CCS McLeish distribution
to a complex McLeish distribution whose inphase and
quadrature parts are jointly correlated with a simple
linear correlation structure similar to the one found in
complex (bivariate) Gaussian distribution [1]–[5, and
references therein]. Accordingly, we introduce and de-
fine in Theorem 15 complex and elliptically symmet-
ric (CES) McLeish distribution. Thereon, as our other
contributions from Theorem 16 to Theorem 18, we pro-
pose the laws of CES McLeish distribution with closed-
form PDF, CDF and MGF expressions, respectively.

For our motivation in Section III-E, it is worth noting that
multivariate Gaussian distribution, which is a generalization
of one-dimensional (univariate) Gaussian distribution to the
higher dimensions, plays an essential role in all branches of
science and engineering. For example, in the field of wireless
communications, the usage of multidimensional signaling
makes multivariate Gaussian distribution attractive for mod-
eling additive noise in communication channels. On the other
hand, to the best of our knowledge, there is no multivariate
non-Gaussian distribution in the literature, which is math-
ematically tractable and possesses the desirable properties
of multivariate Gaussian distribution yielding closed-form
results. To bridge this gap, we present in Section III-E our
following novel contributions.
• As a robust alternative to standard multivariate Gaussian
distribution [146]–[150], we introduce and propose stan-
dard multivariate McLeish distribution by generalizing
univariate (one-dimensional) McLeish distribution to
the higher dimensions in such a way that we define it in
Theorem 19 as the vector (collection) of mutually uncor-
related and identically distributed McLeish distributions
with zero mean, unit variance and the same normality.
We show that, similar to standard multivariate Gaussian
distribution, standard multivariate McLeish distribution
maintains its shape under orthogonal transformations
since its covariance matrix is a unit matrix. For the first
time in the literature, from Theorem 20 to Theorem 23,
we establish the laws of standard multivariate McLeish
distribution and check their special cases for consistency
and completeness.

• Further, for the vector of mutually uncorrelated and
non-identically distributed McLeish distributions with
distinct variances, we find out how the covariance ma-
trix turns from a unit matrix into a positive definite
diagonal one. As our other contribution, we propose
in Theorem 24 multivariate McLeish distribution with
a positive definite diagonal covariance matrix. For the
first time in the literature, from Theorem 25 to Theo-
rem 28, we establish the laws of multivariate McLeish
distribution with a diagonal covariance matrix.

• It is also worth noting that a measure of howmultivariate
Gaussian distribution varies randomly is the correlation

structure amongmarginal Gaussian distributions, known
as the covariance matrix, which allows obtaining closed-
form and unique expressions that facilitate the solutions
of many problems in science and engineering. This un-
deniable fact motivates us to generalize the correlation
structure of multivariate McLeish distribution from one
diagonal matrix to a full-rank positive definite matrix.
Accordingly, our other contribution in Section III-E is
to discuss the properties of covariance matrix and in
Theorem 29 to propose multivariate McLeish distribu-
tion with a positive definite covariance matrix whose
distribution laws are established by closed-form ex-
pressions from Theorem 30 to Theorem 33. Further-
more, not only in Theorem 34, where we show that
multivariate McLeish distribution is closed under any
non-degenerate affine transformation but also in The-
orem 35, we show that its conditional and marginal
distributions are also jointly multivariate McLeish
distribution.

Besides, for our motivation behind the novel contribu-
tions in Section III-F, it should be mentioned that multi-
variate complex distributions are predominantly used. For
instance, in electrical engineering, the theory of wire-
less transmission mostly deals with complex distributions.
In [151], Wooding proposed multivariate complex Gaussian
distribution and studied its correlation structure. Later, Good-
man [152] discussed its statistical properties with the ana-
logue of the Wishart distribution by considering multiple
and partial correlations. After Goodman [152] and others
[153]–[163], research and studies on multivariate com-
plex Gaussian statistical analysis got an impetus. As such,
the trend in the design and analysis of transmission technolo-
gies provoked the widespread use of multivariate complex
Gaussian distribution to model random fluctuations in RF
communications [1]–[5, and references therein] and optical
communications [75], [143]–[145, and references therein].
It was later either explicitly or implicitly often assumed
and experimentally verified that multivariate additive noise
in wireless transmissions follows a multivariate CCS / CES
Gaussian distribution with a CS / ES correlation structure
[1]–[5, and references therein]. On the other hand, due to
the purposes mentioned previously, there exists a demand for
multivariate CCS / CES non-Gaussian distribution that yields
closed-form distribution laws. This fact motivates us to pro-
pose in Section III-F the extension of multivariate McLeish
distribution to multivariate CCS / CES McLeish distribution
with the following novel contributions.
• For the vector of uncorrelated and identically dis-
tributed CCS McLeish distributions with zero mean,
unit variance, and the same normality, we introduce in
Theorem 36 standard multivariate CCS McLeish distri-
bution and establish its distribution laws by obtaining
closed-form PDF, CDF, C2DF, and MGF expressions
from Theorem 37 to Theorem 40, respectively. Further,
we show that standard multivariate CCSMcLeish distri-
bution is closed under unitary transformation.
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• For the vector of uncorrelated and non-identically distri-
buted CCS McLeish distributions with different vari-
ances, we introduce in Theorem 41 multivariate CES
McLeish distribution with a diagonal covariance matrix
whose distribution laws are established by closed-form
PDF, CDF, C2DF, and MGF expressions from Theo-
rem 42 to Theorem 45, respectively.

• As our other contributions in Section III-F, for the
vector of correlated and non-identically distributed
CES McLeish distributions with different variances, we
introduce in Theorem 46 multivariate CES McLeish
distribution with a complex covariance matrix. After
investigating the circular symmetry and positive definite
properties of complex covariance matrices, we obtain
closed-form PDF, CDF, C2DF, and MGF expressions
fromTheorem 47 to Theorem 50, respectively, establish-
ing the distribution laws of multivariate CES McLeish
distribution in general.

In consequence with our above-mentioned contributions,
to study impulsive statistics using McLeish distribution, for
the first time, we propose in Section III a general frame-
work both in scalar as well as in vector version. With the
aid of this framework, we propose additive white McLeish
noise (AWMN) channels in Section IV and investigate the
impulsive effects within wireless communication systems.
We explain the motivation behind our contributions as
follows.
• In the literature, it is widely assumed that noise variance
(i.e., noise power) is constant and precisely known to
the receiver [1]–[5]. However, this is practically im-
possible since noise variance in any wireless commu-
nication indeed fluctuates randomly over time due to
temperature change, ambient interference, and filter-
ing [164]–[169]. The noise variance fluctuations are
known as impulsive effects. Depending on the pres-
ence of impulsive effects in the communication chan-
nel, the variance of noise variance fluctuations changes
from one communication system to the other commu-
nication system; sometimes, it can be very severe to
be considered and sometimes very weak to be ignored.
In Section IV-A, we investigate noise variance fluctu-
ations. In Theorem 51, we propose the usage of Al-
lan’s variance to determine the correlation within noise
variance fluctuations and obtain in Theorem 52 the cor-
responding auto-correlation coefficient. From these re-
sults, we propose in Theorem 53 the coherence time for
noise variance fluctuations. According to the uncertainty
of noise variance and the comparison of this coherence
time both with the coherence time of fading conditions
and the symbol duration, we introduce the classifica-
tion of additive noise channels as (i) constant variance,
(ii) slow-variance uncertainty, (iii) fast-variance uncer-
tainty. Subsequently, we emphasize that the McLeish
distribution can model these three classes of noise
variance uncertainties with the aid of its normality
parameter.

• In Section IV-B, we investigate the existence ofMcLeish
noise distribution in wireless communications. In more
detail, for the first time in the literature, we show in
Section IV-B.1 that the thermal noise in electronic mate-
rials follows McLeish distribution rather than Gaussian
distribution. Further, we show in Section IV-B.2 that
multiple access interference (MAI) /multiple user inter-
ference (MUI) also follow McLeish distribution rather
than Laplacian distribution. To represent how McLeish
noise distribution can model wide range of realistic im-
pulsive effects (uncertainty of noise variance), we em-
phasize in Section IV-B.3 that the McLeish distribution
demonstrates a superior fit to the different impulsive
noise from non-Gaussian to Gaussian distribution.

From the important findings highlighted in Section IV, it is
obviously more appropriate to model additive white noise in
communication channels by McLeish distribution rather than
Gaussian distribution. The impulsive effects follow a non-
Gaussian distribution, requiring the use of McLeish dis-
tribution as a convenient non-Gaussian model for additive
white noise in communication channels. Therefore, the per-
formance analysis of communication systems is critical if
they are exposed to additive non-Gaussian noise that follows
McLeish distribution. Thanks to our contributions as men-
tioned earlier, and thanks to the statistical framework that
we propose for McLeish distribution from Section III to Sec-
tion IV, we propose in Section V complex correlated AWMN
vector channels. For coherent and non-coherent signaling
over complex correlatedAWMNvector channels, we have the
following contribution sets about the performance of binary
and M-ary modulation schemes.
• In Section V-A, we investigate the channel-side infor-
mation (CSI) requirements for coherent signaling over
complex correlated AWMN vector channels and thereby
propose closed-form maximum a posteriori decision
(MAP) andmaximum likelihood decision (ML) decision
rules for M-ary modulation schemes from Theorem 54
to Theorem 57. Thanks to the closed-form MAP and
ML decision rules, we analyze in Section V-A.1 the bit
error rate (BER) / symbol error rate (SER) performance
of coherent signaling. As such, in Theorem 58, we obtain
closed-form upper-bound expressions for SER of M-ary
modulation schemes. From Theorem 59 to Theorem 61,
we obtain the MAP and ML decision rules for binary
modulation schemes. Furthermore, from Theorem 62 to
Theorem 65, we analyze the BER performance of binary
modulation schemes and therein propose exact closed-
form BER performance expressions of binary phase shift
keying (BPSK), binary frequency shift keying (BFSK),
and on-off keying (OOK) modulation schemes. As our
other contributions, from Theorem 66 to Theorem 70,
we obtain exact closed-form SER expressions of M-ary
modulation schemes such as M-ary amplitude shift key-
ing (M-ASK), M-ary quadrature amplitude modulation
(M-QAM), M-ary phase shift keying (M-PSK) and
quadrature phase shift keying (QPSK),
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• For our motivation in Section V-B, it is worth mention-
ing that, in wireless communications, when the phase of
the received signal cannot be accurately recovered at
the receiver, coherent signaling cannot be performed.
In such scenarios, communication systems must rely
upon non-coherent or differentially coherent signal
reception. Accordingly, we investigate the CSI require-
ments for non-coherent signaling over complex corre-
lated AWMN vector channels and propose the MAP and
ML decision rules from Theorem 71 to Theorem 74.
After deriving in Theorem 75 and Theorem 76 the PDFs
for the inphase and quadrature projections of the re-
ceived complex signal on possible modulation symbols,
we analyze the non-coherent signalling over complex
correlated AWMN vector channels from Theorem 77 to
Theorem 86, where we propose closed-form ex-
pressions for non-coherent orthogonal signaling, bi-
nary non-coherent frequency shift keying (BNCFSK),
M-ary differential phase shift keying (M-DPSK), and
binary differential phase shift keying (BDPSK).

As a result, with the extensive aid of the contributions men-
tioned above, we can conclude that multivariate CCS and
CES McLeish distribution is more general additive noise
distribution that can be readily used in all branches of science
and engineering.

D. ARTICLE ORGANIZATION
We organize the remainder of the article as follows.
In Section II, we introduce the notation and statistical def-
initions. In Section III, we establish the laws of McLeish
distribution, where we start from its univariate case and con-
tinue through to its multivariate case both in real domains and
complex domains. In Section IV, we investigate the variance-
uncertainty of additive noise and then introduce AWMN
channels with existence examples in the communication tech-
nologies. After presenting the complex AWMN vector chan-
nels in Section V, we study the BER / SER performance of
modulation schemes in Section V-A for coherent signaling
and Section V-B for non-coherent signaling over AWMN
channels. Finally, we offer some concluding results in the last
section.

II. PRELIMINARIES
In this section, we introduce the notations used in this article
and present some special functions and statistical definitions.

A. NOTATIONS
In general, scalar numbers such as integer, real and complex
numbers are denoted by lowercase letters, e.g. n, x, z. Let N
denote the set of natural numbers, R the set of real numbers.
As such, R+ and R− denote the sets of positive and negative
real numbers, respectively. Appropriately, the set of complex
numbers, denoted byC, is the planeR×R=R2 equipped with
complex addition, complex multiplication, yielding complex
space. The complex conjugate of z= (x, y)= x + y ∈ C is
denoted by z∗= (x,−y)=x−y, where x, y∈R and =

√
−1

denotes the imaginary number. Furthermore, the inphase x=
<{z} and the quadrature y= ={z}, where <{·} and ={·} give
the real part and imaginary part of a given complex number,
respectively. Any non-zero complex number has a polar rep-
resentation z = |z| exp(θ ), where θ = arg(z) ∈ [−π, π) is
called the argument of z, and |z| = d(z, 0) denotes the (L2-
norm) modulus of z, where d2(·, ·) : C × C→R denotes the
Euclidean squared-distance between zk = xk + yk ∈ C and
z`=x` + y` ∈ C, defined as

d2(zk , z`) = 〈zk − z`, zk − z`〉, (1)

where 〈·, ·〉 : C×C→R denotes the Euclidean inner product
in complex space, defined as

〈zk , z`〉 = <
{
z∗kz`

}
=

1
2
z∗kz` +

1
2
zkz∗` = xkx` + yky`. (2)

Further, the inphase and quadrature of any z ∈ C are given
by <{z} = 〈1, z〉, and ={z} = 〈, z〉, respectively. Also,
the modulus is given by |z| =

√
〈z, z〉. When the inphase

and quadrature numbers of a complex space are correlated,
the distance between zk=xk + yk ∈C and z`=x` + y`∈C
is obtained by Mahalanobis squared-distance, that is

d2(zk , z`) = 〈zk − z`, zk − z`〉ρ, (3)

where ρ ∈ [−1, 1] denotes the correlation coeffi-
cient between the inphase and quadrature numbers, and
〈·, ·〉ρ : C×C→ R denotes the Mahalanobis inner product
in complex space, defined as

〈zk , z`〉ρ = (xkx` + yky` − ρxky` − ρykx`)/(1− ρ2), (4)

in correlated complex space (i.e, ρ 6=0). The modulus of z is
given by |z|ρ =

√
〈z, z〉ρ . Setting ρ = 0 in (4) yields (2), i.e.,

〈zk , z`〉0=〈zk , z`〉. Thus, |z|0=|z|.
For simplicity in multi-dimensional space, column vectors

are denoted by boldfaced lowercase letters, e.g. z = x +
y∈Cm, where x=[x1, x2, . . . , xm]∈Rm and y=[y1, y2, . . . ,
ym] ∈ Rm. Similarly, matrices are denoted by boldfaced
uppercase non-italic letters, e.g. Z=X + Y∈Cm×n, where
X,Y∈Rm×n. Moreover, the identity matrix of size m×m is
fixedly denoted by Im, and both zero vector of size m and
zero matrix of size m×m are also fixedly denoted by 0m.
Further, transpose and hermitian (conjugate) transpose are
denoted by (·)T and (·)H , respectively. det(·), (·)−1 and Tr(·)
denote the determinant, inverse and trace matrix operations,
respectively. diag(·) yields a square diagonal matrix whose
diagonal is formed from an vector. Furthermore, in multi-
dimensional space whose dimensions are correlated, the Ma-
halanobis squared-distance between x ∈ Rm and y ∈ Rm is
given by

d2(x, y) = 〈x− y, x− y〉P (5)

with the correlation coefficient matrix P=
[
ρjk
]
m×m, where

ρjj= 1, ρjk = ρkj and −1≤ ρj,k ≤ 1 for all 1≤ j, k ≤m. Note
that Pmust be symmetric and positive definite (i.e., xTPx>0
for all x∈Rm).Moreover, in (5), 〈·, ·〉P : Rm

×Rm
→R denotes
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the Mahalanobis inner product in higher dimensional space,
and is typically defined as

〈x, y〉P = xTP−1y. (6)

Herewith, the norm of x, defined as ‖x‖P=d(x,0), is written
as ‖x‖P =

√
〈x, x〉P = ‖P

−1/2x‖. In case of no correlation,
we have P = I, and hence reduce (6) to the well-known
Euclidean inner product in higher dimensional space, that is
given by

〈x, y〉 = xT y, (7)

and the norm of x to ‖x‖ =
√
〈x, x〉. In multi-dimensional

complex spaces, similar notations also exist but treat Hermi-
tian instead of transpose operation. For example, for z,w∈Cm

and 6∈Cm×m, we have

〈z,w〉6 = zH6−1w, (8)

Moreover, when 6 = I, it simplifies more to 〈z,w〉 = zHw.
Appropriately, the norm of z is written as ‖z‖6=

√
〈z, z〉6=

‖6−1/2z‖. Further, in case of 6 = I, it reduces more to
‖z‖=

√
〈z, z〉 as expected.

In order to make the accomplishments of probability and
statistics concise and comprehensible, Pr{A} and Pr{A|B}
will denote the probability of event A and the probability
of event A given event B, respectively. Random distributions
will be denoted by uppercase letters, e.g. X , Y , Z . Random
vectors and random matrices will be denoted by calligraphic
boldfaced uppercase letters, e.g. X , Y , Z. Let X be a random
distribution, then its PDF is defined by

fX (x)=E[δ(x − X)], (9)

where E[·] denotes the expectation operator, and δ(·) denotes
the Dirac’s delta function [170, Eq.(1.8.1)]. Besides, its CDF
is defined by

FX (x)=E[θ(x − X)], (10)

where θ(·) is the Heaviside’s theta function [170, Eq.(1.8.3)].
Furthermore, the conditional PDF and CDF of X given G
will also be denoted by fX |G(x|g) and FX |G(x|g), respectively.
Denoted by Z = [X ,Y ]T is a real random vector formed of
the real and imaginary parts of complex random distribution
Z=X+Y , where X and Y are two real random distributions
whose joint PDF fZ(x, y) is

fZ(x, y) = E[δ(x − X)δ(y− Y )]. (11)

Since Z=X + Y as a linear combination of X and Y [171],
the PDF of Z is given by fZ (z) = fZ(<{z},={z}). Similarly,
the joint CDF of X and Y is

FZ(x, y) = E[θ(x − X) θ(y− Y )]. (12)

The CDF of Z is readily given by FZ (z) = FZ(<{z},={z}).
In addition, upon considering Z as a linear combination of X
and Y , the MGF is useful for finding the PDF and CDF of
Z . The MGF of Z , defined as MZ (s) = E

[
exp(−〈s,Z 〉)

]
for

s= sX + sY ∈ C and sX , sY ∈ R, is equivalent to the joint
MGF of Z, that is

MZ(sX , sY ) = E
[
exp(−sXX − sYY )

]
, (13)

which is finite in s ∈ D ⊂ C2. Thus, we rewrite
MZ (s)=MZ(<{s},={s}) exploiting complex notations. Sim-
ilarly, the MGFs of X and Y are respectively denoted by
MX (s)=E

[
exp(−sX )

]
and MY (s)=E

[
exp(−sY )

]
. In statis-

tical analysis, Var[·], PVar[·], Cov[·, ·], Skew[·] and Kurt[·]
will represent variance, pseudovariance, covariance, skew-
ness andKurtosis operators, respectively. Consequently,E[Z ]
is written as E[Z ] = E[X ] + E[Y ]. Besides, Var[Z ] =
E[|Z − E[Z ]|2] is written as

Var[Z ] = Var[X ]+ Var[Y ] (14)

which does not possess any information about Cov[X ,Y ]=
E[(X−E[X ])(Y−E[Y ])]. However, the pseudovariance of Z ,
defined as PVar[Z ]=E[(Z − E[Z ])2], contains it, that is

PVar[Z ] = Var[X ]− Var[Y ]+  2Cov[X ,Y ]. (15)

In addition, for shorthand notations of random distribu-
tions, N (µ, σ 2), L(µ, σ 2), and Mν(µ, σ 2) denote Gaussian
distribution, Laplacian distribution, and McLeish distribu-
tion, respectively, with ν normality, µ mean and σ 2 vari-
ance. Their CCS distributions are denoted by CN (µ, σ 2),
CL(µ, σ 2), and CMν(µ, σ 2), respectively. Similarly, their
CES distributions for a correlation coefficient ρ ∈ [−1, 1]
are similarly denoted by EN (µ, σ 2, ρ), EL(µ, σ 2, ρ), and
EMν(µ, σ 2, ρ), respectively. Further, E(�) and G(m, �)
denote an exponential distribution and a Gamma distribu-
tion, where � ∈ R+ denotes the average power and
m ∈ R+ denotes the fading figure (shape parameter) de-
scribing the amount of spread from the average power �.
In addition, the symbol ∼ stands for ‘‘distributed as’’, e.g.,
X∼Mν(µ, σ 2).
In accordance with previously described notation of ran-

dom matrices, the joint PDF and CDF of the real random
vector X ∈Rm are respectively expressed by fX : Rm

→ R+
and FX : Rm

→ [0, 1], and are respectively defined by

fX (x) = E
[
δ(x− X)

]
, (16)

FX (x) = E
[
θ(x− X)

]
, (17)

for x ∈Rm, where ∀y ∈Rm, we have δ(y)=
∏m

k=1 δ(yk) and
θ(y)=

∏m
k=1 θ(yk). Moreover, the MGF of X is expressed as

MX : Rm
→ [0, 1] and defined by

MX (s) = E
[
exp(−〈s,X〉)

]
= E

[
exp(−sTX

]
, (18)

where s ∈Rm. For simplicity, the mean vector of X ∈Rm is
defined by

µ = E[X] = [µ1, µ2, . . . , µm]T , (19)

where µi=E[Xi], 1≤ i≤m. In multi-dimensional real space,
the covariance matrix of X is defined by 6∈Rm×m, that can
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FIGURE 1. The PDF of Mν (0, σ2) with zero mean (i.e., the illustration of (25) for µ=0).

be rewritten as

6 = E[(X − µ)(X − µ)T ], (20a)

= E[XXT ]− µµT , (20b)

=
[
σij,
]
1≤i,j≤m , (20c)

where σij = Cov
[
Xi,Xj

]
, 1 ≤ i, j ≤ m. There is obviously

no restriction on µ, but 6 must be real, symmetric, full
rank, invertible, and hence positive definite (i.e., xT6x > 0
for all x ∈ Rm). For the shorthand notations of random
vectors, let Nm(µ,6), Lm(µ,6), and Mm

ν (µ,6) denote an
m-dimensional Gaussian random vector, an m-dimensional
Laplacian random vector, and an m-dimensional McLeish
random vector, respectively, with ν normality, µmean vector
and 6 covariance matrix.

In multi-dimensional complex space, the joint PDF and
CDF of the complex random vector Z ∈Cm are respectively
expressed by fZ : Cm

→ R+ and FZ : Cm
→ [0, 1], and are

respectively defined by

fZ(z) = E
[
δ(z− Z)

]
, (21)

FZ(z) = E
[
θ(z− Z)

]
, (22)

for z ∈ Cm and s ∈ Cm, where, for all z= x + y ∈ Cm with
x, y ∈ Rm, we have δ(z) = δ(x)δ(y) and θ(z) = θ(x) θ(y).
Further, the MGF of Z is expressed asMX : Cm

→ [0, 1] and
defined by

MZ(s) = E
[
exp(−〈s,Z〉)

]
= E

[
exp(−sHZ)

]
, (23)

where s ∈ Cm. The mean vector of Z is given by µ= E
[
Z
]
.

In distinction from (20), the covariance matrix of Z is defined
in multi-dimensional complex space 6∈Cm×m, that is

6 = E[(Z− µ)(Z− µ)H ], (24a)

= E[ZZH ]− µµH , (24b)

=
[
σij
]
, (24c)

where σij = Cov
[
Zi,Zj

]
, 1 ≤ i, j ≤ m. For the short-

hand notations of random vectors, CNm(µ,6), CLm(µ,6),
and CMm

ν (µ,6) denote an m-dimensional CCS Gaussian
random vector, an m-dimensional CCS Laplacian random
vector, and an m-dimensional CCS McLeish random vec-
tor, respectively, with ν normality, µ mean vector and 6
covariance matrix. Further, ENm(µ,6), ELm(µ,6), and
EMm

ν (µ,6) denote anm-dimensional CESGaussian random
vector, an m-dimensional CES Laplacian random vector, and
an m-dimensional CES McLeish random vector.

III. STATISTICAL BACKGROUND
In this section, as an alternative to the well-known framework
for the laws of Gaussian distribution, we develop and propose
a conceptually novel framework for the laws of McLeish
distribution, both in scalar and vector versions, contributing
to the literature of probability and statistics necessary to all
branches of science and engineering.

A. McLeish DISTRIBUTION
Let X beMν(µ, σ 2) whose PDF is given by [114, Eq.(3)]

fX (x) =
2
√
π

|x − µ|ν−
1
2

0(ν) λν+
1
2

K
ν− 1

2

(
2 |x − µ|

λ

)
, (25)

defined over x ∈ R, where ν ∈ R+ and σ 2
∈ R+ denote the

normality and variance, respectively, and λ=σλ0=
√
2σ 2/ν

denotes the component deviation (power normalizing) factor.
Further, 0(x)=

∫
∞

0 ux−1 exp(−u) du is the Gamma function
[172, Eq. (6.1.1)], and Kn(x) =

∫
∞

0 e−x cosh(u) cosh(nu) du
is the modified Bessel function of the second kind [172,
Eq. (9.6.2)]. In order to illustrate the versatility and heavy-
tail behaviour ofMν(µ, σ 2), the PDF, given in (25), is aptly
illustrated with respect to ν ∈R+ and σ 2

∈R+ for a certain
µ∈R in Fig. 1 on the top of the this page.
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The special cases of Mν(µ, σ 2) consist of Dirac, Lapla-
cian and Gaussian distributions. In more detail, as ν → 0,
(25) reduces to

fX (x) = δ(x − µ), (26)

which is the PDF of Dirac’s distribution, where δ(·) denotes
the Dirac’s delta function [170, Eq.(1.8.1)]. Further, substitut-
ing ν=1 into (25) and then utilizing [172, Eq.(9.7.8)] yields
the PDF of L(µ, σ 2), that is

fX (x) =
1
√

2σ 2
exp

(
−

√
2/σ 2 |x − µ|

)
, (27)

Besides, limiting ν→∞ in (25) and using [172, Eq.(9.7.8)]
yields

fX (x) =
1

√
2πσ 2

exp
(
−
(x − µ)2

2σ 2

)
, (28)

which is the PDF of X ∼N (µ, σ 2). In addition, Mν(µ, σ 2)
demonstrates a superior fit to different impulsive noise char-
acteristics with respect to ν ∈ R+, and therefore it is rea-
sonably fit to any noise distribution, especially by estimating
ν, µ, and σ 2 with the aid of method of moments estimation
(MOM) in which sample moments are equated with theoret-
ical moments ofMν(µ, σ 2), that is

µ̂ = E[X ], σ̂ 2
= Var[X ], and ν̂ =

3
Kurt[X ]− 3

. (29)

For that purpose, the higher-ordermoments ofMν(µ, σ 2) are
given in the following theorem.
Theorem 1: The moments of X∼Mν(µ, σ 2) is given by

E
[
Xn
]
=µn

n∑
k=0

(
n
k

)
0(ν + k/2)0(1/2+ k/2)

0(ν)0(1/2)

(λ
µ

)k
en(k)

(30)

defined for n∈N, where en(k) returns 1 if k is an even number,
otherwise returns 0.

Proof: Note that X is readily expressed as X =µ+W ,
where W ∼Mν(0, σ 2). Thus, E[Xn] = E[(µ+W )n] can be
written using binomial expansion as follows

E[Xn] = µn
n∑

k=0

(
n
k

)
E[W k ]
µk

, (31)

where the binomial coefficient [173, Eq.(1.1.1)] is defined as(
n
k

)
=

n!
(n− k)! k!

=
(n+ 1)k

k!

k∏
j=1

(
1−

j
n+ 1

)
. (32)

With the aid of utilizing Kn(x) = G2,0
0,2

[
x2/2

∣∣∣ n/2,−n/2 ]
[174, Eq. (03.04.26.0008.01)], where Gm,np,q [·] denotes the
Meijer’s G function [139, Eq. (8.2.1/1)], the PDF of W can
be given in terms of the Meijer’s G function. After endorsing
µ = 0 and applying [140, Eqs. (2.9.1) and (2.9.19)] on (25),
E
[
W n

]
is then expressed for k ∈N as follows

E[W k ] =
∫
∞

−∞

wk
1

√
πλ0(ν)

G2,0
0,2

[
w2

λ

∣∣∣∣0, ν − 1
2

]
dw, (33)

where denotes the empty coefficient set. Immediately af-
terwards, in (33), changing the variable x2→y and employing
[140, Eqs. (2.5.1)and(2.9.1)] results in

E[W k ] =
0(ν + k/2)
0(ν)

0(1/2+ k/2)
0(1/2)

λken(k), (34)

where en(k) returns 1 if k is an even number, otherwise
returns 0. Finally, substituting (34) into (33) readily results
in (30), which completes the proof of Theorem 1.
Definition 1 (McLeish’s Quantile): The McLeish’s

Q-function is defined by

Qν(x) =
∫
∞

x

2
√
π

|w|ν−1/2

0(ν)λν+1/20

Kν−1/2
(2 |w|
λ0

)
dw, (35)

for x ∈ R. Alternatively, it is given for x ≥ 0 by

Qν
(
x
)
=

21−ν

π0(ν)

∫ π
2

0

( 2x
λ0 sin(θ )

)ν
Kν

(
2x

λ0 sin(θ )

)
dθ,

(36a)
and given for x < 0 by

Qν
(
x
)
= 1− Qν(|x|). (36b)

Inwireless communications [1]–[3, and references therein],
the CDF of the additive noise is used as a quantile function
to compare different systems in the context of channel re-
liability. In this connection, the CDF of X ∼ Mν(µ, σ 2),
i.e., FX (x) = Pr{X ≤ x} for x ∈ R is obtained in the
following.
Theorem 2: The CDF of X∼Mν(µ, σ 2), which is defined

as FX (x) = Pr{X ≤ x}, is given by

FX (x) = 1− Qν

(
x − µ
σ

)
, (37)

where Qν(·) is the McLeish’s Q-function defined in (36).
Proof: Let us define a random variable, W =

(X − µ)/σ , whereW ∼Mν(0, 1), whose PDF is given, using
(25), by

fW (w) =
2
√
π

|w|ν−1/2

0(ν) λν+1/20

Kν−1/2

(
2 |w|
λ0

)
. (38)

whose distributional symmetry around 0 consequences that
the CDF FW (w) = Pr{W ≤ w} =

∫ w
−∞

fW (w)dw can
be rewritten as FW (w) = 1 − FW (|w|) for w ∈ R−.
But for w ∈ R+, FW (w) is written as FW (w) = 1 −∫
∞

w2
1
√
2w
fW (
√
w)dw. After some algebraic manipulations, it is

rewritten as

FW (w) = 1−
21−ν

π0(ν)

∫ 1

0

1
√
1− w2

( 2
wλ0

)ν
Kν

(
2
wλ0

)
dw,

where changing the variable as w→ sin(θ ) and utilizing (36)
results in FW (w) = 1 − Qν(w). Accordingly, the CDF of X
can be readily given as in (37), which proves Theorem 2.
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FIGURE 2. The CDF of Mν (0, σ2) with zero mean (i.e., the illustration of (37) for µ=0).

The CDF of X∼Mν(µ, σ 2) is described in Fig. 2 in detail
using (37). It is therefore worth for the consistency and valid-
ity of the McLeish’s Q-function to mention that (36) reduces
for ν→∞ to the well-known result, that is

lim
ν→∞

Qν(x) = Q(x) (39)

where Q(x) = 1
√
2π

∫
∞

x e−
1
2 u

2
du denotes the standard Gaus-

sian Q-function [3, Eq.(2.3-10)]. Further, following are some
of the fundamental properties of McLeish’s Q-function:

Qν(−x) = 1− Qν(x) and Qν(±∞) =
1
2
(1∓ 1), (40a)

Qν(0) =
1
2

and Q0(x)→ 0+, (40b)

In addition, It is worth examining not only the special cases of
McLeish’s Q-function for the special non-extreme finite val-
ues of the normality ν, but also for lower and upper bounds.
Accordingly, setting ν = 1 reduces McLeish’s Q-function to
the Laplacian Q-function, that is

LQ(x) =


1
2
exp(−2

√
2x), ifx ≥ 0,

1− LQ(|x|), ifx < 0.
(41)

As seen in the following sections, the McLeish’s Q-function
is often used in the BER / SER analysis of the signaling using
modulation schemes over AWMN channels. The McLeish’s
Q-function can be tabulated, or implemented as a built-in
functions in mathematical software tools. However, in many
cases it is useful to have closed-form bounds or approxima-
tions instead of the exact expression. In fact, these approxi-
mations are particularly useful in evaluating the BER / SER
in many problems of the communication theory. For that
purpose, the lower and upper bounds of the McLeish’s

Q-function are found to be obtained for x > 0 using Taylor
series expansion under some simplification, that is

QLB
ν (x) ≤ Qν(x) ≤ QUB

ν (x), for x > 0, (42)

where the lower bound approximation QLB
ν (x) is given by

QLB
ν (x) =

1
√
π0(ν)

( x
λ0

)ν− 1
2

×

(
K
ν+ 1

2

(2x
λ0

)
−
λ0

2x
K
ν+ 3

2

(2x
λ0

))
, (43)

and the upper bound approximation QUB
ν (x) is given by

QUB
ν (x) =

1
√
π0(ν)

( x
λ0

)ν− 1
2
K
ν+ 1

2

(2x
λ0

)
. (44)

Then, the gap between QLB
ν (x) and QUB

ν (x) is given by

QUB
ν (x)− QLB

ν (x) =
1

2
√
π0(ν)

( x
λ0

)ν− 3
2
K
ν+ 3

2

(2x
λ0

)
. (45)

Note that H-transforms, also known as Mellin-Barnes inte-
grals1 are the integral kernels involving Meijer’s G and Fox’s
H functions that have found many applications in such fields
as physics, statistics, and engineering [140]. In the literature
of wireless communications, H-transforms have been gained
some attention to find closed-form expressions for averaged
performance analysis, and also Fox’s H function has recently
started to be used as a possible fading distribution, commonly
referred as the Fox’s H distribution [175]. It is thus useful
to express McLeish’s Q-function in terms of Meijer’s G and
Fox’s H functions. Such expressions allow the use of Mellin-
Barnes integrals to obtain new closed-form expressions.

1For further details about both H-transforms and Fox’s H functions,
readers are referred to [140, andreferencestherein].
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Theorem 3: McLeish’s Q-function can be alternatively
expressed in terms of Fox’s H function as follows

Qν(x) =


1
0(ν)

H2,0
1,2

[
2νx2

∣∣∣∣ (1, 1)
(0, 2), (ν, 1)

]
, x ≥ 0,

1− Qν(|x|), x < 0,
(46)

where Hm,n
p,q [·] is the Fox’s H function [139, Eq. (8.3.1/1)],

[140, Eq. (1.1.1)]; or in terms of Meijer’s G function as
follows

Qν(x) =


1

2
√
π0(ν)

G3,0
1,3

[
2νx2

∣∣∣∣ 1
0, 12 , ν

]
, x ≥ 0,

1− Qν(|x|), x < 0.
(47)

Proof: Note that in (36a), taking place of the modified
Bessel function of the second by [140, Eq.(2.9.19)] and then
performing some algebraic manipulations yields

Qν(x) =
1

π0(ν)

∫ π
2

0
H2,0
0,2

[
x2

λ20 sin
2(θ )

∣∣∣∣ (0, 1), (ν, 1)
]
dθ,

where employing [140, Eq. (1.1.1)] results in Mellin-Barnes
contour integral in which changing the order of integrals and
using [173, Eq. (3.621/1)]∫ π/2

0
sin2s(θ )dθ =

√
π0( 12 + s)

20(1+ s)
(48)

for <{s} > − 1
2 yields (46), which readily proves the first

step of Theorem 46. In the second step, after using [139,
Eq. (8.3.2/22)], (46) reduces to (47), which completes the
proof of Theorem 3.
Immediately after we examine the results provided

in [1]–[3], [176], we readily recognize that Craig’s partial
Q-function, defined asQ

(
x, φ

)
=

1
2π

∫ φ
0 exp

(
−x2/sin2(θ )

)
dθ ,

is widely exploited in the SER analysis of M-ary modula-
tion and 2-dimensional modulation schemes, for example
in [176], and [1, Eqs. (4.9), (4.16), (4.17), (4.18), (4.19) and
(5.77)]. Analogously, we can define the McLeish’s partial
Q-function as it is shown in the following.
Definition 2 (McLeish’s Partial Quantile): For a certain

φ ∈ [0, π/2], McLeish’s partial Q-function is defined as

Qν
(
x, φ

)
=

21−ν

π0(ν)

∫ φ

0

( 2x
λ0 sin(θ )

)ν
Kν

(
2x

λ0 sin(θ )

)
dθ

(49a)
for x ≥ 0;

Qν
(
x, φ

)
= 1− Qν(|x| , φ), (49b)

for x < 0; such that Qν
(
x
)
= Qν

(
x, π/2

)
.

In wireless communications [1]–[3, andreferencestherein],
the C2DF of the additive noise is used as a quantile function
to compare different systems in the context of BER or SER.
In this connection, the C2DF of X ∼Mν(µ, σ 2) is obtained
in the following.
Theorem 4: TheC2DFof X∼Mν(µ, σ 2), which is defined

as F̂X (x) = Pr{X > x}, is given by

F̂X (x) = Qν

(
x − µ
σ

)
. (50)

Proof: Note that F̂X (x)=1− FX (x) since Pr{X > x} =
1−Pr{X ≤ x}. The proof is thus obvious using Theorem 2.
As mentioned in [1], [177]–[179], the MGF is an efficient

mathematical instrument not only to derive inequalities on
tail probabilities of distributions but to achieve their statis-
tical characterisations, and therefore is extremely common in
performance results for communication problems related to
partially coherent, differentially coherent, and non-coherent
communications and is very useful in statistics. We derive the
MGF of McLeish distribution as it is given in the following.
Theorem 5: The MGF of X∼Mν(µ, σ 2) is given by

MX (s) = e−sµ
(
1−

λ2

4
s2
)−ν

(51)

with the existence region −S0<<{s}< S0, where S0 ∈R+ is
given by S0 = 2/λ.

Proof: Note that MX (s) = E[exp(−sX )] can be ex-
pressed as MX (s) = s

∫
∞

−∞
exp(−sx)FX (x)dx, where susing

(37) yields

MX (s) = s
∫
∞

−∞

exp(−sx)Qν
(x − µ
σ

)
dx. (52)

which can be divided two integration, i.e.,MX (s) = sI+(s)+
sI−(s), where I±(s) is written as

I±(s) = ±
∫
∞

0
exp(∓sx)Qν

(±x − µ
σ

)
dx, (53)

Subsequently, substituting (46) in (53) and then using both
exp(−x) = G1,0

0,1

[
x
∣∣
0

]
[139, Eq. (8.4.3/1)], and exp(x) =

π
sin(πc)G

1,0
1,2

[
x
∣∣∣ 1−c
0,1−c

]
[139, Eq.(8.4.3/5)] results in a Mellin-

Barnes integration [140, Theorem2.9] that readily reduces to

I±(s) = e−sµ
(
1−

λ2

4
s2
)−ν( 1

2s

±
λ

4π
sin(πν)

(
1
2

)
ν
G1,2
2,2

[
−
λ2

4
s2
∣∣∣∣ 1/2, ν
0,−1/2

])
(54)

within the convergence region −2/λ ≤ <{s} ≤ 2/λ, where
(a)n = 0(a+ n)/0(a) denotes Pochhammer’s symbol [174,
Eq.(1.2.6)]. Consequently,MX (s) = sI+(s)+sI−(s) simplifies
to (51), which completes the proof of Theorem 5.

For consistency, letting ν→0 in (51) results in exp(−sµ),
which is the MGF of the Dirac’s distribution with mean µ.
For ν = 1, (51) simplifies to the MGF of L(µ, σ 2), that is
MX (s)=e−sµ(1−σ 2s2/2)−1 [121], [180]–[182]. In addition,
when letting ν→∞ and then using limn→∞(1+ x

n )
n
=exp(x)

[174, Eq. (01.03.09.0001.01)], (51) simplifies to MX (s) =
exp

(
−sµ+σ 2s2/2

)
[3], [180]–[182] which is the well-known

MGF ofN (µ, σ 2). Notice that theMGF is also used to derive
the moments [138]. Hence, the analytical correctness of (51)
can also be checked using (30). Using [139, Eq. (8.4.2/5)],
we can express (51) in terms of Meijer’s G function as

MX (s) =
e−sµ

0(ν)
G1,1
1,1

[
λ2

4
s2
∣∣∣∣1− ν0

]
, (55)

whose nth derivation with respect to s, i.e.
(
∂/∂s

)nMX (s) can
be attained using Leibniz’s rule [173, Eq. (0.42)] and [139,
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Eqs. (8.3.2/21) and (8.3.2/21)], and therein setting s → 0
yields (30) as expected. It is also worth mentioning that the
MGFs are very useful for the analysis of sums of theMcLeish
distributions as exemplified in the following.

B. SUM OF McLeish DISTRIBUTIONS
Let X`∼Mν`(µ`, σ

2
` ), `=1, 2, . . . ,L be L independent and

non-identically distributed (i.n.i.d.) distributions. Then, their
sum is written as

X6 =
∑L
`=1 X`, (56)

whose statistically characterization is given in the following.
Theorem 6: The MGF of (56) is given by

MX6 (s) = e−s
∑L
`=1 µ`

L∏
`=1

(
1−

λ2`

4
s2
)−ν`

(57)

with the existence region −S0<<{s}< S0, where S0 ∈R+ is
given by S0 = 2/max`∈{1..L} λ`.

Proof: Since {X`}L`=1 are mutually independent,
theMGF ofX6 is defined as the product of theirMGFs, that is
MX6 (s)=E[exp(−s

∑L
`=1 X`)]=

∏L
`=1MX`(s), where using

(51) yields (57), which proves Theorem 6.
Let us now consider some special cases of (57). In case

of ν` ∈ Z+ and λ` 6= λm for all ` 6= m, X6 follows a hyper
McLeish distribution, which is also called a mixture McLeish
distribution. Simplifying (57) using pole factorization (partial
fraction decomposition) of rational polynomials [170, Sec.
2.2.4], we obtain the MGF as

MX6 (s) = e−s
∑L
`=1 µ`

L∑
`=1

ν`−1∑
m=0

w`m
(
1−

λ2`

4
s2
)m−ν`

, (58)

where the weight coefficients {w`m}, which certainly support
that

∑L
`=1

∑ν`−1
m=0 w`m=1, are defined as

w`m =
4m

λ2m` m!

(
∂

∂s

)m L∏
j=1,j6=`

(
1−

λ2j

λ2`

+
λ2j

4
s
)−νj∣∣∣∣

s→0
, (59)

where themth order derivative can be mathematically defined
in several ways [183]–[185, and references therein]. We find
the Grünwald-Letnikov derivative to be convenient for its
numerical computation. In addition, the other special case
of (57) is obtained when λ` = λ6 with distinct σ 2

` for
` = 1, 2, . . . , n; X6 follows a McLeish distribution, i.e.,
X6∼Mν6 (µ6, σ

2
6), whose MGF is readily deduced similar

to (51), that is

MX6 (s) = e−sµ6
(
1−

λ26

4
s2
)−ν6

, (60)

where the normality ν6=
∑n
`=1 ν`, the mean µ6=

∑n
`=1 µ`

and the variance σ 2
6=ν6λ

2
6/2. In addition, the other special

cases can be deduced for certain normalities ν`→ 0, ν`→ 1
and ν`→∞ in (57). Specifically, when ∀ν`→ 0, (57) and
(58) reduces to MX6 (s) = e−sµ6 , which is the MGF of the
Dirac’s distribution. Further, when ∀ν`→1, (57) turns to the

MGF of sum of independent and not identically distributed
Laplace distributions, that is [186, Sec. 10.4]

MX6 (s) = e−s
∑L
`=1 µ`

L∏
`=1

(
1−

σ 2
`

2
s2
)−1

. (61)

In addition, when ∀ν`→∞, (57) turns to the MGF of sum of
i.n.i.d Gaussian distributions, that is [186, Sec. 34.5]

MX6 (s) = exp
(
−sµ6 +

s2

2
σ 2
6

)
. (62)

Speaking of statistically characterization, we efficiently ex-
ploit the MGF to find the PDF of the sums of independent
random distributions [138]. Accordingly, the PDF of X6 is
obtained in the following.
Theorem 7: The PDF of (56) is given by

fX6 (x) = IL,L2L,2L

[
exp(−x)
exp(−µ6)

∣∣∣∣∣4
(1)
L ,4

(3)
L

4
(2)
L ,4

(0)
L

]
(63)

with mean µ6 =µ1 + µ2 + . . . + µL , where the coefficient
set 4(α)

n , consisting of 3-tuples of size n, is defined as

4(α)
n =

(
α − 1, λ12 , ν1

)
, · · · ,

(
α − 1, λn2 , νn

)
, (64)

for n∈N and α∈R. Moreover in (63), Im,np,q [·] denotes Fox’s I
function [187, Eq.(3.1)].

Proof: For ` ∈ {1, 2, . . . , n}, the MGF of X`, i.e.,
MX` (s)=E[exp(−sX`)] can be rewritten as

MX` (s) = e−sµ`
(
1−

λ`

2
s
)−ν`(

1+
λ`

2
s
)−ν`

by utilizing 1− x2=(1− x)(1+ x) on (51). Then, exploiting
the relation 0(1+ x)=x0(x) [140], [170], [172],MX6 (s) has
been already obtained in (57) and can be rewritten as

MX6 (s) = e−s
∑L
`=1 µ`

L∏
`=1

0ν`
(
1+ λ`

2 s
)

0ν`
(
2+ λ`

2 s
) 0ν`(1− λ`

2 s
)

0ν`
(
2− λ`

2 s
) .
(65)

Note that by means of (65), we express the PDF of X6 via the
inverse Laplace transform (ILT) [188], [189, Chap.3] as

fX6 (x) =
1

2π

∫ c+∞

c−∞
MX6 (s) exp(sx)ds (66)

within the existence region −S0<<{s}< S0, where S0 ∈R+
is defined by S0=2/max`∈{1..n} λ`. Finally, substituting (65)
into (66) and then using the mathematical formalism given in
[187, Eq.(3.1)] results in (63), which proves Theorem 7.

The PDF of X6 is depicted in Fig. 3a for different number
of variables. Referring to Theorem 7, some special cases are
given for consistency in the following. In case of ν` ∈ Z+
and λ` 6= λm for all ` 6= m, (56) follows a hyper McLeish
distribution whose PDF can be deduced from Theorem 7 as

fX6 (x) =
L∑
`=1

ν`−1∑
m=0

2w`m
√
π0(ν` − m)

×
|x − µ6 |ν−

1
2

λν`−m+
1
2

K
ν`−m− 1

2

(
2 |x − µ6 |

λ

)
, (67)
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FIGURE 3. The PDF and CDF of sum of L McLeish distributions with means
µ`=0, and normalities ν`=`, and variances σ2

`
=L− `+ 1 for all 1≤`≤L.

Further, when λ` = λ6 with distinct σ 2
` for ` = 1, 2, . . . , n,

(56) certainly follows Mν6 (µ6, σ
2
6), whose PDF has been

already given in (25), that is

fX6 (x) =
2 |x − µ6 |ν6−

1
2

√
π 0(ν6) λ

ν6+
1
2

6

K
ν6−

1
2

(
2 |x − µ6 |

λ6

)
. (68)

Additionally, the other special cases can be easily deduced
for the certain normalities ν` → 0, ν` → 1 and ν` → ∞
in (63). Accordingly, setting ∀ν` → 0 in (66) and using
I0,00,0

[
exp(−x)

∣∣ ]
=δ(x) with the aid of [187, Eq.(2.1)] and

[170, Eq. (1.8.1/8)], we readily notice that (63) evolves into
fX6 (x)=δ

(
x −µ6

)
. Further, setting ∀ν`→1, (63) simplifies

to the PDF of the sum of i.n.i.d. Laplace distributions, that is

fX6 (x) =
2L∏L
`=1 σ

2
`

GL,L2L,2L

[
exp(−x)
exp(−µ6)

∣∣∣∣∣8
(1)
L ,8

(3)
L

8
(2)
L ,8

(0)
L

]
, (69)

where the coefficient set 8(α)
n is given by

8(α)
n =

√
2(α − 1)/σ 2

1 , · · · ,
√
2(α − 1)/σ 2

n . (70)

In addition, when we choose all normalities to be infinity
(i.e., while having ∀` ∈ {1, 2, . . . ,L}, ν`→∞), we readily
deduce MX`(s) = exp(−sµ6 + s2σ 2

6/2) and accordingly
reduce (63) to the PDF of N (µ6, σ 2

6) as expected.
Theorem 8: The CDF of (56) is given by

FX6 (x) = In+1,n2n+1,2n

[
exp(−x)
exp(−µ6)

∣∣∣∣∣4
(1)
n ,4

(3)
n , (1, 1, 1)

(0, 1, 1),4(2)
n ,4

(0)
n

]
. (71)

Proof: Note that FX6 (x) = Pr(X6 < x) is readily
computed by using FX6 (x)=

∫ x
−∞

pX6 (u)du, where utilizing
(66) yields

FX6 (x) =
1

2π

∫ c+∞

c−∞

{∫ x

−∞

esudu
}
MX6 (s)ds (72)

within the existence region −S0 < <{s} < S0. Accordingly,
using

∫ x
−∞

esudu=esx/s for <{s}>0 [173, Eq.(3.310)], (72)
can be easily rewritten as

FX6 (x) =
1

2π

∫ c+∞

c−∞

0(s)
0(1+ s)

MX6 (s)ds (73)

within the existence region 0<<{s}< S0. Finally, using the
mathematical formalism given in [187, Eq. (3.1)] results in
(71), which proves Theorem 8.
The CDF of X6 is depicted in Fig. 3b for different number

of variables. Note that for ν`∈Z+ and λ` 6=λm for all ` 6=m,
(71) reduces by using (67) with Theorem 2 as follows

FX6 (x) =
L∑
`=1

ν`−1∑
m=0

w`mQν`−m
(x − µ6

σ6

)
. (74)

For λ` = λ with distinct ν` and σ 2
` for ` = 1, 2, . . . , n,

(56) certainly follows a McLeish distribution whose PDF is
already obtained in (68), and whose CDF is then deduced as

FX6 (x) = Qν6
(x − µ6

σ6

)
. (75)

Further, the other special cases for ν` → 0, ν` → 1 and
ν` →∞ are herein ignored since being well-predicted uti-
lizing the results that are previously obtained above.
Theorem 9: The nth moment of (56) is given by

E
[
Xn6
]
=

n∑
k1+k2+...+kL=n

n!∏L
`=1 k`!

L∏
`=1

E
[
X k``

]
, (76)

where E
[
Xn`
]
is given in (30)

Proof: The proof is obvious by applying multinomial
expansion [172, Eq.(24.1.2)] on E

[
Xn6
]
=E[(

∑n
`=1 X`)

n].
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For the statistical characterization of a McLeish distribu-
tion, such as its central tendency, dispersion, skewness and
Kurtosis, (76) can be easily used, and its special cases can be
obtained by setting its parameters.

C. COMPLEX AND CIRCULARLY-SYMMETRIC MCLEISH
DISTRIBUTION
Let Z∼CMν(µ, σ 2) be a CCS distribution, defined as

Z=X1 + X2, (77)

which is also, as mentioned before, deduced as a vector Z=
[X1, X2]T , where X1∼Mν1 (µ1, σ

2) and X2∼Mν2 (µ2, σ
2)

are, without loss of generality, such two mutually correlated
and identically distributed (c.i.d.) distributions that µ=µ1+

µ2 and ν=ν1=ν2.
Theorem 10: Under the condition of being CCS, the defi-

nition of Z∼CMν(µ, σ 2) can be decomposed as

Z =
√
GZ0 + µ =

√
G(X0 + Y0)+ µ, (78)

where Z0 ∼ CN (0, σ 2), X0 ∼N (0, σ 2), Y0 ∼N (0, σ 2), and
G∼G(ν, 1).

Proof: By the definition of CCS random distributions
[190], both (Z − µ) and eφ(Z − µ) follow the same distri-
bution for any rotation φ ∈ [−π, π). Accordingly, we affirm
that the phase of Z around its mean µ is typically given by

8 = arctan
(
X1 − µ1,X2 − µ2

)
, (79)

where arctan(·, ·) denotes the two-argument inverse tangent
function [174, Eq. (01.15.02.0001.01)], and 8 is uniformly
distributed over [−π, π) and independent of both X and Y
(i.e., Cov[8,X1]= 0 and Cov[8,X2]= 0), Therefore, W =
tan(8) follows a zero-mean Cauchy distribution whose PDF
is given by fW (w)=π−1(1+ w2)−1 over w∈R [180], [182],
[191]. Upon Z0 = X0 + Y0, where X0 ∼ N (0, σ 2

Z/2) and
Y0 ∼N (0, σ 2

Z/2), Y0/X0 follows a Cauchy distribution with
zero mean and unit variance. Accordingly,W is rewritten as

W =
X2 − µ2

X1 − µ1
=

√
GY0
√
GX0

, (80)

where without loss of generality,Gwill follow a non-negative
distribution characterized by

√
G =
|X1 − µ1|

|X0|
=
|X2 − µ2|

|Y0|
. (81)

Utilizing [140, Eq. (2.9.19)] after performing absolute-value
transformation on (25), we can deduce the PDF of |X1 − µ1|

in terms of Fox’s H function as follows

f|X1−µ1|(x) =
1

√
π0(ν)

H2,0
0,2

[
2x2

λ2

∣∣∣∣ (0, 1), (ν − 1
2 , 1)

]
(82)

defined over x ∈ R+. Similarly, using [140, Eq. (2.9.4)],
we can also deduce the PDF of |X0|, that is

f|X0|(x) =

√
2
πσ 2H

1,0
0,1

[
x2

σ 2

∣∣∣∣ (0, 1)
]

(83)

defined over x ∈R+. Immediately, embedding both (82) and
(83) within [192, Theorem 4.3] and thereon exercising [140,
Eqs. (2.1.1), (2.1.4) and (2.1.4)], we derive the PDF of G as

fG(g) =
νν

0(ν)
gν−1 exp (−νg) , (84)

defined over g ∈R+. This consequence can also be reached
from the ratio of |X2 − µ2| and |Y0| in conformity with (81).
Eventually, with the aid of [3, Eq. (2.3-67)] and [1, Eqs. (2.20)
and (2.21)], we notice that G is a non-negative distribu-
tion following Gamma (squared Nakagami-m) distribution.
Therefore, G∼G(ν, 1), where the diversity figure is given by
ν=E[G]2/Var[G] [3, Eq.(2.3-69)] and the average power is
by E[G] = 1 [3, Eq. (2.3-68)]. Consequently, the definition
of CCS McLeish distribution, given in (77), is rewritten as in
(78), which proves Theorem 10.
With the aid of Theorem 10, the PDF of Z (i.e, the joint

PDF fZ(x, y) of Z) is given in the following theorem.
Theorem 11: Under the condition of being CCS, the PDF

of Z∼CMν(µ, σ 2) is given by

fZ (z) =
2
π

|z− µ|ν−1

0(ν) λν+1
Kν−1

(
2 |z− µ|

λ

)
, (85)

defined over z∈C, where the factor λ =
√
2σ 2/ν.

Proof: Referring to Theorem 10, the PDF of
Z ∼ CMν(µ, σ 2) conditioned on G is therefore written as
[3, Eq. (2.6-1)]

fZ |G(z|g) =
1

πg σ 2 exp
(
−
1
g

〈 z− µ
σ

,
z− µ
σ

〉)
, (86)

for g ∈ R+. In accordance, the PDF of Z can be expressed
as fZ (z) =

∫
∞

0 fZ |G(z|g)fG(g)dg, where substituting (84) and
(86), and subsequently employing [173, Eq.(3.471/9)] results
in (85), which proves Theorem 11.
The PDF of Z∼CMν(µ, σ 2) and its contour plot are well

described in Fig. 4a and Fig. 4b, respectively. Further worth
noting that the CS property of Z ∼ CMν(µ, σ 2) is observed
in Fig. 4b such that ∀θ ∈ [−π, π), fZ (z) = fZ (z exp(θ ))
for µ = 0. Accordingly, for a given contour value c ∈ R+,
the contours, presented in Fig. 4b, can be obtained by

(z|c) =
{
z = ξ̂ exp(θ )

∣∣ θ ∈ [−π, π), and

ξ̂ = argmin
ξ∈R+

‖f 2Z (ξ )− c‖
2}. (87)

For consistency, let us now consider some special cases of
Theorem 11. Substituting ν = 1 into (85) yields the PDF of
CL(µ, σ 2) [193, Eq. (6)], that is

fZ (z) =
2
πλ2

K0

(
2
λ
|z− µ|

)
. (88)

Moreover, substituting ν→∞ results in

fZ (z) =
1

2πσ 2 exp
(
−

1
2σ 2 |z− µ|

)
, (89)

which is the PDF of CN (µ, σ 2) [3, Eq. (2.6-1)].
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FIGURE 4. The PDF and contour of CMν (0, σ2) (i.e., the illustration of (85) for µ=0).

Theorem 12: Under the condition of being CCS, the CDF
of Z ∼CMν(µ, σ 2) is given for the complex quadrants, that
is

FZ (z) = 1− Qν
(√

2
〈
1,
z− µ
σ

〉)
−Qν

(√
2
〈
,
z− µ
σ

〉)
+

1
2
Qν
(√

2
〈 z− µ
σ

,
z− µ
σ

〉
sin2(φ), φ

)
+

1
2
Qν
(√

2
〈 z−µ
σ

,
z−µ
σ

〉
cos2(φ),

π

2
−φ

)
, (90a)

for the upper right quadrant (i.e., <{z}≥0 and ={z}≥0);

FZ (z) = QνZ
(√

2
〈
1,
µ− z
σ

〉)
−

1
2
Qν
(√

2
〈 z− µ
σ

,
z− µ
σ

〉
sin2(φ), φ

)
−

1
2
Qν
(√

2
〈 z−µ
σ

,
z−µ
σ

〉
cos2(φ),

π

2
−φ

)
, (90b)

for the upper left quadrant (i.e., <{z}<0 and ={z}≥0);

FZ (z) =
1
2
Qν
(√

2
〈 z− µ
σ

,
z− µ
σ

〉
sin2(φ), φ

)
+

1
2
Qν
(√

2
〈 z− µ
σ

,
z− µ
σ

〉
cos2(φ),

π

2
− φ

)
, (90c)

for the lower left quadrant (i.e., <{z}<0 and ={z}<0);

FZ (z) = QνZ
(√

2
〈
,
µ− z
σ

〉)
−

1
2
Qν
(√

2
〈 z− µ
σ

,
z− µ
σ

〉
sin2(φ), φ

)
−

1
2
Qν
(√

2
〈 z−µ
σ

,
z−µ
σ

〉
cos2(φ),

π

2
−φ

)
, (90d)

for the lower right quadrant (i.e., <{z} ≥ 0 and ={z} < 0);
where φ ∈ [0, π2 ) is given by φ=arctan

(
|<{z}| , |={z}|

)
.

Proof: Note that the CDF of Z0 ∼ CN (0, σ 2) is
defined by FZ0 (z`|σ ) = Pr{X0≤〈1, z`〉 ∩ Y0≤〈, z`〉 | σ }
conditioned on σ . Utilizing [3, Eqs.(2.3-10)and(2.3-11)] and
[1, Eqs. (4.3)] with 〈1, z〉=<{z} and 〈, z〉=={z}, FZ0 (z`|σ )
can be readily expressed for a certain z = x + y ∈ C as
follows

FZ0 (z|σ ) = 1− Q
(√

2
〈
1, z/σ

〉)
− Q

(√
2
〈
, z/σ

〉)
+ Q

(√
2
〈
1, z/σ

〉)
Q
(√

2
〈
, z/σ

〉)
, (91a)

for the upper right quadrant (i.e., <{z}≥0 and ={z}≥0);

FZ0 (z|σ ) = Q
(
−
√
2
〈
1, z/σ

〉)
− Q

(
−
√
2
〈
1, z/σ

〉)
Q
(√

2
〈
, z/σ

〉)
, (91b)

for the upper left quadrant (i.e., <{z}<0 and ={z}≥0);

FZ0 (z|σ ) = Q
(
−
√
2
〈
1, z/σ

〉)
Q
(
−
√
2
〈
, z/σ

〉)
, (91c)

for the lower left quadrant (i.e., <{z}<0 and ={z}<0);

FZ0 (z|σ ) = Q
(
−
√
2
〈
, z/σ

〉)
− Q

(√
2
〈
1, z/σ

〉)
Q
(
−
√
2
〈
, z/σ

〉)
, (91d)

for the lower right quadrant (i.e., <{z} ≥ 0 and ={z} < 0).
Worth noticing that the argument of all Gaussian Q-functions
in (91) is positive, so the well-known Craig’s representa-
tion [1, Eq. (4.2)] and Simon-Divsalar’s representation [1,
Eq. (4.6)] can be easily utilized in all equations from (91a)
to (91d). Then, referring (78), the CDF of Z ∼ CMν(µ, σ 2)
is explicitly written as FZ (z)=

∫
∞

0 FZ0 (z−µ |
√
gσ )fG(g) dg,

where substituting (84) yields

FZ (z) = 1− I1
(√

2
〈
1, (z− µ)/σ

〉)
− I1

(√
2
〈
, (z− µ)/σ

〉)
+ I2

(√
2
〈
1, (z− µ)/σ

〉
,
〈
, (z− µ)/σ

〉)
, (92a)
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for the upper right quadrant (i.e., <{z}≥0 and ={z}≥0);

FZ (z) = I1
(√

2
〈
1, (µ− z)/σ

〉)
− I2

(√
2
〈
1, (µ− z)/σ

〉
,
〈
, (z− µ)/σ

〉)
, (92b)

for the upper left quadrant (i.e., <{z}<0 and ={z}≥0);

FZ (z) = I2
(√

2
〈
1, (µ− z)/σ

〉
,
〈
, (µ− z)/σ

〉)
, (92c)

for the lower left quadrant (i.e., <{z}<0 and ={z}<0);

FZ (z) = I1
(√

2
〈
, (µ− z)/σ

〉)
− I2

(√
2
〈
1, (z− µ)/σ

〉
,
〈
, (µ− z)/σ

〉)
, (92d)

for the lower right quadrant (i.e., <{z} ≥ 0 and ={z} < 0),
where I1(x) and I2(x, y) are respectively defined as

I1(x) =
∫
∞

0
Q
(√

x2/g
)
fG(g) dg, (93)

I2(x, y) =
∫
∞

0
Q
(√

x2/g
)
Q
(√

y2/g
)
fG(g) dg, (94)

for x, y ∈R+. Eventually, substituting Q(x)= 1
2erfc

(
x/
√
2
)

[3, Eq.(2.3-18)] and [174, Eq.(06.27.26.0006.01)] into (93),
and then using [140, Eqs. (2.8.4)and(2.9.1)], I1(x) results in
(46). In addition, substituting [194, Eq. (4.6) and (4.8)] into
(94) and using [173, Eq. (3.471/9)], I2(x, y) is obtained as

I2(x, y) =
1
2
Qν
(√

(x2 + y2) sin(φ)2, φ
)

+
1
2
Qν
(√

(x2 + y2) cos(φ)2,
π

2
− φ

)
, (95)

where φ = arctan(x, y). Consequently, substituting I1(x) and
I2(x, y) into (92) yields (90), which proves Theorem 12.

The CDF of Z∼CMν(µ, σ 2) and its contour plot are well
described in Fig. 5a and Fig. 5b, respectively. For a given
contour value c ∈ [0, 1), the contours, presented in Fig. 5b,
can be obtained by

(z|c) =
{
z = ξ̂ exp(θ )

∣∣ θ ∈ [−π, π), and

ξ̂ = argmin
ξ∈R+

‖F2
Z (ξ )− c‖

2}. (96)

Theorem 13: Under the condition of being CCS, the MGF
of Z∼CMν(µ, σ 2) is given by

MZ (s) = e−〈s,µ〉
(
1−

λ2

8
〈s, s〉

)−ν
, (97)

where s= sX + sY ∈ C within the existence region s ∈C0,
and the region C0 is given by C0 =

{
s
∣∣ 〈s, s〉 ≤ 8/λ2

}
.

Proof: The MGF of Z (i.e., the joint MGF MZ(sX , sY )
of Z) is defined asMZ (s) = E

[
exp(−〈s,Z 〉)

]
, where utilizing

Theorem 10 yields

MZ (s) = e〈s,µ〉
∫
∞

0
E
[
exp(−〈s,

√
gZ0〉)

]
fG(g)dg, (98)

where E
[
exp(−〈s,

√
gZ0〉)

]
is the MGF of CN (0, gσ 2) given

by exp(−gσ
2

4 〈s, s〉) [171], [180]–[182]. Then, substituting
(84) into (98), we have

MZ (s) =
ννe〈s,µ〉

0(ν)

∫
∞

0
gν−1e−gν

(
1−λ2〈s,s〉/8

)
dg. (99)

FIGURE 5. The CDF and contour of CMν (0, σ2) (i.e., the illustration of
(90) for µ=0).

Consequently, utilizing
∫
∞

0 xa−1 exp(−bx) = b−a0(a) for
any<{a} ,<{b}>0 [173, Eq.(3.381/4)], and correspondingly
in a certain existence region 1 − λ2〈s, s〉/8> 0, we simplify
(99) into (97), which proves Theorem 13.
For consistency, setting ν→0 simplifies (97) into theMGF

of Dirac’s distribution, that isMZ (s)=exp(−〈s, µ〉). Further,
setting ν=1 simplifies (97) into the MGF of CL(µ, σ 2), that
is MZ (s)= e−〈s,µ〉(1− σ 2

〈s, s〉/4)−1. In addition, setting the
limit ν→∞ on (97) and applying [173, Eq.(1.211/4)] results
in MZ (s) = exp(−〈s, µ〉 − 1

4σ
2
〈s, s〉), which is the MGF of

CN (µ, σ 2) [171], [180]–[182] as expected.
For the purpose of achieving statistical characterization,

the moment of Z ∼ CMν(µ, σ 2) (i.e., the joint moment
E
[
Xm1 X

n
2

]
of Z= [X1,X2]T as referring to (77), where m∈N

and n ∈ N) are needed in a closed form, and for which the
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MGF is a very useful instrument [181, Eqs.(3.79)and(3.80)]
as follows

E
[
Xm1 X

n
2
]
= (−1)m+n

∂m+n

∂s1m∂s2n
MZ (s)

∣∣∣∣s1→0
s2→0

(100)

where s = s1 + s2 ∈ C. Hence, replacing (97) into (100)
and thereon applying two times the Leibniz’s higher order
derivative rule [173, Eq.(0.42)] yields (101) as shown below.
Theorem 14: Under the condition of being CCS, the joint

moment E
[
Xm1 X

n
2

]
, m, n∈N, of Z ∼CMν(µ, σ 2) is given as

referring to (77) by

E
[
Xm1 X

n
2
]
= µm1 µ

n
2

m∑
k=0

n∑
l=0

(
m
k

)(
n
l

)
4k,l

λk+l

µk1µ
l
2

en(k, l),

(101)

where en(k, l)=en(k)en(l), and the weight4k,l is defined as

4k,l =
√

2k+l
(
1
2

)
k/2

(
1
2

)
l/2
(ν)(k+l)/2 . (102)

where (a)n=a(a+ 1) · · · (a+ n− 1) denotes Pochhammer’s
symbol (or shifted factorial) [172], [173].

Proof: Based on Theorem 10, the joint moment
E
[
Xm1 X

n
2

]
can be readily rewritten as

E
[
Xm1 X

n
2
]
= E

[
(
√
GX0 − µ1)m(

√
GY0 − µ2)n

]
. (103)

Afterwards, applying binomial expansion on (103), we have

E
[
Xm1 X

n
2
]
= µm1 µ

n
2

m∑
k=0

n∑
l=0

(
m
k

)(
n
l

)
1

µk1µ
l
2

×E
[
G

k+l
2
]
E
[
X k0
]
E
[
Y l0
]
, (104)

where substituting [3, Eq.(2.3-20)] and [1, Eq.(2.23)]

E
[
Xn0
]
= E

[
Y n0
]
=
0(1/2+ n)
20(1/2)

σ 2 en(n) (105)

E
[
Gn
]
=
0(ν + n)
0(ν)νn

, (106)

and then performing simple algebraic manipulations results
in (101), which proves Theorem 14.

D. COMPLEX AND ELLIPTICALLY-SYMMETRIC MCLEISH
DISTRIBUTION
The bivariate Gaussian PDF has several beneficial and el-
egant properties and, for this reason, it is a conventionally
used model in the literature. Regarding this fact while to
have more than the previous subsection, we infer many such
properties, so let us consider amore generalized case, i.e., that
the mixture Z =X1 + X2 follows a CES distribution whose
inphaseX1∼Mν1 (µ1, σ

2
1 ) and quadratureX2∼Mν2 (µ2, σ

2
2 )

are c.i.d. two distributions correlated by ρ ∈ [−1, 1]. It is
denoted by Z ∼EMν(µ, σ 2, ρ), the mean is µ=µ1 + µ2,
the normality is ν=ν1=ν2, the variance is σ 2

=2σ 2
1 =2σ 2

2 ,
and the correlation is

ρ =
Cov[X1,X2]
√
Var[X1]Var[X2]

=
2
σ 2 (E[X1X2]− µX1µX2 ). (107)

Accordingly, we present the definition of the CES MacLeish
distribution in the following theorem.
Theorem 15: Under the condition of being CES, the defi-

nition of Z∼EMν(µ, σ 2, ρ) can be decomposed as

Z =
√
GZ0 + µ, (108a)

=
√
G
(
X0 +  (ρX0 +

√
1− ρ2Y0)

)
+ µ, (108b)

where Z0∼EN (0, σ 2, ρ), X0∼N (0, σ 2
1 ) and Y0∼N (0, σ 2

2 ).
X0 and Y0 are independent and identically distributed
random distributions (i.e., 2σ 2

1 = 2σ 2
2 = σ 2). Further,

G∼Gamma(ν, 1).
Proof: Referring to Theorem 10, the correlation be-

tween the inphase and quadrature of Z ∼ EMν(µ, σ 2, ρ)
is certainly determined by that between the inphase and
quadrature of Z0 ∼ EN (0, σ 2, ρ). For a certain correlation
ρ∈ [−1, 1], the inphase and quadrature of Z0∼EN (0, σ 2, ρ)
are respectively written as

<{Z0} = X0 (109)

={Z0} = ρX0 +
√
1− ρ2Y0, (110)

such that Cov[<{Z0},={Z0}] = ρ σ 2/2 and Var[<{Z0}] =
Var[={Z0}]=σ 2/2. Accordingly, the correlation between the
inphase and quadrature of Z ∼ EMνZ (µZ , σ

2
Z , ρ) is written

in terms of that between <{Z0} and ={Z0}, that is

ρ =
Cov[X1,X2]
√
Var[X1]Var[X2]

=
Cov[<{Z0},={Z0}]
√
Var[<{Z0}]Var[={Z0}]

. (111)

Accordingly, the proof is obvious.
With the aid of Theorem 15, the PDF of Z is given in the

following theorem.
Theorem 16: Under the condition of being CES, the PDF

of Z∼EMν(µ, σ 2, ρ) is given by

fZ (z) =
2

π0(ν)

|z− µ|ν−1ρ√
1− ρ2 λν+1

Kν−1

(
2 |z− µ|ρ

λ

)
(112)

defined over z∈C, where the deviation factor λ =
√
2σ 2/ν.

Proof: With the aid of (112), the PDF of Z conditioned
on G is readily written as [3, Eq.(2.3-78)]

fZ |G(z|g) =
1

πg
√
1− ρ2σ 2

exp
(
−
|z− µ|2ρ
gσ 2

)
, (113)

for g ∈ R+, where setting the correlation ρ = 0 yields into
(86) as expected. Accordingly, the PDF of Z can be expressed
as fZ (z) =

∫
∞

0 fZ |G(z|g)fG(g)dg. Then, the proof is obvious
following the same steps in the proof of Theorem 11.

The PDF contour curves of Z ∼ CMν(µ, σ 2) are clearly
illustrated in Fig. 6 for ρ = ±3/4. In addition to them, let
us consider the consistency of (112). Setting the correlation
ρ = 0 yields (85) as expected. Furthermore, setting ν = 1
reduces (112) to the PDF of CES Laplacian distribution, and
equivalently so does ν→∞ to the PDF of the bivariate cor-
related Gaussian distribution [3, Eq.(2.3-78)], whose inphase
and quadrature are mutually correlated with ρ 6=0. In contrast
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FIGURE 6. The PDF contour curves of EMν (0, σ2, ρ) (i.e., the illustration
of (112) for µ=0).

to the evidence that zero correlation implies independence be-
tween Gaussian distributions, the two uncorrelated McLeish
distributions are not independent of each other unless ν→∞.
Eventually, having treated the correlation, it is useful to define
the McLeish’s bivariate Q-function with the aid of (112).
Definition 3 (McLeish’s Bivariate Quantile): The

McLeish’s bivariate Q-function is defined for x∈R and y∈R
by

Qν(x, y, ρ) =
∫
∞

x

∫
∞

y

2
π0(ν)

|z`|ν−1ρ√
1− ρ2 λν+10

× Kν−1

(
2 |z`|ρ
λ0

)
dx` dy`, (114)

where z`=x` + y` ∈ C.

Theorem 17: Under the condition of being CES, the CDF
of Z∼EMνZ (µ, σ

2, ρ) is given by

FZ (z) = 1− Qν
(√

2
〈
1,
z− µ
σ

〉)
− Qν

(√
2
〈
,
z− µ
σ

〉)
+ Qν

(√
2
〈
1,
z− µ
σ

〉
,
√
2
〈
,
z− µ
σ

〉
, ρ
)
, (115a)

for the upper right quadrant (i.e., <{z}≥0 and ={z}≥0);

FZ (z) = Qν
(√

2
〈
1,
µ− z
σ

〉)
− Qν

(√
2
〈
1,
µ− z
σ

〉
,
√
2
〈
,
z− µ
σ

〉
, ρ
)
, (115b)

for the upper left quadrant (i.e., <{z}<0 and ={z}≥0);

FZ (z) = Qν
(√

2
〈
1,
µ− z
σ

〉
,
√
2
〈
,
µ− z
σ

〉
, ρ
)
, (115c)

for the lower left quadrant (i.e., <{z}<0 and ={z}<0);

FZ (z) = Qν
(√

2
〈
,
µ− z
σ

〉)
− Qν

(√
2
〈
1,
z− µ
σ

〉
,
√
2
〈
,
µ− z
σ

〉
, ρ
)
, (115d)

for the lower right quadrant (i.e., <{z}≥0 and ={z}<0).
Proof: Note that the CDF of Z0 ∼ EN (0, σ 2

Z , ρ) is
defined by FZ0 (z`|σZ )=Pr{X0 ≤ 〈1, z`〉 ∩ Y0 ≤ 〈, z`〉 | σZ }
conditioned on σZ and expressed for a certain
z=x + y ∈ C as

FZ0 (z|σZ ) =
∫ x

−∞

∫ y

−∞

exp
(
−〈z`, z`〉ρ/σ

2
)

πσ 2
√
1− ρ2

dx` dy`, (116)

where z` = x` + y` ∈ C. Utilizing [3, Eqs. (2.3-10) and
(2.3-11)] and [1, Eqs. (4.3)] with 〈1, z〉 = <{z} and 〈, z〉 =
={z}, (116) simplifies for the quadrants of complex plane, that
is

FZ0 (z|σ ) = 1− Q
(√

2
〈
1, z/σ

〉)
− Q

(√
2
〈
, z/σ

〉)
+ Q

(√
2
〈
1, z/σ

〉
,
√
2
〈
, z/σ

〉
, ρ
)
, (117a)

for the upper right quadrant (i.e., <{z}≥0 and ={z}≥0);

FZ0 (z|σ ) = Q
(√

2
〈
, z/σ

〉)
− Q

(
−
√
2
〈
1, z/σ

〉
,
√
2
〈
, z/σ

〉
, ρ
)
, (117b)

for the upper left quadrant (i.e., <{z}<0 and ={z}≥0);

FZ0 (z|σ ) = Q
(
−
√
2
〈
1, z/σ

〉
,−
√
2
〈
, z/σ

〉
, ρ
)
, (117c)

for the lower left quadrant (i.e., <{z}<0 and ={z}<0);

FZ0 (z|σ ) = Q
(√

2
〈
1, z/σ

〉)
− Q

(√
2
〈
1, z/σ

〉
,−
√
2
〈
, z/σ

〉
, ρ
)
, (117d)

for the lower right quadrant (i.e., <{z} ≥ 0 and ={z} < 0).
Accordingly, referring to (108a), the CDF of Z ∼ CMν

(µ, σ 2, ρ) is explicitly written as FZ (z) =
∫
∞

0 FZ0 (z −
µ|
√
gσ )fG(g) dg. With the aid of Theorem 12, we rewrite (36)

and (114) as

Qν(x) =
∫
∞

0
Q
(√

2gx
)
fG(g) dg, (118)

Qν(x, y, ρ) =
∫
∞

0
Q
(√

2gx,
√
2gy, ρ

)
fG(g) dg, (119)
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the CDF FZ (z) is readily obtained as (115), which completes
the proof of Theorem 17.
Theorem 18: Under the condition of being CES, the MGF

of Z∼EMν(µ, σ 2, ρ) is given by

MZ (s) = e−〈s,µ〉
(
1−

λ2

8
(1− ρ2)

〈
s, s
〉
−ρ

)−ν
, (120)

where s= sX + sY ∈ C within the existence region s ∈C0,
and the region C0 is given by

C0 =

{
s
∣∣∣ λ2(1− ρ2)〈s, s〉

−ρ
≤ 8

}
. (121)

Proof: Note that, referring to Theorem 15, the MGF of
Z∼EMν(µ, σ 2, ρ) conditioned on G is written as

MZ |G(s|g) = exp
(
−〈s, µ〉 +

g
4
σ 2(1− ρ2)〈s, s〉−ρ

)
. (122)

Then, performing the almost same steps followed in the proof
of Theorem 13, the MGF of Z ∼EMν(µ, σ 2, ρ) is obtained
as (120), which completes the proof of Theorem 18.

E. MULTIVARIATE McLeish DISTRIBUTION
In this subsection, we deal with random vectors instead of
just individual random distributions. We define multivariate
McLeish distribution and derive its statistical characteriza-
tion, where we begin with a vector of independent McLeish
distributions and work ourselves up to the general case where
they are no longer mutually independent. Let us start with
a vector that consists of uncorrelated and identically dis-
tributed random distributions of the same family, that is

S = [S1, S2, . . . , SL]T , (123)

where S` denotes a random distribution with zero mean and
unit variance, i.e., E[S`]= 0 and V[S`]= 1, 1≤ `≤ L such
that any pair of Sk and S`, k 6= ` must be uncorrelated (i.e.,
E[SkS`]=0). Hence, the mean vector µ=E[S] is given by

µ = [0, 0, . . . , 0]T , (124)

and the covariance matrix 6=E[SST ] is given by

6 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 . (125)

By definition of standard multivariate distribution
[146]–[150], S follows a standard multivariate distribution
with zeromean vector and unit covariancematrix iff∀a ∈ RL ,
aTS follows a random distribution of the same family with
zero mean and aT a variance. Accordingly, in case of that all
marginal distributions S`∼Mν` (0, 1), 1≤`≤L, if S follows
a standard multivariate McLeish distribution with zero mean
vector and unit covariance matrix, aTS should have to follow
a McLeish distribution with zero mean and aT a variance,
which surely imposes that there must be a condition among
ν`, 1 ≤ ` ≤ L. By the uniqueness property of MGF [195],
we know that the PDF is uniquely determined by the MGF,
and therefore the MGF of aTS has to be in the same form of

the MGF of S`∼Mν`(0, 1) for all 1≤`≤L. With the aid of
Theorem 5, the MGF of aTS, i.e.,MaT S(s)=E[exp(−s aTS)]
can be written as the product of the MGFs of all marginal
distributions S` ∼ Mν` (0, 1) for all 1 ≤ ` ≤ L, that is

MaT S(s)=
∏L
`=1
(
1 − 1

4λ
2
`s

2
)−ν` with λ` =√2a2`/ν`. When

the all component deviation factors are exactly the same (i.e.,
λ` = λ6 , 1 ≤ ` ≤ L), we can rewrite it in the form of (51),
that is MaT S(s) =

(
1 − 1

4λ
2
6s

2
)−ν6 , where ν6 = ∑L

`=1 ν`

and σ 2
6 = aT a, and therefore λ6 =

√
2σ 2
6/ν6 . Eventually,

we reach ν6 = Lν`, 1 ≤ ` ≤ L, where each equality can be
satisfied when and only when ν` = νk = ν for any ` 6= k .
Consequently, S follows a standard multivariate McLeish
distribution iff S`∼Mν(0, 1) for all 1≤ `≤L. There hence,
each marginal distribution is decomposed as S` =

√
G`N`

with G`∼G(ν, 1) and N`∼N (0, 1) for all 1≤ `≤L. Owing
to preserving the being CS, any given pair of Sk ∼Mν(0, 1)
and S`∼Mν(0, 1), k 6= `, must be uncorrelated, and what is
more accordingly, 8k,` = arctan(Sk , S`) has to be uniformly
distributed over [−π, π) and independent of both Sk and S`.
Referring to the proof of Theorem 10, we notice that G`,
1 ≤ ` ≤ L, are the same distribution (i.e., the correlation
between any pair of Gk ∼ G(ν, 1) and G` ∼ G(ν, 1), k 6= `
is surely 1 without loss of generality), and thus S certainly
follows a CS standard multivariate distribution, denoted by
S∼ML

ν (0, I) and decomposed in the following theorem.
Theorem 19: A standard multivariate McLeish distribu-

tion, denoted by S∼ML
ν (0, I), is decomposed as

S =
√
GN, (126)

where N∼N L(0, I).
Proof: The proof is obvious from the pivotal and

tractable details mentioned before Theorem 19.
With Theorem 19, we conclude that since any non-empty

subset of multivariate Gaussian distribution follows a multi-
variate Gaussian distribution [146]–[150], the random vector
W = [Sk1 , Sk2 , . . . , SkK ]

T constructed from S for a subset
{k1, k2, . . . , kK } of {1, 2, . . . ,L} with cardinal K ≤L follows
a standard multivariate CS McLeish distribution. Eventually,
the PDF of standard multivariate CS McLeish distribution
denoted by S∼ML

ν (0, I) is given in the following theorem.
Theorem 20: The PDF of S∼ML

ν (0, I) is given by

fS(x) =
2
√
πL

‖x‖ν−L/2

0(ν)λν+L/20

Kν−L/2
( 2
λ0

∥∥x∥∥), (127)

for a certain x= [x1, x2, . . . , xL]T ∈ RL .
Proof: Referring to (126), the PDF of S conditioned on

G, i.e., fS|G(x|g) can be readily written as [3, Eq. (2.3-74)]

fS|G(x|g) =
1

(2π)L/2gL/2
exp

(
−
‖x‖2

2g

)
, (128)

for g∈R+. In accordance, the joint PDF fS(x) can be readily
expressed as fS(x)=

∫
∞

0 fS|G(x|g) fG(g)dg, that is

fS(x) =
1

(2π)L/2

∫
∞

0

1
gL/2

exp
(
−
‖x‖2

2g

)
fG(g)dg, (129)
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where fG(g) denotes the PDF of G ∼ G(ν, 1) ( i.e., given in
(84)). Subsequently, using [173, Eq.(3.471/9)], (129) simpli-
fies to (127), which proves Theorem 20.

Note that S ∼ML
ν (0, I) is termed as standard multivari-

ate McLeish distribution which is a collection of identical
standard McLeish distributions. As observed in Theorem 20,
the PDF of S∼ML

ν (0, I) is given by fS(x), and it does only
depend on the squared Euclidean distance ‖x‖2 = xT x of x
from the origin. That is, there exists a circularly symmetry
among all S` ∼Mν(0, 1), 1 ≤ ` ≤ L. However, we cannot
partition (127) into the product of the PDFs of marginal dis-
tributions even in spite of that they are uncorrelated. However,
it simplifies to (25) for L=1 as expected. Furthermore, since
an orthogonal transformation O (i.e., OTO = OOT

= I)
preserves the norm of any vector (i.e., ‖Ox‖= ‖x‖), we can
immediately conclude OS ∼ML

ν (0, I), which remarks that
S ∼ML

ν (0, I) has the same distribution in any orthonormal
basis. Geometrically, it is invariant to rotations and reflections
and hence does not prefer any specific direction.
Definition 4 (McLeish’s Multivariate Quantile and Com-

plementary Quantile): For a fixed x ∈ RL in higher di-
mensional space, the McLeish’s multivariate Q-function is
defined by

QLν (x) =
∫
∞

x1

∫
∞

x2
· · ·

∫
∞

xL

2
√
πL

‖u‖ν−L/2

0(ν)λν+L/20

× Kν−L/2
( 2
λ0

∥∥u∥∥)du1du2 . . . duL , (130)

and the corresponding complementary Q-function by

Q̂Lν (x) =
∫ x1

−∞

∫ x2

−∞

· · ·

∫ xL

−∞

2
√
πL

‖u‖ν−L/2

0(ν)λν+L/20

× Kν−L/2
( 2
λ0

∥∥u∥∥)du1du2 . . . duL . (131)

The CDF of S∼ML
ν (0, I) is completely descriptive of the

probability of that S are less than or equal to x, and defined
by FS(x)=Pr{S≤x}=Pr{S1≤ x1, S2≤ x2, . . . , SL ≤ xL} and
obtained in the following. It is worth noting the properties of
the CDF FS(x); 0≤FS(x)≤1, FS(−∞)=0, and FS(∞)=1.
Furthermore, FS(x) is a monotonically increasing function of
x, that is FS(x)≤FS(x+1) for 1 ∈ R+.
Theorem 21: The CDF ofS∼ML

ν

(
0, I

)
is given by

FS(x) = Q̂Lν (x), (132)

defined over x∈RL .
Proof: The CDF of S ∼ML

ν

(
0, I

)
is readily given by

FS(x)=
∫ x1
−∞

∫ x2
−∞
· · ·
∫ xL
−∞

fS(u) du1du2 . . . duL defined over
x ∈RL , where fS(x) is given in (127). Therewith, exploiting
(131), the proof is obvious.

Note that the C2DF of S∼ML
ν (0, I) is also useful to derive

especially when considering tail probabilities, and defined by
F̂S(x)= Pr{S > x} = Pr{S1 > x1, S2 > x2, . . . , SL > xL} and
obtained in the following. As opposite to the CDF, F̂S(x) has
the following properties: 0 ≤ F̂S(x) ≤ 1, F̂S(−∞) = 1, and

F̂S(∞) = 0, and it is a monotonically decreasing function
of x, that is F̂S(x)≥ F̂S(x+1) for 1 ∈ R+.
Theorem 22: The C2DF ofS∼ML

ν

(
0, I

)
is given by

F̂S(x) = QLν (x), (133)

defined over x∈RL .
Proof: The proof is obvious following almost the same

steps performed in the proof of Theorem 21.
Since any (non-empty) subset of multivariate McLeish dis-

tribution is a multivariate McLeish distribution, both the CDF
and C2DF of any subset of multivariate McLeish distribution
can be obtained by respectively using (132) and (132), where
setting x` = 0 for X` which is not in the subset of interest,
i.e., the CDF of S1∼Mν(0, 1) is FS1 (x)=FS([x, 0, . . . , 0]

T )
and the corresponding C2DF is F̂S1 (x)= F̂S([x1, 0, . . . , 0]

T ),
which are respectively as expected the special case of (37)
and (50) with zero mean and unit variance. Besides, in the
case of the bivariate distribution of any pair of Sk and S`,
k 6= `, we readily obtain the bivariate CDF as follows
FSk ,S` (xk , x`) = FS([0, . . . , 0, xk , 0, . . . , 0, x`, 0, . . . , 0]T )
as expected. In the similar manner, the bivariate C2DF
F̂Sk ,S` (xk , x`) can also be readily obtained using Theorem 22.
Theorem 23: The MGF of S∼ML

ν (0, I) is given by

MS(s) =
(
1−

λ20

4
sT s
)−ν

, (134)

for a certain s∈RL within the existence region s∈C0, where
the region C0 is given by

C0 =

{
s
∣∣∣ λ20sT s ≤ 4

}
. (135)

Proof: The MGF of S ∼ ML
ν (0, I) is de-

scribed by MS(s) = E
[
exp(−sTS)

]
=

∫
∞

−∞
· · ·
∫
∞

−∞

exp(−sTx)fS(x) dx1 . . . dxL , where substituting (129) yields

MS(s) =
∫
∞

0

1
gL/2

I (g)fG(g) dg, (136)

where fG(g) denotes the PDF of G ∼ G(ν, 1) ( i.e., given in
(84)) and I (g) is given by

I (g) =
∫
∞

−∞

· · ·

∫
∞

−∞

e−
1
2g

(
‖x‖2+gsTx

)
(2π )L/2

dx1 . . . dxL , (137)

where achieving the equivalent of completing the square,
i.e., substituting ‖x‖2+2gsTx=‖x+ gs‖2−g2sTs readily re-
sults in I (g)=exp( g2 s

T s). Accordingly, (136) simplifies with
the aid of [173, Eq.(3.381/4)] to (134) with the convergence
(135), which proves Theorem 23.
As similar to the CDF and C2DF of the subset of mul-

tivariate McLeish distribution, the corresponding MGF is
obtained utilizing (134). For instance, we can easily ob-
tain the MGF of S1 ∼ Mν(0, 1) by means of MS1 (s) =
MS([s1, 0, . . . , 0]T ) = (1 − λ20s

2/4)−ν , which is consistent
with (51) for zero mean and unit variance. Besides, in the
case of the bivariate distribution of any given pair of Sk and
S`, k 6= `, we readily obtain MSk ,S` (sk , s`)=MS([0, . . . , 0,
sk , 0, . . . , 0, s`, 0, . . . , 0]T ) = (1 − λ20(s

2
1 + s22)/4)

−ν as
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expected. It is lastly worth noting that these results and the
ones given above are restricted to the case where all
S`∼Mν(0, 1), 1≤`≤L, are identically distributed. A more
general case is investigated in the following.

Let us have a vector of uncorrelated and non-identically
distributed (u.n.i.d.) McLeish distributions, that is

X = [X1,X2, . . . ,XL]T , (138)

where X` ∼Mν(0, σ 2
k ) for all 1≤ `≤ L, and any given pair

of Xk ∼Mν(0, σ 2
` ) and X`∼Mν(0, σ 2

` ), k 6= ` are assumed
uncorrelated (i.e., Cov[Xk ,X`]= 0). It is worth noticing that
X follows a multivariate McLeish distribution iff aTX for all
a ∈ RL follows a McLeish distribution by the definition of
multivariate distribution. Define σ 2

= [σ 2
1 , σ

2
2 , . . . , σ

2
L ]
T con-

sisting of variances of marginal distributions, and accordingly
σ = [σ1, σ2, . . . , σL]T . Due to possessing Cov[Xk ,X`] = 0
for any k 6= `, the random vector X certainly follows a
multivariate elliptically symmetric (ES)McLeish distribution
denoted by X∼ML

ν (0, diag(σ
2)) and decomposed as in the

following.
Theorem 24: A multivariate McLeish distribution of

uncorrelated and not identically distributed McLeish
distributions, denoted by X ∼ ML

ν (0, diag(σ
2)), is

decomposed as

X = diag(σ )S. (139)

where S∼Mν(0, I).
Proof: The proof is obvious since σ TS∼Mν(0, σ Tσ ).

Accordingly, the PDF of a multivariate elliptically sym-
metric (ES) McLeish distribution, denoted by X ∼

ML
ν (0, diag(σ

2)), is given in the following.
Theorem 25: The PDF of X ∼ML

ν (0, diag(σ
2)) is given

by

fX (x) =
2

πL/2

∥∥3−1x∥∥ν−L/2
0(ν) det(3)

Kν−L/2
(
2
∥∥3−1x∥∥) (140)

for a certain x= [x1, x2, . . . , xL]T ∈RL , where 3= diag(λ),
and λ=λ0 σ denotes the component deviation vector.

Proof: Note that, referring to (139), we express
S ∼ ML

ν (0, I) with the aid of a linear transform, that is
S = diag(σ )−1X , and therefrom we notice the Jacobian
JX |S=det(σ )−1. Hence, we can write the PDF of X as

fX (x) = fS( diag(σ )−1x)JX |S. (141)

Further, defining the component deviation factor matrix as

3 = λ0 diag(σ ) =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λL

 . (142)

where λ` =
√
2σ 2
` /ν, 1 ≤ ` ≤ L, we directly acknowledge

that diag(σ )−1=λ03−1 and det( diag(σ ))−1=λL0 det(3)
−1.

Finally, with these results, substituting (127) into (141) re-
sults in (140), which proves Theorem 25.

For consistency, accuracy, and clarity, setting
diag(σ 2) = σ 2I (i.e., making each component have
equal power), we can readily reduce (140) to the PDF of
X∼ML

ν (0,σ
2I) given by

fX (x) =
2

πL/2

∥∥x∥∥ν−L/2
0(ν)λν+L/2

Kν−L/2
(2
λ

∥∥x∥∥) (143)

where λ =
√
2σ 2/ν is the component deviation defined

before.
Theorem 26: The CDF of X ∼ML

ν (0, diag(σ
2)) is given

by

FX (x) = Q̂Lν
(
λ03

−1x
)
, (144)

defined over x∈RL .
Proof: Using (139) and diag(σ )−1 = λ03−1, we have

S=λ03−1S. The proof is then obvious using Theorem 21.
Theorem 27: The C2DF of X∼ML

ν (0, diag(σ
2)) is given

by

FX (x) = QLν
(
λ03

−1x
)
, (145)

defined over x∈RL .
Proof: The proof is obvious following almost the same

steps performed in the proof of Theorem 26.
Theorem 28: The MGF of X ∼ML

ν (0, diag(σ
2)) is given

by

MS(s) =
(
1−

1
4
sT32s

)−ν
, (146)

for a certain s∈RL within the existence region s∈C0, where
the region C0 is given by

C0 =

{
s
∣∣∣ sT32s ≤ 4

}
. (147)

Proof: Note that, with the aid of (139), we can readily
rewrite MX (s) = E[exp(−sTX)] as MX (s) = MS( diag(σ )s).
Then, using Theorem 23,MX (s) is expressed as

MX (s) =
(
1−

λ20

4
sT diag(σ )2s

)−ν
, (148)

within the region C0 =
{
s
∣∣ λ20 sT diag(σ )2s ≤ 4

}
, where

substituting (142) yields (146) within the region (147), which
completes the proof of Theorem 28.

Due to the main importance of special cases for clarity and
consistency, let us consider a special case in which σ` = σ
for all 1 ≤ ` ≤ L. Appropriately, we can readily simplify
(140) to (127), and accordingly, (144) to (132), (145) to (133),
(146) to (134), as respectively expected. In addition, both
the results and conclusions presented above are restricted
only to the case, where McLeish distributions are assumed
to be uncorrelated. Deducing statistical structures benefiting
from these results, we investigate in the following the most
general case in which McLeish distributions are assumed to
be correlated and non-identically distributed.
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Let us consider a vector of correlated and non-identically
distributed (c.n.i.d.) McLeish distributions with µ mean vec-
tor and 6 covariance matrix, that is

X = [X1,X2, . . . ,XL], (149)

where X` ∼ Mν` (µ`, σ
2
` ), 1 ≤ ` ≤ L. Accordingly, µ is

defined by µ=E[X], that is

µ = [µ1, µ2, . . . , µL]T , (150)

where µ` = E[X`], 1 ≤ ` ≤ L. 6 is defined by
6=E[XXT ]− µµT , that is

6 =


σ11 σ12 . . . σ1L
σ21 σ22 . . . σ2L
...

...
. . .

...

σL1 σL2 . . . σLL

 , (151)

where σk` = Cov[Xk ,X`] = E[XkX`] − µkµ` for
1 ≤ k, ` ≤ L. Note that the covariance matrix 6 is by
construction a symmetric matrix, i.e., 6 = 6T . It is also a
positive definite matrix, i.e., xT6 x≥0 for all x∈RL , which
immediately implies that rank(6) = L and det(6) ≥ 0, and
therefrom minx xT6x=Tr(6). In terms of the entries σk` of
6= [σk`]L×L , the preceding imposes the following necessary
conditions:
• σk`=σk`, 1≤k, `≤L (symmetry),
• σ`` > 0 for all 1 ≤ ` ≤ L since σ`` = σ 2

` which is the
variance of X` (i.e., Var[X`] = σ 2

` ),
• σk`≤σkkσ`` for all 1≤k, `≤L due to Cauchy-Schwarz’
inequality [196, Sec. 2.3].

Since 6 is a positive definite matrix, there is a certain trian-
gular decomposition, which is known as Cholesky decom-
position [197, Chap. 10], [198, Sec. 2.2], in reduced form
of 6 = LTL with a uniquely defined non-singular lower
triangular matrix L =

[
Lk`
]
L×L such that L`` > 0 for

1≤ `≤ L. Consequently, we are certain that L−1 exists, and
accordingly we indicate in the following the existence of mul-
tivariate McLeish distribution. By definition of multivariate
distribution [146]–[150], X follows a multivariate McLeish
distribution iff

Y = L−1(X − µ) = [Y1,Y2, . . . ,YL]T , (152)

jointly follows a multivariate McLeish distribution with zero
mean vector and unit covariance matrix. As explained before
Theorem 20, if aTY for all vectors a∈R+ follows a McLeish
distribution, then we can declare that Y follows a multivariate
McLeish distribution. Therefore, ν`=ν for all 1≤`≤ L since
circularity imposes that arctan(Yk ,Y`), k 6= ` has to follow a
uniform distribution over [−π, π). By the virtue of both (126)
and (152), we find out Y ∼ML

ν (0, I), and therefore, we can
decompose X as

X =
√
GN + µ, (153)

where G ∼ G(ν, 1), and N ∼ N L(0,6). In consequence,
X follows a multivariate ES McLeish distribution due to
the both facts: (i) the types of all marginal distributions are

the same, (ii) for any pair of Xk ∼ Mν(µk , σ 2
k ) and X` ∼

Mν(µ`, σ 2
` ), k 6=`, arctan((Xk − µk )/σk , (X` − µ`)/σ`) fol-

lows uniform distribution over [−π, π). Since it is uniquely
determined by its mean vector, covariancematrix and normal-
ity, it is denoted by X ∼ML

ν

(
µ,6

)
, whose decomposition

and PDF are obtained in the following.
Theorem 29: If X∼ML

ν

(
µ,6

)
, then it is decomposed as

X = 61/2S+ µ, (154)

where S∼ML
ν (0, I).

Proof: Note that, using [3, Eq. (2.3-79)], we can de-
composeN∼N L(0,6) asN=61/2U , whereU∼N L(0, I).
Furthermore, with the aid of (126), we can also decompose
S ∼ML(0, I) as S = GU , where G ∼ G(ν, 1). Then, sub-
stituting these results into (153) yields (154), which proves
Theorem 29.
Theorem 30: The PDF of X∼ML

ν

(
µ,6

)
is given by

fX (x) =
2

√
πL0(ν)

‖x− µ‖ν−L/26
√
det(6)λν+L/20

× Kν−L/2
( 2
λ0

∥∥x− µ∥∥
6

)
, (155)

defined over x∈RL , where ‖x− µ‖6= (x−µ)T6
−1(x−µ).

Proof: With the aid of Theorem 29, we readily recognize
that X ∼ML

ν

(
µ,6

)
is a linear transform of S ∼ML

ν (0, I).
Hence, we can write S = 6−1/2(X − µ) and therefrom
immediately obtain its Jacobian JX |S = det(6)−1/2in order
to express the PDF of X in terms of the PDF of S, that is

fX (x) = fS(6−1/2(X − µ))JX |S. (156)

where fS(x) has been already given in (127). Finally, substi-
tuting (127) into (156) and utilizing the symmetry of 6 (i.e.,
6=6T ) with the results given above, we obtain (155), which
completes the proof of Theorem 302.
Note that we can compute the CDF of X ∼ML

ν (µ,6) as
FX (x) = Pr{X1 ≤ x1,X2 ≤ x2 . . .XL ≤ xL}, and similarly, its
C2DF as F̂X (x)=Pr{X1>x1,X2>x2 . . .XL>xL}, and obtain
them in the following.
Theorem 31: The CDF of X∼ML

ν (µ,6) is given by

FX (x) = Q̂Lν
(
6−1/2(X − µ)

)
, (157)

defined over x∈RL .
Proof: With the aid of Theorem 29, we have

S = 6−1/2(X − µ). Then, using (131), the proof is
obvious.
Theorem 32: The C2DF of X∼ML

ν (µ,6) is given by

F̂X (x) = QLν
(
6−1/2(X − µ)

)
, (158)

defined over x∈RL .

2An alternative proof of Theorem 30 can be found as follows. According
to (154), the PDF of X conditioned on G, i.e., the conditional PDF fX |G(x|g)
can be readily written as [3, Eq. (2.3-74)]

fX |G(x|g) =
1√

(2π )LgL det(6)
exp

(
−
‖x− µ‖26

2g

)
, (F-2.1)

for g∈R+. Then, performing the almost same steps followed in the proof of
Theorem 20, the PDF fX (x) is expressed as (155), which proves Theorem 30.
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Proof: The proof is obvious using Theorem 31.
As expected based on the mentioned above, the marginal

CDF of X`∼ (µ`, σ 2
` ) is given by FX`

(
x`
)
=FX

(
∞, . . . ,∞,

x`,∞, . . . ,∞
)
. In the same manner, the bivariate CDF of Xk

and X`, k <`, is derived as FXk ,X`
(
xk , x`

)
=FX

(
∞, . . . ,∞,

xk ,∞, . . . ,∞, x`,∞, . . . ,∞
)
, which can be readily genera-

lized for the case more than two marginal distributions. The
same manner is also valid for the C2DF.

We further note that the MGF of X ∼ML
ν (µ,6), defined

by MX (s)=E
[
exp(−sTX)

]
, is obtained in the following.

Theorem 33: The MGF of X∼ML
ν

(
µ,6

)
is given by

MX (s) = exp(−sTµ)
(
1−

λ20

4
sT6 s

)−ν
, (159)

for a certain s∈RL within the existence region s∈C0, where
the region C0 is given by

C0 =

{
s
∣∣∣ λ20 sT6 s ≤ 4

}
. (160)

Proof: Using (154) with MX (s) = E
[
exp(−sTX)

]
,

we have

MX (s) = E
[
exp

(
−sT (61/2S+ µ)

)]
, (161a)

= exp
(
−sTµ

)
E
[
exp

(
−sT61/2S

)]
, (161b)

= exp
(
−sTµ

)
MS
(
61/2s

)
, (161c)

Eventually, substituting (134) into (161c) yields (159) with
the existence region (160), which proves Theorem 33.3

Given a non-singular covariance matrix 6, the correlation
matrix P can be expressed as

P =


1 ρ12 . . . ρ1L
ρ21 1 . . . ρ2L
...

...
. . .

...

ρL1 ρL2 . . . 1

 , (162a)

= diag(σ )−16 diag(σ )−1, (162b)

where for 1≤ k, `≤L, ρk` ∈ [−1, 1] denotes the correlation
between Xk and X`, and it is defined by

ρk` =
Cov[Xk ,X`]
√
Var[Xk ]Var[X`]

=
E[XkX`]− µkµ`

σkσ`
. (163)

After using (162b), the inverse of 6 is readily rewritten as

6−1 = diag(σ )−1P−1 diag(σ )−1, (164a)

= λ203
−1P−13−1 (164b)

3An alternative proof of Theorem 33 can be done using X=G6
1
2N + µ

derived from (126) and (154). Thus, the MGF of X conditioned on G is

MX |G(s|g) = exp
(
−sTµ+

g
2
sT6s

)
, (F-3.1)

for g∈R+. In accordance, MS(s)=
∫
∞

0 MS|G(s|g) fG(g)dg is written as

MX (s) = exp
(
−sTµ

) ∫ ∞
0

exp
( g
2
sT6s

)
fG(g)dg, (F-3.2)

where fG(g) denotes the PDF of G∼G(ν, 1) ( i.e., given in (84)). So, using
[173, Eq. (3.381/4)], (F-3.2) simplifies to (159), which proves Theorem 33.

where 3 = λ0 diag(σ ). In case of 3 = λI with λ = σλ0,
we have 6=σ 2P, and thus (155) simplifies to

fX (x) =
2

√
πL0(ν)

‖x− µ‖ν−L/2P
√
det(P)λν+L/2

× Kν−L/2
(2
λ

∥∥x− µ∥∥P). (165)

Accordingly, we can readily simplify (157) to

FX (x) = Q̂Lν
(
λ0 P−1/23−1/2(X − µ)

)
, (166)

and (158) to

F̂X (x) = QLν
(
λ0 P−1/23−1/2(X − µ)

)
, (167)

and (159) to

MX (s) = exp(−sTµ)
(
1−

1
4
sT3P3 s

)−ν
, (168)

In addition, in case of no correlation amongmarginalMcLeish
distributions (i.e., when P=I), we have the covariance matrix
6=32/λ20. Accordingly, for zero mean µ= 0, we simplify
(165) to (140), (166) to (144), (167) to (145), and (168) to
(146), as respectively expected.

There are also two notable properties of multivariate ES
McLeish distributions to be explicitly considered: (i) any non-
degenerate affine transformation ofX ∼ML

ν (µ,6) is also a
multivariate ES McLeish distribution, (ii) its conditional and
marginal distributions are jointly multivariate ES McLeish
distribution. The first property is given in the following.
Theorem 34: If X∼ML

ν (µ,6) and if Y=BX + b, where
rank(B)≤L, then Y∼ML

ν (Bµ+ b,B6B
T ).

Proof: Using Theorem 29, we have Y = B(61/2S +
µ)+ b, which can be rearranged as Y=B61/2S+ (Bµ+ b)
with Bµ+ b mean vector and B6BT covariance matrix.
As for the second property, the conditional distribution of

X∼ML
ν (µ,6) is given in the following.

Theorem 35: Let X ∼ ML
ν (µ,6) be X = [XT

1 ,X
T
2 ]
T

with X1 ∼ML1
ν (µ1,611) and X2 ∼ML2

ν (µ2,622), where
L=L1 + L2, and µ and 6 are respectively by

µ =

[
µ1
µ2

]
, and 6 =

[
611 612
621 622

]
. (169)

The conditional distribution of X1 given X2=x2 is given by
X1|X2∼ML1

ν (µ1+6126
−1
22 (x2−µ2),611−6126

−1
22 621).

Proof: As substituting (126) in Theorem 29, we can
decompose X∼ML

ν (µ,6) as follows

X =
√
GN =

√
G
[
N1
N2

]
+

[
µ1
µ2

]
, (170)

with definitions of X1=
√
GN1+µ1 and X2=

√
GN2+µ2,

where G∼G(ν, 1), N1∼N L(0,611) and N2∼N L(0,622).
The conditional distribution of X1 given both G = g and
X2 = x2 is therefore defined by the ratio between two
multivariate Gaussian densities, that is fX1|X2,G(x1|x2, g) =
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fX |G(x|g)/fX2|G(x2|g) given by

fX1|X2,G(x1|x2, g) =
√
det(622)√

(2πg)L1 det(6)

× exp
(
−

1
2g

(∥∥x− µ∥∥2
6
−
∥∥x2 − µ2

∥∥2
622

))
(171)

for x= [xT1 , x
T
2 ]
T
∈ RL , where ‖x− µ‖26 can be given by∥∥x− µ∥∥2

6
=
∥∥x2 − µ2

∥∥2
622

+
∥∥x1 − µ1 −6126

−1
22 x2

∥∥2
611−6126

−1
22 621

, (172)

After substituting (172) in (171), the PDF of X1 given X2
is written as fX1|X2 (x1|x2) =

∫
∞

0 fX1|X2,G(x1|x2, g)fG(g)dg.
Accordingly, and pursuant to utilizing Theorem 30 with [173,
Eq. (3.381/4)], the PDF of X1|X2 is obtained in the form of
(155) with mean vector µ1+6126

−1
22 (x2−µ2) and covariance

matrix 611−6126
−1
22 621. Then, the proof is obvious.

Note that, when 612=612=0, (172) reduces to∥∥x− µ∥∥2
6
=
∥∥x1 − µ1

∥∥2
611
+
∥∥x2 − µ2

∥∥2
622
, (173)

which implies that X1 and X2 are mutually uncorre-
lated, and thus we have X1|X2 ∼ ML1

ν (µ1,611) and
X2|X1∼ML2

ν (µ2,622).

F. MULTIVARIATE COMPLEX McLeish DISTRIBUTION
Let us have S∼M2L

ν (0, I) be represented by

S=
[
S1
S2

]
, (174)

where both S1 ∼ML
ν (0, I) and S2 ∼ML

ν (0, I) are two such
uncorrelated standard multivariate McLeish distributions that
E[S1ST2 ] = 0 and E[S2ST1 ] = 0. Form this point of view,
we can define a multivariate complex McLeish distribution
as

W = S1 + S2, (175)

which can be considered as a vector of uncorrelated and
identically distributed standard CCS McLeish distributions,
i.e., W = [W1,W2, . . . ,WL]T , where W` ∼ CM(0, 1),
1≤ `≤ L such that the inphase and quadrature parts of any
given pair of Wk ∼ CM(0, 1) and W`∼ CM(0, 1), k 6= ` are
CS by default. By the definition of multivariate distribution
[146]–[150], W has a multivariate complex distribution iff
∀a ∈ CL, aTW follows a complex random distribution of
the same family. Accordingly, our intention is to come up
to the PDF of W , denoted by fW (z), to check its distribution
family. Taking into account the definition of multivariate
distribution, and pursuant to what presented in Section III-E
above, we conclude that the PDF of W is exactly the same
as the PDF of S ∼ M2L

ν (0, I), i.e., fW (z) = fS(z). The
multivariate distribution W is therefore explicitly termed as
standard multivariate CCSMcLeish distribution and properly
denoted by W ∼ CML

ν (0, I), whose decomposition is given
in the following.

Theorem 36: A standard multivariate CCSMcLeish distri-
bution, denoted byW∼CML

ν (0, I), is decomposed as

W =
√
G(N1 + N2), (176)

where N1∼N L(0, I) and N2∼N L(0, I) are such two stan-
dard multivariate Gaussian distributions that E[N1NT

2 ]= 0
and E[N2NT

1 ]=0. Furthermore, G∼G(ν, 1).
Proof: Using (126) in (175), we rewrite W =

[W1,W2, . . . ,WL]T as follows

W =
√
G1N1 + 

√
G2N2, (177)

where the inphase and quadrature parts of any given pair of
Wk ∼ CM(0, 1) and W` ∼ CM(0, 1), k 6= ` have to be
CS according to the pivotal and tractable details mentioned
before Theorem 36. Therefore, G1 and G2 has to be the same
distribution, which completes the proof of Theorem 36.
With the aid of Theorem 36, we give the PDF of stan-

dard multivariate CCS McLeish distribution, denoted by
W∼CML

ν

(
0, I

)
, in the following theorem.

Theorem 37: The PDF ofW∼CML
ν

(
0, I

)
is given by

fW (z) =
2
πL

‖z‖ν−L

0(ν)λν+L0

Kν−L
( 2
λ0

∥∥z∥∥), (178)

for a certain z= [z1, z2, . . . , zL]T ∈ CL , where ‖z‖=zHz.
Proof: Referring to the distributional equality between

(174) and (175), well explained above, we acknowledge that
both S∼M2L

ν (0, I) andW∼CML
ν

(
0, I

)
have the same PDF,

i.e.
fS(x) = fW (zI + zQ), (179)

where zI ∈RL and zQ∈RL such that z=zI + zQ and

x =
[
zI
zQ

]
. (180)

Then, using Theorem 20, we easily deduce the PDF ofW as
in (178), which completes the proof of Theorem 37.

As observed in Theorem 37, the PDF fW (z) is a function of
squared Euclidean norm ‖z‖2= zHz in complex space. Since
a unitary transformation U (i.e., UUH

=UHU= I) preserves
the Euclidean norm of all complex vectors (i.e., ‖Uz‖=‖z‖),
we immediately obtain the covariance matrix of UW as

E[UW (UW )H ] = UE[WWH ]UH
= 2I, (181)

and its pseudo-covariance matrix as

E[UW (UW )T ] = UE[WWT ]UT
= 0. (182)

These same conclusions are also being drawn for an orthog-
onal transformations. Further, we notice that

Tr(E[WWH ]) = Tr(E[SST ]), (183a)

= 2Tr(E[SjSTj ]), j ∈ {1, 2}, (183b)

= 2L, (183c)

Both (181) and (182) together impose that fUW (z) = fW (z),
and therefore UW ∼ CML

ν (0, I). In addition, for clarity and
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consistency, we readily rewrite fW (z) in terms of Meijer’s G
function using [139, Eq. (8.4.23/1)], that is

fW (z) =
1

πLλ2L0 0(ν)
G2,0
0,2

[
‖z‖2

λ20

∣∣∣∣0, ν − L
]
. (184)

With the aid of whose Mellin-Barnes countour integration
[139, Eq. (8.2.1/1)], we rewrite

fW (z) =
1

2π

∫ c+∞

c−∞

0(s)0(ν − L + s)

πLλ2L0 0(ν)
‖z‖−2sds (185)

within the existence region s ∈ �0, where �0 =
{
s
∣∣<{s} >

max(0,L − ν)
}
. As observing z = x + y and employing

both (185) and [173, Eq. (3.241/4)] together, we have both∫
RL fW (x+ y) dx and

∫
RL fW (x+ y) dy reduced to (127) as

intuitively expected. In addition, when ν = 1, (178) is then
reduced to the PDF of standard multivariate CCS Laplacian
distribution, that is

fW (z) =
1

2(L−1)/2πL
‖z‖1−LK1−L

(√
2‖z‖

)
, (186)

which simplifies more to [121, Eq. (5.1.2)] for L = 1. The
other special case, which is obtained when ν→∞, is

fW (z) =
1

(2π)L
exp

(
−
1
2
‖z‖2

)
, (187)

which is the PDF of standard multivariate Gaussian distribu-
tion [3, Eq. (2.6-29)] as expected.
Definition 5 (McLeish’s Multivariate Complex Quantile

and Complementary Complex Quantile): For a fixed z∈CL

in higher dimensional complex space, the McLeish’s multi-
variate complex Q-function is defined by

QLν (z) = Q2L
ν ([<{z}T ,={z}T ]T ), (188)

and whose complementary complex Q-function is defined by

Q̂Lν (z) = Q2L
ν ([<{z}T ,={z}T ]T ), (189)

where Q2L
ν (x) and Q̂2L

ν (x), defined for real vectors x∈RL , are
given in (130) and (131), respectively.

As we mentioned above, referring to both (174) and (175)
together, we have fW (z) = fS(z). Therefore, we can readily
obtain the CDF and C2DF of W ∼ CML

ν (0, I), especially
by using Theorem 21 and Theorem 22, respectively. Accord-
ingly, the CDF of W ∼ CML

ν (0, I) is properly defined in
complex space by FW (z) = Pr{W ≤ z} = Pr{W1 ≤ z1,
W2≤z2, . . . ,WL≤zL} and obtained in the following.
Theorem 38: The CDF ofW∼CML

ν

(
0, I

)
is given by

FW (z) = Q̂Lν
(
z
)
, (190)

defined over z∈CL , where Q̂Lν
(
z
)
is given in (189).

Proof: From the distributional equality between be-
tween (174) and (175), the proof is obvious using (189).
The C2DF of W ∼ CML

ν (0, I) is defined by F̂W (z) =
Pr{W > z} = Pr{W1 > z1,W2 > z2, . . . ,WL > zL} and
obtained in the following.

Theorem 39: The C2DF ofW∼CML
ν

(
0, I

)
is given by

F̂W (x) = QLν
(
z
)
, (191)

defined over z∈CL , where QLν
(
z
)
is given in (188).

Proof: The proof is obvious using (188).
In L-dimensional complex space s∈CL , we can define the

MGF byMW (s)=E
[
exp(−〈s,W 〉)

]
that uniquely determines

the distribution of W ∼ CML
ν (0, I) and is obtained in the

following.
Theorem 40: The MGF ofW∼CML

ν (0, I) is given by

MW (s) =
(
1−

λ20

4
sH s

)−ν
, (192)

for a certain s∈CL within the existence region s∈C0, where
the region C0 is given by

C0 =

{
s
∣∣∣ λ20sH s ≤ 4

}
. (193)

Proof: Following the same logic presented in the proof
of Theorem 37, and noticing that MGF uniquely deter-
mines the distributions, we can conclude that the distribu-
tional equality between (174) and (175) also makes both
S ∼M2L

ν (0, I) and W ∼ CML
ν

(
0, I

)
have the same MGF,

i.e.
MS(ŝ) =MW (sI + sQ), (194)

where x∈RL and yQ∈RL such that s∈R2L , that is

ŝ =
[
sI
sQ

]
. (195)

Then, using Theorem 23, we easily deduce the MGF ofW as
in (192), which completes the proof of Theorem 40.

Let us have a vector of uncorrelated and non-identically
distributed (u.n.i.d.) CCS McLeish distributions, that is

Z = [Z1,Z2, . . . ,ZL]T , (196)

where Z` = X` + Y` such that X` ∼Mν(0, σ 2
` ) and Y` ∼

Mν(0, σ 2
` ) (i.e., Z`∼ CMν(0, σ 2

` )), 1≤ `≤L. Furthermore,
we assume Cov[Xk ,X`] = 0 and Cov[Yk ,Y`] = 0 for all
k 6= `, and more Cov[Xk ,Y`] = 0 for all 1 ≤ k, ` ≤ L.
In accordance with the definition of multivariate distribution,
Z follows a multivariate CES McLeish distribution because
aTZ for all a ∈ CL follows a McLeish distribution. It is
then worth noticing that Var[X`] = Var[Y`] = σ 2

` and and
Var[Z`]= Var[X`] + Var[Y`]= 2σ 2

` . Herewith, as similar to
what defined before, let us define σ 2

= [σ 2
1 , σ

2
2 , . . . , σ

2
L ]
T,

and therefrom σ = [σ1, σ2, . . . , σL]T . Owing to processing
σ TW ∼Mν(0, σ Tσ ), we conclude that Z certainly follows
a multivariate CES McLeish distribution with a diagonal co-
variance matrix, denoted by Z ∼ CML

ν (0, diag(σ
2)). Thus,

we can decompose Z∼CML
ν (0, diag(σ

2)) as an affine trans-
formation of standard multivariate CCSMcLeish distribution
as shown in the following theorem.
Theorem 41: A multivariate CCS McLeish distribution of

uncorrelated and not identically distributed CCS McLeish
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distributions, denoted by Z∼ CML
ν (0, diag(σ

2)), is decom-
posed as

Z = diag(σ )W . (197)

whereW∼CMν(0, I).
Proof: The proof is obvious using the fact that, for all

a ∈ CL , we have aTZ∼Mν(0, aT diag(σ ) a) with the pivotal
details mentioned before Theorem 24.
Accordingly, the PDF, CDF, C2DF and MGF of a multi-

variate complex and elliptically symmetric (CES) McLeish
distribution, denoted by Z∼ CML

ν (0, diag(σ
2)), is given in

the following.
Theorem 42: The PDF of Z∼CML

ν (0, diag(σ
2)) is given

by

fZ(z) =
2
πL

∥∥3−1z∥∥ν−L
0(ν) det(3)

Kν−L
(
2
∥∥3−1z∥∥), (198)

for a certain z= [z1, z2, . . . , zL]T ∈CL , where 3= diag(λ)
and λ=λ0 σ denotes the component deviation vector.

Proof: Note that, using (197), we can write
W = diag(σ )−1Z and therefrom obtain its Jacobian JW |Z =
det( diag(σ )−1). We can write the PDF of X as

fZ(z) = fW ( diag(σ )−1Z) JW |Z, (199a)

= fW ( diag(σ )−1Z) det( diag(σ )−1), (199b)

where substituting (178) and utilizing both det( diag(σ )−1)=
det( diag(σ ))−1 and det( diag(σ )2) = det( diag(σ ))2 yields
(198), which completes the proof of Theorem 37.

Note that, for consistency and clarity, setting diag(σ 2) =
σ 2I (i.e., making each component have equal power) reduces
(198) to the PDF of Z∼CML

ν (0,σ
2I) given by

fZ(z) =
2
πL

∥∥z∥∥ν−L
0(ν)λν+L

Kν−L
(2
λ

∥∥z∥∥), (200)

where λ=
√
2σ 2/ν as defined before.

Theorem 43: The CDF of Z∼CML
ν (0, diag(σ

2)) is given
by

FZ(z) = Q̂Lν
(
λ03

−1z
)
, (201)

defined over z∈CL .
Proof: With the aid of the distributional relation be-

tweenZ∼CML
ν (0, diag(σ

2)) andW∼CML
ν (0, I), presented

in (197), we haveW = diag(σ )−1Z and therefrom write

FZ(z) = FW (w), (202a)

= FW ( diag(σ )−1z), (202b)

Finally, substituting the CDF FW (z), which is given in (190),
into (202b) and therein using diag(σ )−1=λ03−1, we readily
obtain (201), which proves Theorem 43.
Theorem 44: The C2DF of Z ∼ CML

ν (0, diag(σ
2)) is

given by
F̂X (z) = QLν

(
λ03

−1z
)
, (203)

defined over z∈CL .

Proof: The proof is obvious using (191) and Theorem 39
and then performing almost same steps followed in the proof
of Theorem 43.
Theorem 45: The MGF of Z∼CML

ν (0, diag(σ
2)) is given

by

MZ(s) =
(
1−

1
4
sH32s

)−ν
, (204)

for a certain s∈CL within the existence region s∈C0, where
the region C0 is given by

C0 =

{
s
∣∣∣ sH32s ≤ 4

}
. (205)

Proof: We can write theMGF of Z∼CML
ν (0, diag(σ

2))
as MZ(s)=E[exp

(
−〈s,Z〉

)
], where putting (197) gives

MZ(s) = E[exp
(
−〈s, diag(σ )W 〉

)
], (206)

= E[exp
(
−〈 diag(σ )s,W 〉

)
], (207)

and therefrom we conclude that MZ(s) = MW ( diag(σ )s),
where MW (s) denotes the MGF of W and is given in (192).
Finally, substituting diag(σ )s = 3s/λ0 into (192) results in
(204), which completes the proof of Theorem 45.
In what follows, the most general case in which we assume

that complex McLeish distributions are mutually correlated
and non-identically distributed is investigated using the re-
sults obtained previously. Referring to (175), let us have a
random vector of complex McLeish distributions given as

Z=X1 + X2, (208)

where X1 ∼ML
ν1
(µ1,611) and X2 ∼ML

ν2
(µ2,622). More-

over, we assume that both X1 and X2 are without loss of
generality correlated with each other, i.e.,

612 = E[(X1 − µ1)(X2 − µ2)
T ] 6= 0, (209)

621 = E[(X2 − µ2)(X1 − µ1)
T ] 6= 0. (210)

As noticing the mean vector of Z is readily obtained as
µ = E[Z] = µ1 + µ2, then we properly write its pseudo-
covariance matrix as follows

E[(Z−µ)(Z−µ)T ] = 611 −622 +  (612 +621), (211)

and its covariance matrix as follows

E[(Z−µ)(Z−µ)H ] = 611 +622 +  (612 −621), (212)

We acknowledge that circular symmetry forMcLeish random
vectors is more detailed than circular symmetry for indi-
vidual McLeish distributions. For preserving the circularly
symmetry around the mean [190], i.e., in order to have the
components of X1 become circular to those of X2, we should
provide that, as well explained in [190], E[(Z−µ)(Z−µ)T ]
has to be a null matrix [190]. For that purpose, we strictly
impose from (211) that 611=622=R and 612=−621=J.
Accordingly, we have

E[(Z− µ)(Z− µ)T ] = 0, (213)

E[(Z− µ)(Z− µ)H ] = 2(R+ J) = 26, (214)
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where6=R+J such that6 is a complex symmetric matrix
(i.e., 6H

=6). Furthermore, we acknowledge that ={6}= 0
when 612=621=0. By the definition of multivariate distri-
bution [146]–[150], Z is a multivariate complex distribution
iff aTZ for all a∈CL follows a complex random distribution
of the same family. Taking into account this definition, and
pursuant to what presented in Section III-E above, we note
that Z follows a multivariate complex distribution only when
ν1 = ν2 = ν with 611 = 622 and 612 =−621. Since being
an Hermitian positive definite matrix,6 is decomposed using
Cholesky decomposition as

6 = DDH . (215)

When there is no correlation between quadrature and inphase
components of Z (i.e., when 612=621= 0), we have J= 0,
and therefrom D = 6−1/2. We conclude that

X1 =
√
GDN1 and X2 =

√
GDN2, (216)

where N1 ∼N L(0, I), N2 ∼N L(0, I) and G∼ G(ν, 1). As a
consequence, Z follows a multivariate CES McLeish distri-
bution, denoted by Z∼CML

ν (µ,6), whose decomposition is
given in the following.
Theorem 46: If Z∼CML

ν

(
µ,6

)
, then it is decomposed as

Z = DW + µ, (217)

where W ∼ CML
ν (0, I). Further, D, given in (215), is the

Cholesky decomposition of 6.
Proof: The proof is obvious using the pivotal details

mentioned before Theorem 46.
Accordingly, the PDF of multivariate CES McLeish distri-

bution with a covariance matrix is given in the following.
Theorem 47: The PDF of Z∼CML

ν (µ,6) is given by

fZ(z) =
2

πL0(ν)
‖z− µ‖ν−L6

det(6) λν+L0

Kν−L
( 2
λ0

∥∥z− µ∥∥
6

)
, (218)

defined in z∈CL , where ‖z− µ‖6= (z− µ)H6
−1(z− µ).

Proof: Note that Z ∼ CML
ν

(
µ,6

)
is, as ob-

served in (217), described by an affine transformation of
W∼CML

ν

(
0, I

)
. Appropriately, using 6=DDH , we have

W = D−1(Z− µ) (219)

and therefrom find the Jacobian JZ|W = det(D) and
JW |Z = det(D)−1 Then, using det(6) = det(D)2, we have
the PDF of Z using (178), i.e.,

fZ(z) = fW (D−1(Z− µ))JW |Z. (220)

Finally, using 6 =6H with these results, substituting (218)
into (220) results in (155), which proves Theorem 47.
For consistency and clarity, note that the complex covari-

ance matrix 6 can also be rewritten as 6 = λ−20 3P3,
where 3 = λ0 diag(σ ) = diag(λ1, λ2, . . . , λL) is previously
defined.Moreover,P∈CL×L denotes the complex correlation
matrix. When the variance of all the components are the
same (i.e., when σ 2

` = σ 2, and thus λ` = λ =
√
2σ 2/ν,

1≤ ` ≤ L), we have 6 = λ2P and det(6)= λ2L det(P), and
correspondingly simplify (218) to

fZ(z) =
2

πL0(ν)

‖z− µ‖ν−LP
det(P)λν+L

Kν−L
(2
λ

∥∥z− µ∥∥P). (221)

In addition, in case of no correlation and zeromean (i.e., when
P=I and µ=0), we also simplify (218) to (198) as expected.
Theorem 48: The CDF of Z∼CML

ν (µ,6) is given by

FZ(z) = Q̂Lν
(
D(Z− µ)

)
, (222)

defined over z∈CL , where D is given in (215).
Proof: Following almost the same steps pre-

sented in the proof of Theorem 43, the proof is quite obvious.
Specifically, from (217), we have FZ(z)= FW (w) with W =
D(Z−µ), where substituting the CDF FW (z), given in (190),
we readily obtain (222), which proves Theorem 48.
Theorem 49: The C2DF of Z∼CML

ν (µ,6) is given by

F̂X (z) = QLν
(
D(Z− µ)

)
, (223)

defined over z∈CL , where D is given in (215).
Proof: The proof is obvious using (217) and Theorem 39

and then performing nearly same steps taken after within the
proof of Theorem 48.
Theorem 50: The MGF of Z∼CML

ν (µ,6) is given by

MZ(s) = exp
(
−sHµ

)(
1−

1
4
sH6s

)−ν
, (224)

for a certain s∈CL within the existence region s∈C0, where
the region C0 is given by

C0 =

{
s
∣∣∣ sH6 s ≤ 4

}
. (225)

Proof: With the aid of (217), we can write the MGF of
Z∼CML

ν (µ,6) in terms of the MGF ofW∼CML
ν (0, I), i.e.

MZ(s) = E[exp
(
−〈s,Z〉

)
], (226a)

= E[exp
(
−〈s,DW + µ〉

)
], (226b)

= exp
(
−〈s,µ〉

)
E[exp

(
−〈s,DW 〉

)
], (226c)

= exp
(
−〈s,µ〉

)
E[exp

(
−〈Ds,W 〉

)
], (226d)

= exp
(
−〈s,µ〉

)
MW (Ds), (226e)

where MW (s) denotes the MGF of W and is given in (192),
and where both substituting (192) and using 〈s, x〉 = sHx
yields (204), which completes the proof of Theorem 45.
Eventually, we will exploit the closed-form results ob-

tained in the preceding as a statistical and mathematical
framework to introduce in the following sections some
preliminary and fundamental results not only about how to
properly exercise McLeish distribution to model the addi-
tive non-Gaussian white noise in wireless communications,
but also about how to use the statistical characterization
of McLeish distribution to obtain closed-form BER / SER
expressions of modulation schemes and develop an ana-
lytical approach for the averaged BER / SER performance
of diversity reception in slowly time-varying flat fading
environments.
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IV. ADDITIVE WHITE MCLEISH NOISE CHANNELS
In wireless communications, modulation schemes are used
to map the digital information sequence into a set of signal
waveforms to transmit them over a communication channel.
Within each symbol transmission time t ∈ (0,TS ], the com-
munication channel is without loss of generality described by
the mathematical relation given by

R(t) = h(t) S(t)+ Z (t), t ∈ (0,TS ] (227)

where TS denotes the symbol transmission time, s(t) denotes
the transmitted symbol, and with respect to the information,
it is chosen from the set of all possible modulation symbols
{s1(t), s2(t), . . . , sM (t)} such that

∑
mPr

{
sm(t)

}
= 1, where

M ∈N is the modulation level. h(t) denotes the fading process
originating from the random nature of diffraction, refraction,
and reflection within the channel, and due to coherence in
time, it is assumed to be approximately constant for a number
of symbol intervals. Z (t) denotes a sample waveform of a
zero-mean additive McLeish noise process, and R(t) denotes
the received waveform. The receiver makes observations on
the received signal R(t) and then makes an optimal decision
based on the detection of which symbol m, 1 ≤ m ≤ M ,
was transmitted. As well explained in [1]–[3], not only can
an L-orthonormal basis be used to represent each modulation
symbol with a L-dimensional vector but it can also used to
represent a zero-mean additive noise process as a vector of
additive CES noise distributions. With the aid of this observa-
tion, for the nth symbol received over additive noise channels,
we can readily give a well-known mathematical base-band
model in vector form [1]–[4], while we assume that symbols
are sequentially transmitted, that is

R[n] = H [n] exp( 2[n])S[n]+ Z[n], (228)

where all vectors are, without loss of generality, assumed
L-dimensional complex vectors. Specifically, S[n] denotes
the vector form of the nth transmitted symbol, and thus during
each symbol transmission, it is randomly chosen from the
set of all possible vectors {S1,S2, . . . ,SM }. H [n] denotes
the fading envelope following a non-negative random dis-
tribution whereas 2[n] denotes the fading phase following
a random distribution over [−π, π]. Further, both H [n] and
2[n] are assumed constant during symbol duration due to the
existence of channel coherence in time [1]–[3]. Z[n] denotes
the additive noise, and it is always present in all communica-
tion channels and it is the major cause of impairment in many
communication systems. Further, modeling Z[n] by a Gaus-
sian distribution is well supported and widely evidenced from
both theoretical and practical viewpoints. However, we show
in what follows that the random power nature of the additive
noise indicates that Z[n] follows non-Gaussian distribution.
It is thus prudent to pick a non-Gaussian noise model, which
will let us to find out the performance and bottlenecks of
non-Gaussian communication channels. Accordingly, for the
first time in the literature, we introduce McLeish distribu-
tion as an additive noise model that approaches to Gaussian

distribution in the worst case scenarios. We call the addi-
tive McLeish noise channel to the communication channel
that is subjected to the additive noise modeled by McLeish
distribution.

A. RANDOM FLUCTUATIONS OF NOISE VARIANCE
In wireless digital communications, we assume that the total
variance of the additive noise vector Z[n] ∼ CML

ν (µ,6) is
constant for short-term conditions, and actually observe that
it is a stationary random process in long-term conditions.
We further estimate both the mean and the total variance of
Z[n], respectively, as

µτ [n] =
1
b
τ
τ0
c

n∑
k=n−b τ

τ0
c

Z[k], (229)

σ 2
τ [n] =

1
b
τ
τ0
c

n∑
k=n−b τ

τ0
c

(Z[k]− µτ [n])
H (Z[k]− µτ [n]),

(230)

where τ ∈ R+ denotes the coherence window that charac-
terizes the dispersive nature of the total variance, τ0 denotes
the sample duration, and bxc yields the maximum integer
less that or equal to x. It is important for theoreticians and
practitioners to be aware that the total variance contains
fluctuations over time (i.e., the total variance is not constant
over time), and be able to precisely quantify the amount of
fluctuations associated with the total variance. Accordingly,
we can write the exact total variance of Z[n] as

σ 2
= lim
τ→∞

σ 2
τ [n]. (231)

As matter of fact that the stability of the total variance de-
pends on the chosen window τ , we can perform the Allan’s
variance [199]–[201], which is a time domain measure rep-
resenting root mean square (RMS) random drift within the
total variance as a function of averaged time, on σ 2

τ [n] to
express the stability the total variance with respect to τ ∈R+
and write

A[Z[n]; τ ] =
1
2
E
[(
σ 2
τ [n]− σ

2
τ [n− τ ]

)2]
, (232)

where E[·] denotes the expectation operator, and A[y[n]; τ ]
is termed as Allan’s operator applied on the sequence of y[n].
By means of (230) and (231), we introduce

1σ 2
τ [n]=σ

2
τ [n]− σ

2, (233)

which is the variance fluctuation (i.e., the random drift within
the total variance over samples) such that E

[
1σ 2

τ [n]
]
= 0

for τ ∈ R+. From (231) and (233), we observe
limτ→∞1σ 2

τ [n]=0. Substituting σ
2
τ [n]=1σ

2
τ [n]+ σ

2 into
(232), we can rewrite A

[
Z[n]; τ

]
in terms of the statistics of

1σ 2
τ [n] as follows

A[Z[n]; τ ] =
1
2

(
E
[
(1σ 2

τ [n])
2
]
+ E

[
(1σ 2

τ [n− τ ])
2
]

− 2E
[
1σ 2

τ [n]1σ
2
τ [n− τ ]

])
. (234)
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FIGURE 7. The Allan’s variance A[Z[n]; τ ] and the variance of the total
variance fluctuations Var[σ2

τ [n]] with respect to τ , where σ2
τ [n] follows a

WSS random process.

After recognizing the variance and covariance terms associ-
ated with the variance fluctuation, i.e., using

Var
[
σ 2
τ [n]

]
= E

[
(1σ 2

τ [n])
2
]
, (235)

Cov
[
σ 2
τ [n], σ

2
τ [n− τ ]

]
= E

[
1σ 2

τ [n]1σ
2
τ [n− τ ]

]
,(236)

we eventually rewrite (234) as

A[Z[n]; τ ] =
1
2

(
Var

[
σ 2
τ [n]

]
+ Var

[
σ 2
τ [n− τ ]

]
− 2Cov

[
σ 2
τ [n], σ

2
τ [n− τ ]

])
. (237)

Note that, without loss of generality, we can consider σ 2
τ [n] as

a wide sense stationary (WSS) random process with respect to
n∈N, especially sinceZ[n] is a sample vector ofWSS random
processes. Consequently, from theWSS feature of σ 2

τ [n] with
respect to n, we write

0 < A[Z[n]; τ ] < 2Var
[
σ 2
τ [n]

]
(238)

for all τ ∈N, and further we write

limτ→∞A[Z[n]; τ ] ≤ limτ→∞Var
[
σ 2
τ [n]

]
. (239)

With together aid of (238) and (239), we notice that the
Allan’s varianceA[Z[n]; τ ] is not a monotonically decreasing
function with respect to τ , which suggest some τ -values
for which the variance of the variance fluctuations, which
is denoted by Var[σ 2

τ [n]], is at desired level. Accordingly,
Var[σ 2

τ [n]] with respect to bτ/τ0c is depicted in Fig. 7 for
the additive noise data that belongs to different two systems,
where the variances of these additive noise are not constant
and follow a WSS non-negative random process. As such,
the variance for system 1 is much more auto-correlated than
that for system 2. Herein, we readily observe that, as τ
increases, the variance of the total variance fluctuation de-
creases as expected. This fact does not reveal a minimum τ

value that will keep the total variance fluctuation as small as
possible. On the other hand, as demonstrated in Fig. 7, the fact
that the Allan’s variance is not a monotonic function of τ can
help to determine this minimum τ value, namely τ ≈5790τ0
for system 1 and τ≈67τ0 for system 2.
Theorem 51 (Autocorrelation of Noise Variance): The cor-

relation between σ 2
τ [n] and σ

2
τ [n− τ ] is given by

Cov
[
σ 2
τ [n], σ

2
τ [n− τ ]

]
= Var

[
σ 2
τ [n]

]
− A[Z[n]; τ ] (240)

for any window τ ∈ N.
Proof: From the WSS view of σ 2

τ [n], we have
Var

[
σ 2
τ [n]

]
=Var

[
σ 2
τ [n− t]

]
for all t ∈N, and then simplify

(237) to

A[Z[n]; τ ] = Var
[
σ 2
τ [n]

]
−Cov

[
σ 2
τ [n], σ

2
τ [n− τ ]

]
. (241)

which completes the proof of Theorem 51.
The correlation between two consecutive estimated vari-

ances for a certain τ is given by Theorem 51, from which we
observe that, when τ becomes as large as possible, this cor-
relation Cov[σ 2

τ [n], σ
2
τ [n− τ ]] closes to zero, and therefrom

with (239), the total variance fluctuation becomesminimized.
In the context of correlation, the auto-correlation coefficient
between two consecutive estimated variances is obtained in
the following.
Theorem 52 (Auto-Correlation Coefficient of Noise Vari-

ance): The correlation coefficient between σ 2
τ [n] and

σ 2
τ [n− τ ] is given by

R
[
σ 2
τ [n]; τ

]
= 1−

A[Z[n]; τ ]
Var

[
σ 2
τ [n]

] , (242)

for any window τ ∈R+ such that

−1 < R
[
σ 2
τ [n]; τ

]
< 1. (243)

Proof: The correlation coefficient between σ 2[n] and
σ 2[n− τ ] is readily written as

R
[
σ 2
τ [n]; τ

]
=

Cov
[
σ 2
τ [n], σ

2
τ [n− τ ]

]√
Var

[
σ 2
τ [n]

]
Var

[
σ 2
τ [n− τ ]

] . (244)

Noticing Var
[
σ 2
τ [n]

]
=Var

[
σ 2
τ [n− τ ]

]
from the WSS feature

and subsequently substituting (240) into (240), we obtain
(242). Further, from (238) and (242), we readily observe the
existence of (243), which proves Theorem 52.

Note that, according to Theorem 52, R[σ 2
τ [n]; τ ]∈ [−1, 1]

is such a measurement that it describes the degree to which
σ 2
τ [n] and σ

2
τ [n − τ ] are correlated with each other. For a

specific coherence window 0≤ τ ≤ τ`, if the consecutively-
estimated two variances σ 2

τ [n] and σ
2
τ [n− τ ] are highly cor-

related, then we have R[σ 2
τ [n]; τ ]≈1 and thus A[Z[n]; τ ]�

Var
[
σ 2
τ [n]

]
, which means that the estimation σ 2

τ [n] has
the minimum error, i.e., σ 2

τ [n] is approximately constant.
Accordingly, we can exploit Theorem 52 to estimate the
coherence window τ of the random fluctuations in the nature
of variance.
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Theorem 53 (Coherence of Noise Variance): The length of
the coherence window [0, τC ] of the additive noise variance
can be estimated as

τC = arg min
τ∈R+

(
A[Z[n]; τ ]
Var

[
σ 2
τ [n]

] + R− 1
)2

, (245)

where R∈ [0, 1] denotes a certain correlation level, typically
chosen as 0.95, 0.68, or 0.5. �

Proof: Note that
∣∣R[σ 2

τ [n]; τ ]
∣∣ decreases monotonically

with respect to τ ∈ R+, i.e.,
∣∣R[σ 2

τ [n]; τ ]
∣∣ ≤ R[σ 2

τ [n]; 0].
Hence, we can determine the width τC of the coherence
window as that of

∣∣R[σ 2
τ [n]; τ ]

∣∣ where it drops to a certain
level R. Having an objective to minimize the Euclidean dis-
tance between R and

∣∣R[σ 2
τ [n]; τ ]

∣∣, we can formulate this
problem as

τC = argmin
τ∈N

(
R−

∣∣∣R[σ 2
τ [n]; τ ]

∣∣∣)2. (246)

where substituting (242) and using 1− |x| ≤ |1− x| results
in (245), which proves Theorem 53.
Based on the concepts and procedures mentioned above for

the random fluctuations of noise-variance, let us now briefly
consider which values of τC cause some uncertainty (random
fluctuations) in noise variance. Let TC ∈R+ be the coherence
time of the fading conditions in the wireless channel, and TS
be the symbol duration. In literature, it is widely assumed
that TC � TS for a reliable transmission in flat fading en-
vironments. In order to get the idea how to elucidate which
values of τC cause the random fluctuations in noise variance,
we need to compare both τC and TC with each other with
regard to TS . Regarding the randomfluctuations of noise vari-
ance, there are three distinct variance-uncertainties observed
in wireless communications and listed as follows. label=�
• (Constant variance). In the literature of wireless com-
munications [1]–[5, and references therein], τC is often
assumed to be pretty much large enough as compared
both to TC and TS such that τC/TC�TS . In such a case,
we observe that σ 2[n] does actually have no fluctuations,
namely, that it is constant (i.e., σ 2

τ [n] = 2N0 for all
n ∈ N and τ ∈ R+, where 2N0 denotes the power
spectral density of Z[n]) since

lim
τC→∞

A[Z[n]; τ ] = 0+, (247)

In other words, since limτC→∞ σ
2
τ [n] = σ

2[n] = 2N0,
we notice that the random fluctuations of the variance
vanish when τC → ∞ as expected. Accordingly and
conveniently, we can use multivariate CES Gaussian
distribution instead of multivariate CES non-Gaussian
distribution to model the additive noise Z[n].

• (Slow variance-uncertainty). If τC is either comparable
to or greater than TC with respect to TS , i.e. when
τC/TC ≥ TS , then it is observed that the instantaneous
variance σ 2[n] is approximately constant during the
symbols transmitted in the coherence time TC of fading
conditions but fluctuates arbitrarily over all transmitted

symbols. For example, either in high-speed transmission
in ultra-high frequencies, or in wireless powered diver-
sity receivers, Z[n] follows a multivariate CES Gaus-
sian distribution whose total variance σ 2[n] fluctuates
randomly in long-term conditions. This phenomenon is
called noise uncertainty [165]. That is to say, σ 2[n] fol-
lows a non-negative distribution, which modulates com-
plex Gaussian distribution, and thus causes impulsive
effects on the performance of the transmission system.
Accordingly, we show that Z[n] is accurately modeled
in terms of Hall’s noise model [202], [203] as follows

Z[n] = σ [n]N[n], (248)

where N[n] is a multivariate CES Gaussian distribution
with zero mean vector and 6 covariance matrix, and
independent of σ 2[n]. Thus, according to (248), Z[n]
follows a multivariate CES Gaussian distribution given
σ 2[n]. Therefore, (248) is found to be a spherically
invariant random process (SIRP) [204], which has been
widely adopted in wireless communications [1, and ref-
erences therein]. It is worth mentioning that, as well
explained in the following sections, σ 2[n] can be per-
fectly estimated in the coherence time TC as a CSI to
maximize the signal-to-noise ratio (SNR) in the case of
signal reception over generalized fading environments.

• (Fast variance-uncertainty). When τC is much smaller
than TC such that τC/TC � TS , the estimation of σ 2[n]
within the coherence time TC is a more difficult task, and
mostly not possible. In such a case, the noise model pre-
sented in (248) still applies, but optimum detection and
optimum combining schemes have to be reconsidered to
minimize the performance degradation originated from
the variance uncertainity.

Eventually, from the statements given above, we conclude
that in both slow and fast uncertainty (randomfluctuations) of
the noise variance, the multiplication of σ [n] and G[n] leads
to some impulsive random fluctuations. As such, the random
distribution of σ [n] modulates the inphase and quadrature
parts of N[n] since the inphase and quadrature parts of N[n]
belong to the same channel. In the following, we show that
the variance fluctuations exists in real life scenarios, and the
additive noise, whose model is introduced in (248), follows
McLeish distribution.

For the sake of brevity, clarity and readability, the symbol
indexing [n] is deliberately omitted in the following.

B. EXISTENCE OF McLeish NOISE DISTRIBUTION
The existence of McLeish noise in communication systems is
observed in many forms and in various ways.

1) THERMAL NOISE
If the additive noise is primarily originated from electronic
materials at the receiver, it is then called thermal noise.
The electrical conduction is governed by how freely mobile
electrons can move throughout the electronic material while
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FIGURE 8. Finite conductive material.

their movements are hindered and impeded by scattering with
other electrons, as well as with impurities or thermal excita-
tions (phonons) [205]. At this point, the thermal noise is ex-
plained as a phenomenon associated with the discreteness and
random motion of the electrons, and always exists in varying
degrees in all electrical parts of systems. Regarding the model
of thermal agitation [206], [207, Sec. 8.10], which goes back
to the classical theory introduced by Drude in 1900 [208],
let us consider a steady electrical current composed of many
electrons, each passing through a resistor which is illustrated
in Fig. 8 as a cylinder of finite conductive material of length
L and cross-sectional area A (i.e., its volume is V = AL).
The velocity of an electron in the x-direction (i.e. the velocity
along the direction of the steady electric field impressed upon
the resistor by the battery) is given by vx = vd + vt , where
vd is the drift velocity due to electric field and vt is the x-
velocity due to the thermal agitation of the electrons. Further,
since the electric field inside the resistor is, without loss of
generality, assumed to be constant, the field-based velocity
vd has no random nature. However, as a result of vd � vt ,
the thermal-based velocity vt has random nature in the
x-direction, following Gaussian PDF given by

fvt (v) =

√
m0

2πKT
exp

(
−m0

v2

2KT

)
, v ∈ R, (249)

withmeanE[vt ]=0 and varianceE[v2t ]=
KT
2m0

, where the con-
stant m0≈9.10938356×10−31 kg is the mass of an electron,
and K and T are respectively the Boltzmann constant and the
absolute temperature. If temperature is measured in Kelvins,
and energy is measured in Joules, then the Boltzmann con-
stant is approximately given by K≈1.38064852×10−23 J/K.
Accordingly, average thermal kinetic energy of an electron
can be written as

Et = E
[1
2
m0v2t

]
=

1
2
KT (250)

in accordance within the literature [205]–[216]. Further, free
electrons will move randomly due to thermal energy, so they
experiencemany collisions. LetC be the number of collisions
in 1 second and τ be the interval time between any two
sequential collisions of an electron. In accordance with the
statistical theory of collisions, we notice that C has a random
relaxation nature that follows Poisson process [215], [216]
with the probability mass function (PMF) given by

fC (n) = Pr{n collisions occurs in 1 second}, (251a)

=
1
n!

( 1
1τ

)n
exp

(
−

1
1τ

)
, (251b)

where 1τ is the mean relaxation time between collisions
(i.e. 1τ = E[τ ]) and decreases as with temperature T ,

i.e., 1τ ∝ 1/
√
T . In average sense, each electron should

experience 1/1τ collisions per 1 second. In the best electron
excitation, τ follows an exponential distribution, that is

fτ (t) =
1
1τ

exp
(
−

t
1τ

)
, (252)

for t ∈ R+. It is worth emphasizing either Pr{τ < 1τ } >

1 − Pr{τ < 1τ } under the best electron excitation con-
ditions or Pr{τ < 1τ } ≤ 1 − Pr{τ < 1τ } other-
wise. In other words, τ is the most probably less than 1τ
under the best electron excitation conditions. Let us denote
the electron excitation condition by ν∈R+. We notice that ν
increases while the electron excitation conditions get worse,
which results the fact that each electron displacement occurs
after more than one collisions under the worst electron excita-
tion conditions. Therefore, under the best electron excitation
conditions, we have Pr{τ < 1τ } ≤ 1 − Pr{τ < 1τ }

and therefrom notice that τ is the most probably larger
than or equal to 1τ . In pursuance of the electron excitation
conditions, in which the variation in time between any two
sequential collisions of an electron arises from fluctuations
in the momentum of electrons created by collisions, we con-
veniently deduce that τ follows a Gamma distribution, that is

fτ (t) =
1
0(ν)

( ν

1τ

)ν
tν−1 exp

(
−
ν

1τ
t
)
, (253)

which readily simplifies to (252) for the best electron excita-
tion conditions ν=1 as expected. But, for the worst electron
excitation conditions, we have ν→∞, and correspondingly
we notice that (253) approximates to the Dirac’s distribution,
that is fτ (t)=δ(t −1τ). This fact means that the randomness
of τ disappears (i.e., constantly τ = 1τ ), and implies in other
words that the thermal displacement of each electron along
the x-direction for a period of 1 second will precisely occur
as a result of its certain 1/1τ number of collisions.

Note that the number of free electrons causing thermal
noise depends on the finite conductivity of the resistor. Ac-
cordingly, let ρ denote the density of free electrons, then
the total number of free electrons in the finite conductive
material, depicted in Fig. 8, is given by ηf = ρ AL, and
then the total number of possible displacement steps taken
by all the free electrons in 1 seconds should be η ≈ ηf /τ =
ρ AL/τ . In accordance with the velocity of an electron ex-
plained above, let vt [n] be the nth thermal displacement of an
electron along the x-direction for the period of 1 second. The
distribution of vt [n] is given in (249). Accordingly, in terms
of fractional sum, we can write the total charge movement
due to thermal energy, i.e., the additive noise current passing
though the resistor of length L, that is

I =
η∑

n=0

e0 τ
vt [n]
L
=

η∑
n=0

Q[n], (254)

where e0 ≈ 1.60217662 × 10−19 C denotes the charge on
each electron. Under the assumption that τ is instantaneously
known, Q[n], 0 ≤ n ≤ η, has Gaussian distribution. There-
fore, the additive noise current I conditioned on τ , which is
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denoted by I |τ , will follow Gaussian distribution with mean
and variance, respectively obtained with the aid of the Euler-
like identities of fractional sums [217]–[219] as follows

µI |τ = E
[
I
∣∣τ ] = 0, (255)

σ 2
I |τ = E

[
I2
∣∣τ ] = τρ e20 AKT2m0L

. (256)

Accordingly, the PDF of I given τ , i.e., fI |τ (x) is written as

fI |τ (x) =

√
m0L

πτρ e20AKT
exp

(
−

m0L

τρ e20AKT
x2
)
. (257)

In pursuance, the PDF of I is readily expressed as fI (x) =∫
∞

0 fI |τ (x|t)fτ (t)dt , where substituting (257) and (253), and
subsequently employing [173, Eq.(3.471/9)] results in

fI (x) =
2
√
π

|x|ν−
1
2

0(ν) λν+
1
2

K
ν− 1

2

(
2 |x|
λ

)
, (258)

which is surprisingly the PDF of McLeish distribution with
zero mean and σ 2 variance. Hence, we have I ∼Mν(0, σ 2),
where the admittance per collision is given by λ=

√
2σ 2/ν.

We obtain the variance σ 2
= E[I2] by σ 2

=
∫
∞

0 σ
2
I |t fτ (t) dt ,

where substituting (256) and (253) results in

σ 2
= 1τ ρ e20

AKT
2m0L

. (259)

According to the Nyquist’s theorem [207], [212], [220],
the power spectral density of the additive noise current is
given by SI (f )= 2KT/R for all f ∈ R, where R denotes the
thermal resistance of the finite conductive material, to which
the additive thermal noise is associated. With the aid of
SI (0) = σ 2, we obtain the resistance as

R =
2KT
SI (0)

=
4m0L

1τ ρ e20A
. (260)

Let us consider some crucial special cases. For the best elec-
tron excitation conditions (i.e., ν=1), we can simplify (258)
to the PDF of Laplacian distribution with zero mean and σ 2

variance, that is fI (x)= 1
√

2σ 2
exp

(
−

√
2/σ 2 |x|

)
. On the other

hand, for the worst electron excitation conditions (i.e., ν→
∞), we can simplify (258) to fI (x)= 1

√

2πσ 2
exp

(
−x2/2σ 2

)
,

which the PDF of Gaussian distribution with zero mean
and σ 2 variance as expected. We notice that these facts
are compliant for the fact that the additive noise following
Gaussian distribution the worst-case noise distribution for
communication channels [84]–[86]. Furthermore, we observe
both from (259) and (260) that the variance of the additive
noise proportional to both the temperature T and the length
L but inversely to the cross-sectional area A as expected.
In addition to all stated above, we acknowledge one extra

point in which McLeish distribution also occurs in resistance
circuits. Let us assume that there exist N resistors connected
in parallel, then we will observe the total additive noise
current as the sum of these numerous low-power impulsive
noise sources I6 =

∑N
n=1 In, where In, 1 ≤ n ≤ N , denotes

the additive noise originated from the nth resistor, and therein

we have In ∼ Lν(0, σ 2) under the best electron excitation
conditions. Consequently, the total additive noise I follows
a McLeish distribution, i.e, I6 ∼Mν(0,Nσ 2). As the num-
ber of resistors increases, the number of additive Laplacian
components increases, which yields the convergence of the
additive noise to a Gaussian distribution according to the
CLT. Consequently, we remark that McLeish distribution is
found to be a noise model capturing different impulsive noise
environment.

2) MULTIPLE ACCESS / USER INTERFERENCE
In wireless communications, both MAI and MUI resembles
impulse noisemore thanGaussian noisewas rigorously inves-
tigated and soundly concluded in [36], [39], [48]–[52], and
the impulsive effects of the interference caused by each one
of the other multiple users is often reasonably be modeled
by Laplacian process. It is reported in [49] that MAI follows
Laplacian distribution in direct sequence (DS) code division
multiple access (CDMA) systems. Not only the theoretical
background necessary to understand whyMAI andMUI have
Laplace distribution but also the further details are presented
in the following. The total interference a user experiences in
a MAI /MUI communication system can be written as

I =
N∑
n=1

In, (261)

due to a small number of interfering users at close range,
where the configuration of the interference originating from
the nth interferer can be written as

In =
∞∑
k=1

αkeθk Ink , (262)

where {Ink}∞k=1 denotes the set of interference components
originating from the signaling of the nth interfering user,
where Ink is the interference originating from the kth signal-
ing configuration the nth interfering user employs, and mod-
eled as Ink ∼ CN (0, σ 2

nk ). In accordance, let us assume that
the interference components are without loss of generality
ordered with respect to their variances, i.e.,

σn1 ≥ σn2 ≥ σn3 ≥ . . . ≥ σnk ≥ . . . ≥ 0. (263)

As a result of limk→∞ σ
2
nk = 0 using the strong law of large

numbers, we have
∑
∞

k=1 σ
k
n < ∞. Moreover, in (262), αk ,

1 ≤ k ≤ ∞ is the indicator for the kth possible signaling
configuration, and modeled as Bernoulli distribution taking
values 1 and 0 with probabilities p and 1 − p, respectively,
such that 0<p<1. The phase θk is the component phase with
respect to user, and it is uniformly distributed over [−π, π).
We can easily show that each interference component In,
which is given by (262), is decomposed as

In = σ
√
E(X0 + Y0), (264)

where X0 ∼ N (0, 1), Y0 ∼ N (0, 1) and E ∼ G(1, 1). Upon
using Theorem 10 with CS property and making use of (88),
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we note that In follows a Laplace distribution that has zero
mean, i.e., E[In]=0, and has a variance given by

σ 2
= p

∞∑
k=1

σ 2
nk <∞. (265)

Since In∼CL(0, σ 2), 1≤n≤N , the total interference, given
in (261), follows a CCSMcLeish distribution with zero mean
and νσ 2 variance (i.e., I ∼ CMν(0, νσ 2)). Consequently,
we have remarked that CCS McLeish distribution is found
to be a better model for the total MAI /MUI interference.

3) VERSATILITY
The additive noise in most communication systems is
supposed to be modeled as Gaussian distribution [1]–[4,
and references therein]. These systems are also subjected to
impulsive noise effects. Many statistical distributions have
been proposed in the literature to model impulsive noise
effects. As such, the so-called non-Gaussian distributions
such as Laplacian, symmetric α-stable (SαS), and generali-
zed Gaussian distributions have attracted the interest of the
research community due to their ability to capture different
impulsive noise effects [36], [39], [50], [51], [55], [95]–[109],
[113]. The lack of characterizing the impulsive noise effects
from non-Gaussianity to Gaussianity is one of the essential
weaknesses of these distributions mentioned above. On the
other hand, note that the statistical description of McLeish
distribution is typically defined according to the two obser-
vations, one of which is that the additive noise is caused by
the summation of numerous impulsive noise sources of low
power, each of which is found to be properly characterized
by Laplacian distribution. The other observation is that, ac-
cording to the CLT, the additive noise certainly converges
to follow Gaussian distribution as the limit case of that the
number of impulsive noise sources. As a result, the McLeish
distribution demonstrates a superior fit to the different im-
pulsive noise characteristics from non-Gaussian to Gaussian
distributions with respect to its normality parameter ν ∈R+.
As such, let W be a additive noise distribution we would
like to fit the PDF of McLeish distribution by using MOM
estimation technique. Then, we can estimate the mean by
µ̂ = E[W ], and further the variance and the normality
respectively by

σ̂ 2
= Var[W ], and ν̂ =

3
Kurt[W ]− 3

, (266)

where Var[·] and Kurt[·] denote the well-known variance
and Kurtosis operators, respectively. Consequently, we have
remarked that the McLeish distribution is a very useful ad-
ditive noise model that can be used in wireless communica-
tion performance analysis and research due to its versatility,
experimental validity and analytical tractability.

V. SIGNALLING OVER AWMN CHANNELS
In what follows, for signaling over impulsive additive noise
channels, we will introduce complex correlated AWMN

vector channels and therein benefit from the vectorization
that removes the redundancy in signal waveforms and that
provides a compact presentation for them. Let us proceed to
establish a mathematical model, which is in vector form using
(227), for the baseband signaling over complex correlated
AWMN vector channels, that is [1]–[4]

R = He2FS+ Z, (267)

where all vectors are without loss of generality L-dimensional
complex vectors. Specifically,R= [R1,R2, . . . ,RL]T denotes
the received signal vector. When we start explaining from
the right of (267), the random vector Z is the additive noise
modeled as multivariate CES McLeish distribution with ν
normality, zero mean vector and 6 covariance matrix, and it
is denoted by Z∼ CML

ν (0,6). With the aid of Theorem 47,
we readily write the PDF of Z as

fZ(z) =
2

πL0(ν)
‖z‖ν−L6

det(6) λν+L0

Kν−L
( 2
λ0

∥∥z∥∥
6

)
, (268)

where λ0=
√
2/ν denotes the standard component deviation.

It is worth noticing that Z has a CES distribution (i.e., it is
a colored (non-white) additive complex noise), which is the
most essential issue at the receiver to be solved in making a
decision of which symbol vector was transmitted based on
the observation of R. Moreover, for a fixed modulation level
M ∈ N, the random vector S denotes the modulation sym-
bol vector randomly chosen from the set of possible fixed
modulation symbols {s1, s2, . . . , sM } according to a priori
probabilities {p1, p2, . . . , pM }, where pm = Pr{S = sm},
1≤m≤M with the fact that

∑
m pm=1. As such, upon while

considering the overall transmission, we write the PMF of S
in continuous form [138, Eq. (4-15)], that is

fS(s) =
M∑
m=1

pmδ(‖s− sm‖). (269)

Further, in (267), F ∈ CL×L is a precoding matrix fil-
ter that precodes each modulation symbol before transmis-
sion in order to compensate the performance degradation
originating from the correlation between channels. In addi-
tion, in (267),H denotes the fading envelope following a non-
negative random distribution whereas 2 denotes the fading
phase uniformly distributed over [−π, π]. As well explained
in Section IV above, both H and 2 are assumed constant
during the period of each modulation symbol because of the
transmission coherence time arising out of fading conditions
[1]–[3], but each has a random nature while considering the
overall transmission. Therefore, in coherent receiver, both H
and 2 is required to be without loss of generality perfectly
estimated at the receiver during the period of eachmodulation
symbol vector. However, there is no need to estimate H
and 2 in non-coherent receiver. Additionally, the covariance
matrix 6 of Z∼ CML

ν (0,6) is assumed perfectly estimated
during that period. Eventually, thanks to the ES property of
Z∼ CML

ν (0,6) (i.e., with the aid of fZ(z)= fZ(e2z) when
E[Z] = 0), the received vector R depends statistically on
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S with the conditional PDF fR|S(r|s), which we derive from
(267) with the aid of Theorem 48 as

fR|S(r|s) =
2

πL0(ν)
‖r− He2Fs‖ν−L6

det(6) λν+L0

× Kν−L
( 2
λ0

∥∥r− He2Fs∥∥
6

)
. (270)

Having the joint PDF of R and S, i.e., fR,S(r, s) = fR|S(r|s)
fS(s) by means of (269) and (270), we obtain the PDF of the
received vector R as

fR(r) =
∫
fR,S(r, s) ds, (271a)

=

M∑
m=1

fR|S(r|sm) Pr{S = sm}, (271b)

=

M∑
m=1

pm
2

πL0(ν)
‖r− He2Fsm‖

ν−L
6

det(6) λν+L0

× Kν−L
( 2
λ0

∥∥r− He2Fsm∥∥6). (271c)

After transmission of each modulation symbol, if the trans-
mitted symbolm and the optimally detected symbol m̂ are not
the same, then we say that a transmission error has occurred
with the probability given by

Pr{e |m} = Pr{m̂ 6= m}, (272)

whose averaging with respect to all possible modulation sym-
bols results in the SER of the transmission, that is

Pr{e} =
M∑
m=1

Pr{e |m}Pr{S = sm}, (273)

which will be derived for coherent / non-coherent signaling
using digital modulation schemes over CES AWMN chan-
nels.

A. COHERENT SIGNALLING
As referring to the mathematical model given by (267),
we assume that the receiver has a perfect knowledge of the
phase, or in some cases, that of both the amplitude and the
phase in coherent signaling. As such, during the transmission
of eachmodulation symbol while being conditioned onH and
2, if the transmitted symbol m and the optimally detected
symbol m̂ are not the same, then we say that an instantaneous
symbol error has occurred with the probability given by

Pr{e |H ,2} = Pr{m̂ 6= m |H ,2}. (274)

whose averaging with respect to H and 2 while considering
all symbols results in the averaged SER of the transmis-
sion. The receiver observes R, and based on this obser-
vation, decides which modulation symbol was transmitted,
essentially by an optimal detection rule that minimizes the
error probability or equivalently maximizes correct decision.
The optimal detection rule, which is also occasionally called
MAP rule [1]–[3], produces the index of the most probable

transmitted symbol that maximizes fR,S(r, s). In more details,
in order to acquire the index of the most probable transmit-
ted symbol, we write the MAP decision rule accordingly as
follows

m̂ = argmax
1≤m≤M

fR,S(R, sm), (275a)

= argmax
1≤m≤M

fS|R(sm|R)fR(r), (275b)

= argmax
1≤m≤M

fS|R(sm|R), (275c)

which decides in favor of the modulation symbol that max-
imizes the conditional PDF fS|R(sm|r). Further, we simplify
the MAP rule more to

m̂ = argmax
1≤m≤M

fR|S(R|sm) Pr{S = sm}, (276)

where we often call fR|S(R|sm) the likelihood of the symbol
sm given the received vector R. Hence also, we often remark
that the MAP rule, given above, clearly illustrates how each
decision given the received vector R maps into one of the M
possible transmitted modulation symbols. Corresponding to
theM possible decisions, we partition the sample space of R
into M regions, and therefrom define the decision region for
the symbol m̂ as

DMAP
m̂ =

{
r ∈ CL

∣∣∣ fR|S(r|sm̂) Pr{S = sm̂}

≥ fR|S(r|sm) Pr{S = sm},∀m 6= m̂
}
, (277)

which imposes that the decision regions are non-overlapping
(i.e., Dm ∩Dn=∅ for all m 6=n). In addition, (277) stipulates
that each decision region can be described in terms of at most
M−1 inequalities. In general, theseM decision regions need
not be connected with each other. When the receiver observes
that the received vector R has fallen into the region Dm (i.e.,
when R ∈ Dm), it decides that the transmitted symbol is
the modulation symbol m. Eventually, substituting (270) into
(276) yields the MAP decision rule as follows

m̂ = argmax
1≤m≤M

2pm
πL0(ν)

‖R− He2Fsm‖
ν−L
6

det(6) λν+L0

×Kν−L
( 2
λ0

∥∥R− He2Fsm∥∥6), (278)

which can be even simplified more using the CES property
around mean, as shown in the following.
Theorem 54: For the complex vector channel introduced

in (267), the coherent MAP detection rule is given by

m̂ = argmax
1≤m≤M

(
2 log(pm)−

∥∥R− He2Fsm∥∥26), (279)

under the condition that H ∈ R+ and 2 ∈ [−π, π) are
assumed perfectly estimated during each modulation symbol.

Proof: Note that the received vector R given the trans-
mitted symbol S = sm follows a multivariate CES McLeish
distribution, i.e., R∼ CML

ν

(
He2sm,6

)
. According to both
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(216) and (217), the received vector R given the transmitted
symbol S can be decomposed as

(R|S) = He2FS+
√
GD (N1 + N2), (280)

where D is the Cholesky decomposition of 6 such that
6 = DDH , and where N1 ∼ N L(0, I), N2 ∼ N L(0, I) and
G∼G(ν, 1). Accordingly, the PDF of R conditioned on both
S and G, i.e., fR|S,G(z|s, g) can be written as

fR|S,G(r|s, g) =
exp

(
−

1
2g‖r− He

2Fs‖26
)

(2π )LgL det(6)
, (281)

for g ∈ R+. Then, the conditional PDF fR|S(R|s) is obtained
by fR|S(R|s) =

∫
∞

0 fR|S,G(R|s, g) fG(g) dg, where fG(g) is the
PDF of G ∼ G(ν, 1), and given in (84). Upon substituting
fR|S(R|sm) into (276), we rewrite the MAP rule as

m̂
(a)
= argmax

1≤m≤M
pm

∫
∞

0
fR|S,G(R|sm, g)fG(g) dg, (282a)

(b)
= argmax

1≤m≤M
pmfR|S,G(R|sm,E[G]), (282b)

where we have used the following steps in simplifying the
expression. In step (a), we observe that (281) is being av-
eraged by the PDF fG(g), and notice that fG(g) ≥ 0 for all
g ∈ R+, which simplifies (282a) to (282b) with E[G] = 1.
Then, in step (b), we substitute (281) into (282b) and drop all
the positive constant terms. Accordingly, we obtain

m̂ = argmax
1≤m≤M

pm exp
(
−
1
2

∥∥R− He2Fsm∥∥26). (283)

We acknowledge that, since the log(·) function is a monoton-
ically increasing function, we simplify this maximization by
applying the log(·) function to (283). Eventually, multiplying
the resultant by 2, we obtain (279), which proves Theorem 54.

It is worth mentioning that, in some signaling conditions,
some parameters within (279) may be discarded without loss
of performance. Appropriately, the MAP rule can be even
reduced more to a simple form. Namely, in case of that
the modulation symbol vectors are equiprobable (i.e., when
Pr{S= sm} = Pr{S= sn}, 1≤m, n≤M ), we ignore the term
Pr{S = sm} in (276), and thereby further simplify the MAP
decision rule to

m̂ = argmax
1≤m≤M

fR|S(R|sm), (284)

which we call theML decision rule. Appropriately, we simply
define the decision region for the symbol m̂ as follows

DML
m̂ =

{
r ∈ CL

∣∣∣fR|S(r|sm̂) ≥ fR|S(r|sm), m̂ 6= m
}
. (285)

Further, in (284), We calculate the likelihood of the modula-
tion symbol m, i.e., fR|S(R|sm) by using the conditional PDF
given in (270), and we simplify it more in the following.
Theorem 55: For the complex vector channel introduced

in (267), the coherent ML detection rule is given by

m̂ = argmin
1≤m≤M

∥∥R− He2Fsm∥∥26, (286)

under the condition that H ∈ R+ and 2 ∈ [−π, π) are
assumed perfectly estimated during each modulation symbol.

Proof: TheML decision rule states that eachmodulation
symbol has the same probability of transmission. In accor-
dance, in (279), we make pm = 1/M for all 1 ≤ m ≤ M
and therein ignore the term 2 log(pm) same for all modulation
symbols. Finally, changing the maximization to the mini-
mization, we readily deduce (286), which completes the proof
of Theorem 54.

As an interpretation of (286), we explicate that the receiver
observes the received vector R. Then, using a decision rule,
it searches a symbol among all modulation symbols {sm}Mm=1,
that is closest to the received vector R by using Mahalanobis
distance. When the modulation symbols are equiprobable,
the optimal detector uses the ML decision rule, and therefore
we occasionally call it the minimum-distance (or nearest-
neighbor) detector. In this case, we corroborate the finding
that the boundaries between the decision region of sm and that
of sn are the set of hyper-plane points that are equidistant from
these two modulation symbols.

In case of that the modulation symbols are equiprobable
and have equal power (i.e., when Pr{S=sm}=Pr{S=sn} and
‖sm‖2 = ‖sn‖2 for all 1 ≤ m, n ≤M ), we revise the optimal
detection rule either from the MAP rule or the ML rule and
accordingly we put it in much simpler form, that is

m̂ = argmax
1≤m≤M

<
{
e−2sHmR

}
, (287)

whose decision region Dm̂ is given by

DML
m̂ =

{
r ∈ CL

∣∣∣<{e−2sHm̂ r}
≥ <

{
e−2sHm r

}
,∀m 6= m̂

}
, (288)

where <
{
e−2sHm r

}
, 1≤m≤M can be readily rewritten as

<
{
e−2sHm r

}
=

1
2

(
e−2sHm r+ e

2rH sm
)
. (289)

It is worth mentioning that when we compare both ML and
MAP decision rules given above, we differ only the inclusion
of a priori probabilities Pr{S = sm}, 1 ≤ m ≤ M in the
MAP rule, otherwise we observe that they are conceptu-
ally identical. This means that we perceive the MAP rule
when we weight the ML rule with a priori probabilities.
In addition, in both Theorem 54 and Theorem 55, the term
‖R− He2Fsm‖

2
6 is the square of the Mahalanobis distance

between the received vectorR and its meanHe2Fsm. We de-
compose it as∥∥R− He2Fsm∥∥26 = ∥∥e2(e−2R− HFsm)

∥∥2
6
, (290a)

(a)
=
∥∥e−2R− HFsm

∥∥2
6
, (290b)

(b)
≡
∥∥R− HFsm

∥∥2
6
, (290c)

Thanks to the ES property of Z∼ CML
ν (0,6), i.e., with the

aid of the fact that fZ(z)= fZ(e2z), we progress (290) from
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step (a) to step (b). Being aware of that Z and e2Z follow
the same distribution, we have

e−2R = e−2(He2FS+ Z), (291a)

= HFS+ e2Z, (291b)

≡ HFS+ Z, (291c)

from which we notice that, without any performance degra-
dation, the receiver completely compensate the fading phase
2 by co-phasing the received vector R with exp(−2) be-
fore the optimal detection (i.e., MAP /ML decision rules).
The other crucial point we notice is the decorrelation of the
channels to further simplify the receiver. For this purpose,
we decompose∥∥R− He2Fsm∥∥26 = H2sHmF

H6−1Fsm
−2H<

{
e−2sHmF

H6−1FR
}
+ RH6−1R, (292)

where, in order to avoid the performance degradation re-
sulting from non-zero cross correlation between channels,
we need to carefully choose the precoding matrix filter F in
such a way that eliminates the term FH6−1Fwhile maximiz-
ing the power of the received signal. The covariance matrix
and total power of Z∼ML

ν (0,6) are given by

E
[
ZZH

]
= 26, (293)

E
[
ZHZ

]
= 2Tr(6), (294)

respectively, where we remark that 6 is a square and con-
jugate symmetric matrix and hence lets us use Cholesky’s
decomposition [197, Chap.10], [198, Sec.2.2] to map 6 into
the product of 6 = DDH, where D is the lower triangular
matrix and DH is the transposed, complex conjugate, and
therefore of upper triangular form. We find that

F =

√
2L

Tr(6)
D =

√
2
N0

D, (295)

where N0 is the averaged total variance per noise component
in the complex vector channel. Accordingly, we express6 as

6 =
N0

2
FFH . (296)

Substituting (296) into (292), we obtain∥∥R− He2Fsm∥∥26 = 2
H2

N0

∥∥sm∥∥2
− 4

H
N0
<
{
e−2sHmR

}
+
∥∥R∥∥2

6
. (297)

Accordingly, choosing F as in (295) equalizes the received
vector R from the channel, introduced in (267), to yield the
equalized version before it is fed to the optimal detector, that
is given by

F−1R = F−1
(
He2FS+ Z

)
, (298a)

= He2S+ F−1Z, (298b)

= He2S+ Zc, (298c)

where Z∼CML
ν (0,6) whose PDF is already given by (268),

and Zc∼CML
ν (0,

N0
2 I) follows the PDF obtained with the aid

of both Theorem 42 and the special case (200), that is

fZc (z) =
2
πL

∥∥z∥∥ν−L
0(ν)3ν+L0

Kν−L
( 2
30

∥∥z∥∥) (299)

where 30 is the component deviation (i.e., the variance per
each Laplacian component) and obtained by

30 =

√
2
ν

Tr(FH6−1F)

Tr(DH6−1D)
=

√
N0

ν
. (300)

Properly, both from the phase compensation presented in
(291) and the equalization steps presented in (298), we con-
clude that, thanks to the coherence time of the vector channel,
the received vector can be equalized by the precoding matrix
filter F and also can be maximized by phase compensation
before the optimal detection as follows

Rc = e−2F−1R, (301a)

= e−2F−1
(
He2FS+ Z

)
, (301b)

≡ HS+ F−1Z, (301c)

= HS+ Zc, (301d)

which simplifies the complex correlated AWMNvector chan-
nel, introduced above in (267), to the simple one, which
we call the uncorrelated complex AWMN vector channels,
whose mathematical model is typically given by

Rc = HS+ Zc. (302)

where during each modulation symbol, Rc depends statisti-
cally on S. With the aid of (299), we obtain the conditional
PDF fRc|S(r|s) as

fRc|S(r|s) =
2
πL

∥∥r− Hs∥∥ν−L
0(ν)3ν+L0

Kν−L
( 2
30

∥∥r− Hs∥∥). (303)

Accordingly, thanks to the CS property of multivariate CCS
McLeish distribution (for more details, see Section III-F),
we just state that the BER / SER performance of the vec-
tor channel in (302) is completely the same as that of
one in (267) when we choose the precoding matrix F as
6=N0/2FFH.
Theorem 56: The MAP rule for complex uncorrelated

AWMN vector channels, defined in (302), is given by

m̂ = argmax
1≤m≤M

(
N0 log(pm)−

∥∥Rc − Hsm∥∥2), (304a)

= argmax
1≤m≤M

(
N0 log(pm)

+ 2H<
{
sHmRc

}
− H2∥∥sm∥∥2). (304b)

with the decision region DMAP
m̂ given by

DMAP
m̂ =

{
r ∈ CL

∣∣∣N0 log(pm̂)+ 2H<
{
sHm̂ r

}
−H2
‖sm̂‖2

≥N0 log(pm)+ 2H<
{
sHm r

}
− H2

‖sm‖2,∀m 6= m̂
}
, (305)
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Proof: The proof is obvious putting 6 = N0
2 I in

Theorem 54 and selecting F = e−2I as per the phase
compensation. With the aid of the MAP decision rule (276),
we accordingly write the decision region of the modulation
symbol m̂ as follows

DMAP
m̂ =

{
r ∈ CL ∣∣N0 log(pm̂)−

∥∥r− Hsm̂∥∥2
≥ N0 log(pm)−

∥∥r− Hsm∥∥2,∀m 6= m̂
}
, (306)

where using ‖r− Hsm‖2=‖r‖2−2H<
{
sHm r

}
+H2
‖sm‖2 and

therein ignoring the term
∥∥r∥∥2, we immediately derive (305),

which completes the proof of Theorem 56.
In case of that the modulation symbols are transmitted with

equal a priori probabilities (i.e., pm = 1/M for all 1≤m≤M ),
theMAP rule decision given in Theorem 56 is readily reduced
to the ML decision rule given in the following.
Theorem 57: The ML rule for complex uncorrelated

AWMN vector channels, defined in (302), is given by

m̂ = argmin
1≤m≤M

∥∥Rc − Hsm∥∥2, (307a)

= argmin
1≤m≤M

(
H2∥∥sm∥∥2 − 2H<

{
sHmRc

})
, (307b)

with the decision region DML
m̂ given by

DML
m̂ =

{
r ∈ CL

∣∣∣H2∥∥sm̂∥∥2 − 2H<
{
sHm̂ r

}
≤ H2∥∥sm∥∥2 − 2H<

{
sHm r

}
,∀m 6= m̂

}
. (308)

Proof: The proof is obvious setting pm = 1/M ,
1 ≤ m ≤ M in Theorem 56 and then ignoring the term
N0 log(pm) = −N0 log(M ) since being the same for all pos-
sible modulation symbols.

Note that, when the modulation symbols have equal power,
we identify that the term ‖sm‖2 in (307b) is constant for all
1 ≤ m ≤ M and therefore can be ignored. In accordance,
the optimal detection rule either from the MAP rule or the
ML rule for complex uncorrelated AWMN vector channels,
defined in (302), reduces to

m̂ = argmax
1≤m≤M

<
{
sHmRc

}
, (309)

whose decision region DML
m̂ is given by

DML
m̂ =

{
r ∈ CL ∣∣<{sHm̂ r} ≥ <{sHm r},∀m 6= m̂

}
. (310)

Additionally, we notice that the other important point
in the nature of complex vector channels, which is
well-known in the literature [1]–[4], is the rotational in-
variance property. As being typically observed either in
Theorem 56 or Theorem 57 in accordance with the channel
model given by (302), the ML decision rule partitions the
sample space of the received vector R depending on the mod-
ulation constellation. However, the rotation of the modulation
constellation does not change the probability of making a
decision error, primarily because of two facts, one of which
corresponds to that the ML decision error depends only on

distances between modulation symbols. The other fact is that
the additive complex noise Zc ∼ CML

ν (0,
N0
2 I) is CS in all

directions in signaling space.

1) SYMBOL ERROR PROBABILITY
In order to determine and assess the SER of a detection
scheme, let us assume that the modulation symbol m (i.e.
sm) is randomly selected from a modulation constellation and
then transmitted through the complex vector channel, intro-
duced above in (302). Appropriately, we write the received
vector R as

Rc = Hsm + Zc (311)

where Zc∼ML
ν (0,

N0
2 I). A decision error occurs only when

the received vector Rc does not fall into the decision region
DMAP
m of the modulation symbol m (i.e., Rc 6∈ DMAP

m causes
an error). Making allowance for all decision regions

{
DMAP
m ,

1≤m≤M
}
of the modulation constellation

{
sm, 1≤m≤M

}
,

the probability of that a receiver makes an error in detection
of the modulation symbol m is readily written as

Pr
{
e
∣∣H , sm} = Pr

{
Rc 6∈ DMAP

m

∣∣ sm}, (312a)

=

M∑
n=1
n6=m

Pr
{
Rc ∈ DMAP

n

∣∣ sm}, (312b)

=

M∑
n=1
n6=m

∫
DMAP
n

fRc|S(r|sm)dr, (312c)

where the conditional PDF fR|S(r|s) is given in (303). The
conditional SER of the receiver is therefore given by

Pr
{
e
∣∣H} = M∑

m=1

Pr
{
sm
}
Pr
{
e
∣∣H , sm}, (313a)

=

M∑
m=1

pm Pr
{
e
∣∣H , sm}, (313b)

where the probability of the modulation symbol m we select
to transmit is typically denoted by pm = Pr{sm}, and where
inserting (312c) yields

Pr
{
e
∣∣H} = M∑

m=1

pm
M∑
m̂=1
m̂6=m

∫
DMAP
m̂

fRc|S(r|sm)dr. (314)

Accordingly, considering the whole transmission, we express
the averaged SER of the signaling as

Pr
{
e
}
=

∫
∞

0
Pr
{
e
∣∣ h}fH (h)dh, (315)

where fH (h) is the PDF of the channel fading the signaling
is subjected to. In this context, we mention that, in many
cases, having exact information about a priori probabilities of
the modulation symbols is difficult and actually impossible.
We thus assume pm=1/M for all 1≤m≤M and then use the
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ML decision rule at the receiver. Accordingly, we simplify
(314) more to

Pr
{
e
∣∣H} = 1

M

M∑
m=1

M∑
m̂=1
m̂6=m

∫
DML
m̂

fRc|S(r|sm)dr. (316)

Note that for very few modulation constellations, all decision
regions

{
DML
m , 1≤m≤M

}
are regular enough to be defined

mathematically such that we can compute the integrals in
(316) in closed forms. But, in cases where these integrals
cannot be expressed in a closed form, it is useful to have a
union upper bound for the SER and hence for averaged SER
since being quite tight particularly at high SNR. From (316),
we obtain the union upper bound for the averaged SER over
additive complex AWMN channels as

Pr
{
e
∣∣H} ≤ 1

M

M∑
m=1

M∑
m̂=1
m̂6=m

Pr
{
sm̂ detected

∣∣ sm sent
}
, (317)

where Pr
{
sm̂ detected

∣∣ sm sent
}
, m 6= m̂ is the probability of

the error as a result of detection of sm̂ given the modulation
symbol sm transmitted. Note that the boundary between Dm
andDm̂ is perpendicular bisector of the line connecting sm and
sm̂, m 6= m̂. Accordingly, since sm is transmitted, a decision
error occurs considering only sm and sm̂, m 6= m̂ when the
projection of Rc − Hsm on Hsm̂ − Hsm becomes larger than
Hdmm̂/2, where dmm̂ is the Euclidean distance between sm and
sm̂, and defined by

d2mm̂ =
∥∥sm − sm̂∥∥2. (318)

As addressing Zc = Rc − Hsm and Zc ∼ CML
ν (0,

N0
2 I),

the probability of making an error when considering only sm
and sm̂, m 6= m̂ is given by

Pr
{
sm̂detected

∣∣sm sent
}

= Pr
{
<
{
ZHc (Hsm̂ − Hsm)

}
Hdmm̂

>
Hdmm̂
2

}
, (319a)

= Pr
{
<

{
ZHc (sm̂ − sm)

}
>
Hd2mm̂
2

}
, (319b)

= Pr
{
N >

Hd2mm̂
2

}
, (319c)

where N ∼Mν(0,
N0
2 d

2
mm̂) as a result from the CS property

of Zc∼CML
ν (0,

N0
2 I).

Theorem 58: The union upper bound of the conditional
SER of a modulation constellation

{
sm, 1≤m≤M

}
is given

by

Pr
{
e
∣∣H} ≤ 1

M

M∑
m=1

M∑
m̂=1
m̂6=m

Qν

(
H‖sm − sm̂‖
√
2N0

)
, (320)

where Qν(·) is the McLeish’s Q-function defined in (36).
Proof: From (319c), with the aid of Theorem 4, we have

Pr
{
N >

Hd2mm̂
2

}
= Qν

(
Hdmm̂
√
2N0

)
. (321)

Eventually, substituting both (319) and (321) into (317) yields

Pr
{
e
∣∣H} ≤ 1

M

M∑
m=1

M∑
m̂=1
m̂6=m

Qν

(
Hdmm̂
√
2N0

)
, (322)

where inserting (318) results in (320), which completes the
proof of Theorem 58.
It is worth noting that Theorem 58 proposes the general

union bound expression for the conditional SER of modula-
tion constellation over uncorrelated complex AWMN vector
channels. Let us consider the accuracy and completeness of
Theorem 58, setting ν→∞ in (320) yields [3, Eq. (4.2-72)]

Pr
{
e
∣∣H} ≤ 1

M

M∑
m=1

M∑
m̂=1
m̂6=m

Q
(
H‖sm − sm̂‖
√
2N0

)
, (323)

which is as expected the union upper bound of the conditional
SER for signaling over complex additive white Gaussian
noise (AWGN) channels. Further, for ν=1, (320) simplifies
to the union upper bound for complex additive white Lapla-
cian noise (AWLN) channels, that is

Pr
{
e
∣∣H} ≤ 1

M

M∑
m=1

M∑
m̂=1
m̂6=m

LQ
(
H‖sm − sm̂‖
√
2N0

)
, (324)

where LQ(·) is the Laplacian Q-function defined by (41).
In addition, if we know the distance structure of the modula-
tion constellation, we can further simplify (320) by exploiting
the fact that the decision error is mostly contributed by the
closest modulation symbols. The distance between the two
closest modulation symbols is given by

dmin = min
m6=m̂
‖sm − sm̂‖ (325)

Accordingly, we have

Qν

(
Hdmm̂
√
2N0

)
≤ Qν

(
Hdmin
√
2N0

)
, (326)

for all m̂ 6=m. Therefore, putting this result in (322) yields

Pr
{
e
∣∣H} ≤ (M − 1)Qν

(
Hdmin
√
2N0

)
. (327)

In the following, we consider the well-known modulation
constellations such as BPSK, BFSK, M-ASK, M-PSK, and
M-QAM, each of which is mainly characterized by their low
bandwidth requirements. Appropriately, we will obtain the
conditional SER of the coherent optimal detector for these
modulation constellations.

a: CONDITIONAL BER OF BINARY KEYING MODULATION
When binary signaling is used, let us denote the modulation
constellation by {s+, s−} such that the transmitter transmits
s+ and s− with priori probabilities p and 1− p, respectively,
and with powers E+ =‖s+‖2 and E− =‖s−‖2, respectively.
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FIGURE 9. Received vector representation using binary keying symbols s±
with the decision regions D±.

Referring to the mathematical model given by (302), the re-
ceived vector Rc is readily written as

Rc = Hs± + Zc (328)

where Zc ∼ ML
ν (0,

N0
2 I) and Rc ∼ ML

ν (Hs±,
N0
2 I) since

both the fading envelope H and the modulation symbols s±
are invariably known during one symbol duration. It is worth
re-emphasizing that the received vector Rc depends on the
transmitted binary symbol S through the conditional PDF
fRc|S(r|s), which is obtained in (303). Accordingly, utilizing
Theorem 56, we establish the MAP decision rule in the
following theorem.
Theorem 59: In the case of that coherent binary signaling

is used, theMAPdecision rule given inTheorem 57 reduces to

Decide s± iff ‖Rc − Hs±‖2 + η± ≤ ‖Rc − Hs∓‖2, (329)

with the decision regions DMAP
+ and DMAP

− , given by

DMAP
± =

{
r∈CL

∣∣∣‖r− Hs±‖2+R± ≤ ‖r− Hs∓‖2}, (330)

where the threshold value, originated from the priori proba-
bilities of modulation symbols, is given by

η± = N0 log
(1∓ 1± 2p
1± 1∓ 2p

)
. (331)

Proof: The proof is obvious utilizing Theorem 56 with
the CS property of multivariate CCS McLeish distribution
(for more details, see Section III-F).
In accordancewith Theorem 59, the decision regionsDMAP

+

and DMAP
− are separated by a boundary hyperline perpendic-

ular to the hyperline connecting Hs+ and Hs−. The decision
regions and this boundary line are together illustrated in
Fig. 9. Let us assume that s+ is transmitted, then an error
occurs when the received vector Rc falls into D− instead
of D+, which means that the projection of (Rc − Hs+) on
(Hs+ − Hs−) is larger than the distance of Hs+ from the
boundary hyperline.
Theorem 60: For the MAP decision rule given by Theo-

rem 59, the conditional BER of binary signaling is given by

Pr{e |H} = pQν

(
H2
‖s+ − s−‖2 − η+

H‖s+ − s−‖
√
2N0

)
+ (1− p)Qν

(
H2
‖s+ − s−‖2 − η−

H‖s+ − s−‖
√
2N0

)
. (332)

Proof: From (329), we can write the decision correct
decision when assuming that s± is transmitted as follows

‖Rc‖2 + H2
‖s±‖2 − 2H<

{
sH±Rc

}
+ η±

≤ ‖Rc‖2 + H2
‖s∓‖2 − 2H<

{
sH∓Rc

}
, (333)

where inserting (328) yields

D ≤ H2
‖s± − s∓‖2 − η±, (334)

where the decision variable D is given by

D = −2H<
{
(s± − s∓)HZc

}
, (335)

where (s∓ − s±)HZc follows a CCS McLeish distribution
with zeromean andN0‖s± − s∓‖2/2 variance per dimension.
Therefore, D∼Mν(0, 2H2N0‖s± − s∓‖2), and accordingly,
a decision error occurs when D>H2

‖s± − s∓‖2 − η±. With
the aid of Theorem 4, when s± is transmitted, we write the
probability of decision error as

Pr
{
e
∣∣H , s±} = Qν

(
H2
‖s± − s∓‖2 − η±

H‖s± − s∓‖
√
2N0

)
, (336)

From (313b), we write Pr{e |H} = Pr{e |H , s+}Pr{s+} +
Pr{e |H , s−}Pr{s−}, where replacing (336) yields (332),
which completes the proof of Theorem 60.
In the special case where the binary modulation symbols

are equiprobable (i.e., when Pr{s±} = 1/2), we have the
threshold value η±= 0 and then reduce the MAP rule to the
ML rule given below.
Theorem 61: In the case where coherent binary signaling

is used, the ML decision rule, given in Theorem 57, reduces
to

Decide s± iff ‖Rc − Hs±‖ ≤ ‖Rc − Hs∓‖. (337)

with the decision regions DML
+ and DML

− , given by

DML
± =

{
r ∈ CL

∣∣∣ ‖Rc − Hs±‖ ≤ ‖Rc − Hs∓‖}. (338)

Proof: The proof is obvious using Theorem 59
by assuming that the symbols are equiprobable,
i.e., Pr{s±}=1/2.

As it can be easily observed from Theorem 59, the de-
cision regions DML

+ and DML
− are separated by a perpen-

dicular bisector to the hyperline connecting Hs+ and Hs−.
As a result of the fact that the decision error probabilities
when the modulation symbol s+ or s− is transmitted are
equal, we have a symmetry with respect to the perpendicular
bisector (i.e., the minimum distance of s+ and that of s− from
the perpendicular bisector are certainly equal).
Theorem 62: For the ML decision rule, given by Theo-

rem 61, the conditional BER of binary signaling is given by

Pr
{
e
∣∣H} = Qν

(
H‖s+ − s−‖
√
2N0

)
. (339)

Proof: The proof is obvious setting p= 1
2 in Theorem 60.
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Let us consider the special cases of Theorem 62 for certain
binary modulation constellations. When the binary modula-
tion symbols s+ and s− are equiprobable (i.e., Pr{s±}=1/2)
and have equal power (i.e., ‖s+‖2 = ‖s−‖2), we can rewrite
the distance between s+ and s− as

‖s+ − s−‖ =
√
2ES(1− ρ), (340)

where ES = E[SHS] denotes the transmitted average power
and can be written in more details as follows

ES = Pr{s+}‖s+‖2 + Pr{s−}‖s−‖2, (341a)

=
1
2
‖s+‖2 +

1
2
‖s−‖2, (341b)

= E+ (or E−), (341c)

Further, in (340), ρ denotes the cross-correlation coefficient
between the modulation symbols s+ and s−, defined by

ρ =
<
{
sH+s−

}
‖s+‖‖s−‖

, (342a)

=
1
ES

(
<

{
sT+
}
<{s−} + =

{
sT+
}
={s−}

)
. (342b)

It is consequently valuable to notice that, since −1 ≤ρ≤ 1,
(340) is maximally increased when ρ = −1, i.e., when
the the binary modulation symbols are antipodal (i.e., when
s± = ∓s∓). Consequently, substituting (340) into (339)
results in

Pr
{
e
∣∣H} = Qν

(√
(1− ρ)γ

)
, (343)

where γ is the instantaneous SNR during transmission of one
modulation symbol and defined by

γ =
E[〈HS,Rc〉]2

Var[〈HS,Rc〉]
, (344a)

=
E[〈HS,Rc〉]2

E[〈HS,Rc〉2]− E[〈HS,Rc〉]2
, (344b)

= H2ES
N0
, (344c)

with the aid of the optimal decision rules given above.
Theorem 63: The contional BER Pr

{
e
∣∣H} of BPSK sig-

naling over CCS AWMN channels is given by

Pr
{
e
∣∣H} = Qν

(√
2γ
)
, (345)

where γ is the instantaneous SNR defined above.
Proof: Note that the BPSK symbols are defined by

{s+, s−} such that s± = −s∓, which means that s+ and
s+ have equal power. In case of that they are equiprobable,
we have ‖s±‖2 = ES . Therefore, with the aid of (342a),
ρ = −1, and then (343) simplifies to (345), which proves
Theorem 63.
Theorem 64: The contional BER Pr

{
e
∣∣H} of BFSK sig-

naling over CCS AWMN channels is given by

Pr
{
e
∣∣H} = Qν

(
√
γ
)
, (346)

where γ is the instantaneous SNR defined above.

FIGURE 10. The BER of BPSK signaling over AWMN channels.

Proof: Note that the BFSK symbols are defined by
{s+, s−} such that sH±s∓ = 0. In case where s+ and s+ are
equiprobable and have equal power, we obtain the correlation
ρ=0 with the aid of (342a), and accordingly, we reduce (343)
into (346), which proves Theorem 64.
As mentioned before, the impulsive nature of McLeish

noise distribution is simply expressed by its normality
ν ∈ R+. As such, when ν → ∞, the impulsive nature
vanishes andMcLeish noise distribution approaches to Gaus-
sian noise distribution. For that purpose, we demonstrated
the effect of non-Gaussian noise on communication perfor-
mance by plotting in Fig. 10 and Fig. 11 the conditional
BER of BPSK and BFSK modulations, respectively, with
respect to different normalities ν ∈ {0.0075, 0.015, 0.03,
0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 40,∞}. We evidently
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FIGURE 11. The BER of BFSK signaling over AWMN channels.

observe that the impulsive nature of McLeish noise distribu-
tion deteriorates the performance of binary modulations in
high-SNR regime while negligibly improves it in low-SNR
regime.

The other binary keying signaling is the OOK modulation,
in case of which the binary information is transmitted by the
presence or absence of a modulation symbol. Accordingly,
the modulation symbols s+ 6= 0 and s− = 0 are employed
to transmit 1 and 0 binary information, respectively, with
equal a priori probabilities Pr{s+} = Pr{s−} = 1/2. At this
point, note that the OOK constellation can be achieved by
shifting the BPSK /BFSK constellation up to s− = 0. Ac-
cordingly, E+ = ‖s+‖2 6= 0 and E− = ‖s−‖2 = 0, such
that the average power of the OOK modulation is written as
ES=Pr{s+}‖s+‖2+Pr{s−}‖s−‖2= 1

2‖s+‖
2. With that result,

we can rewrite the distance between s+ and s− for the OOK

modulation as

‖s+ − s−‖ = ‖s+‖ =
√
2ES, (347)

Theorem 65: The contional BER Pr
{
e
∣∣H} of OOK signal-

ing over CCS AWMN channels is given by

Pr
{
e
∣∣H} = Qν

(
√
γ
)
, (348)

where γ is the instantaneous SNR defined in (344).
Proof: The proof is obvious inserting (347) into

Theorem 62 and using (344c).
At the moment, it has been investigated to obtain closed-

form expressions for the conditional BER performance of
binary signaling over AWMN channels. In the following,
we consider the conditional SER of M-ary signaling over
CCS AWMN vector channels.

b: CONDITIONAL SER OF M-ASK MODULATION
Let S = {s1, s2, . . . , sM } denote the M-ASK constellation
such that its constellation center is zero (i.e., s1 + s2 + . . .+
sM = 0) and that sHm sm̂ = s

H
m̂ sm for all m 6= m̂. Accordingly,

the correlation between sm and sm̂ for all m 6= m̂ is given by

ρmm̂ =
<
{
sHm sm̂

}
‖sm‖‖sm̂‖

= ±1, (349)

which consequence that, without loss of generality, the mod-
ulation symbols are ordered by ‖sm̂− s1‖<‖sm− s1‖, m< m̂
on a hyperline. Therefore, the modulation symbol m can be
written as

sm = ams, 1 ≤ m ≤ M , (350)

where s denotes an arbitrary unit vector, i.e., ‖s‖ = 1, and
thus am, 1≤m≤M are such real amplitudes that they support
s1 + s2 + . . .+ sM = 0, which imposes that

a1 + a2 + . . .+ aM = 0. (351)

From the condition that the modulation symbols are ordered,
we have a1< a2< . . . < aM . For each sm except for the two
outside ones s1 and sM , the distance of sm from sm±1 is the
constant we readily express

‖sm − sm±1‖= (am − am±1)2 = 1 (constant). (352)

Accordingly, we formulate the modulation symbols as

sm = (m− m0)1s, 1 ≤ m ≤ M . (353)

which imposes that am = (m−m0)1, 1 ≤ m ≤ M , where 1
is the minimum distance between modulation symbols, and
the offset m0 is found to be m0 = (M + 1)/2 due to a1 + a2
+ . . . + aM = 0. Then, the power of sm, which is written as
Em=‖sm‖2, can be obtained in terms of 1 as

Em= (m− m0)212 (354)

Correspondingly, since themodulation symbols are equiprob-
able, we write the average power of the M-ASK modula-
tion as ES = (

∑M
m=1 Em)/M , and therein substituting (354),

we have
ES =

1
12

(M2
− 1)12, (355)
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from which the value of 1 can be determined as

1 =

√
12ES
M2 − 1

. (356)

The distance between sm and sn, m 6=n is written as

‖sm − sn‖ =

√
12 |m− n|ES
M2 − 1

. (357)

Let us find the conditional SER for the M-ASK modula-
tion. Assuming sm is transmitted, we can write the received
vector Rc using the mathematical model given by (302) as
follows

Rc = Hams+ Zc (358)

where Zc ∼ML
ν (0,

N0
2 I) and hence Rc ∼ML

ν (Hams,
N0
2 I).

Since all modulation symbols are assumed equiprobable,
a symbol error occurs for each sm except for the two sym-
bols s1 and sM when the the projection of Rc − Hsm
on Hsm±1 − Hsm, i.e., <

{
(Hsm±1 − Hsm)H (Rc − Hsm)

}
is

greater than the distance of Hsm from the perpendicular bi-
sector of the hyperline that connectsHsm andHsm±1, and the
probability of this error is written with the aid of Theorem 62
as follows

Pr
{
e
∣∣H , sm} = Qν

(
H‖sm − sm+1‖
√
2N0

)
+ Qν

(
H‖sm − sm−1‖
√
2N0

)
, (359a)

= 2Qν

(
H1
√
2N0

)
, (359b)

where substituting (356) results in

Pr
{
e
∣∣H , sm} = 2Qν

(√
6γ

M2 − 1

)
, (360)

where γ =H2ES/N0 denotes the SNR during transmission of
one modulation symbol. Additionally, we also need to obtain
Pr
{
e
∣∣H , s1} and Pr

{
e
∣∣H , sM}. For the modulation symbol

s1, we obtain

Pr
{
e
∣∣H , s1} = Qν

(
H‖s1 − s2‖
√
2N0

)
, (361a)

= Qν

(√
6γ

M2 − 1

)
. (361b)

Similarly, for the modulation symbol sM , we obtain

Pr
{
e
∣∣H , sM} = Qν

(
H‖sM − sM−1‖
√
2N0

)
, (362a)

= Qν

(√
6γ

M2 − 1

)
. (362b)

Theorem 66: For the ML decision rule, the conditional
SER of the M-ASK signaling is given by

Pr
{
e
∣∣H} = 2

(
1−

1
M

)
Qν

(√
6γ

M2 − 1

)
, (363)

where γ is the instantaneous SNR defined in (344).

Proof: When the modulation symbols are equiprobable,
we write the conditional SER of the M-ASK signaling as

Pr
{
e
∣∣H} = 1

M

M∑
m=1

Pr
{
e
∣∣H , sm}, (364)

where substituting (360), (361b) and (362b) results in (363),
which completes the proof of Theorem 66.
Let us check the special cases. First, when the normality

factor ν = 1, we reduce (363) to the conditional SER of the
M-ASK signaling in CCS AWLN channels, that is

Pr
{
e
∣∣H} = 2

(
1−

1
M

)
LQ
(√

6γ
M2 − 1

)
, (365)

Secondly, when the normality factor ν→∞, we also reduce
(363) with the aid of (39) to [3, Eq. (4.3-5)], [1, Eq. (8.3)]

Pr
{
e
∣∣H} = 2

(
1−

1
M

)
Q
(√

6γ
M2 − 1

)
, (366)

which is the conditional SER of theM-ASK signaling in CCS
AWGN channels as expected.

Properly with the aid of Theorem 66, we disclose in Fig. 12
the conditional SER of M-ASK signaling with respect to the
different normalities in AWGN channels. In addition to our
previous observations of that the impulsive nature of the ad-
ditive noise distribution deteriorates the performance in high-
SNR regime while negligibly improves in low-SNR regime,
we observe that the system performance gets more vulnerable
to the impulsive nature of the additive noise distribution as the
modulation levelM increases.

c: CONDITIONAL SER OF M-QAM MODULATION
Considering the M-QAM constellation as the extension of
the twoM-ASK constellations to the complex amplitude key-
ing, we denote its modulations symbols by {s1, s2, . . . , sM },
where we express each modulation symbol as

sm = (am +  bm)s, 1 ≤ m ≤ M , (367)

where s denotes an arbitrary unit vector, i.e., ‖s‖=1. Further,
the inphase keying am ∈R and the quadrature keying am ∈R
are chosen such that we can redefine theM-QAMmodulation
by the Cartesian product of twoM-ASK constellations whose
modulation levels areMI andMQ, where the modulation level
M of the M-QAM modulation is factorized to MI and MQ,
i.e.,M=MIMQ. Wewrite the symbols of the inphaseM-ASK
constellation as

sIm = αms, 1 ≤ m ≤ MI , (368)

where αm ∈R. Its average power is EI = (
∑

m α
2
m)/MI since

its modulation symbols are assumed equiprobable. We write
the symbols of the quadrature M-ASK constellation as

sQn = βns, 1 ≤ n ≤ MQ, (369)

where βm∈R. The average power is EQ= (
∑

n β
2
n )/MQ since

the modulation symbols are assumed equiprobable. In terms
of αm and βn, we can write am∈R and am∈R as

am = α[m/MQ]+1, and bm = βm−[m/MQ]MQ , (370)
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FIGURE 12. The SER of M-ASK signaling over AWMN channels.

for all 1≤m≤M . Accordingly and appropriately, we obtain
the average power of the M-QAM constellation as

ES =
1
M

M∑
m=1

‖sm‖2, (371a)

=
1
M

M∑
m=1

(a2m + b
2
m), (371b)

where substituting (370) yields

ES =
1
MI

MI∑
m=1

α2m +
1
MQ

MQ∑
n=1

β2n , (372a)

= EI + EQ. (372b)

such that EI = (1− κ)ES and EQ=κES, where κ denotes the
inphase-to-quadrature ratio (IQR) given by

κ =
(M2

Q − 1)12
Q

(M2
Q − 1)12

Q + (M2
I − 1)12

I

. (373)

where 1I and 1Q are the minimum distance of the inphase
and quadrature M-ASK constellations, respectively. In addi-
tion, when MI = MQ and 1I = 1Q, the M-QAM signaling
is termed as a square M-QAM signaling, and otherwise,
a rectangular M-QAM signaling. Further, with the aid of the
definition of the instantaneous SNR given by (344), we can
rewrite the instantaneous SNR as γ =H2ES/N0 = γI + γQ,
where we have γI =H2EI/N0 and γQ=H2EQ/N0 such that
γI = (1− κ)γ and γI =κγ .
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Let us find the conditional SER expression for the rect-
angular M-QAM modulation based on the resultants given
above. Assuming sm is transmitted, we can readily write the
received vector Rc using the mathematical model given by
(302) as follows

Rc = H (am + bm)s+ Zc (374)

where Zc ∼ CML
ν (0,

N0
2 I), and then the received vector is

Rc∼CML
ν (H (am + bm)s,

N0
2 I). Further, we have

Zc = Ic + Qc (375)

where Ic ∼ML
ν (0,

N0
2 I) and Qc ∼ML

ν (0,
N0
2 I). It is further

extremely important and necessary to note that Ic and Qc
are mutually uncorrelated but not independent since both are
belong to the same CCS AWMN channel.The projection of
the received vector Rc on the space of modulation symbols,
i.e., Pc=sHRc is given by

Pc = H (am + bm)s+ Zc (376)

where we decompose Zc∼CMν(0,N0/2) as

Zc = Ic + Qc (377)

where the inphase Ic ∼ Mν(0,N0/2) and the quadrature
Qc ∼Mν(0,N0/2) are mutually uncorrelated but not inde-
pendent due to the reason mentioned above. Appropriately,
with the aid of (363), the probability of an erroneous detec-
tion for this M-QAM constellation is given in the following
theorem.
Theorem 67: For the ML decision rule, the conditional

SER of the rectangular M-QAM signaling is given by (378),
as shown at the bottom of this page, in which γ is the
instantaneous SNR defined in (344), κ is the IQR defined
in (373). Further, βI and βQ are respectively the minimum
inphase and quadrature distances normalized by noise power
and are respectively defined by

βI =

√
6(1− κ)

M2
I − 1

, and βQ =

√
6κ

M2
Q − 1

. (379)

The phase φ=arctan
(
βI/βQ

)
is given by

φ = arctan
(√√√√ κ(M2

I − 1)

(1− κ)(M2
Q − 1)

)
. (380)

Proof: With the aid of Theorem 10, let us further de-
compose the additive complex noise Zc as

Zc =
√
G(Xc + Yc) (381)

where G∼ G(ν, 1), Xc ∼N (0,N0/2), and Yc ∼N (0,N0/2)
such that we define the inphase Ic=

√
GXc and the quadrature

Qc=
√
GYc. Hence, we notice that both Ic|G and Qc|G (i.e.,

both Ic and Qc conditioned on G) are mutually independent
Gaussian distributions with zero mean and GN0/2 variance.
Appropriately, exploiting (366) and using the coefficients
(379), we can write the the conditional SER of the inphase
MI -ASK as Pr{eI |H ,G} = 2(1 − 1/MI )Q(βI

√
γ /G). Sim-

ilarly, we can write the conditional SER of the quadrature
MQ-ASK as Pr{eQ |H ,G} = 2(1 − 1/MQ)Q(βQ

√
γ /G). The

mutual independence between Ic|G and Qc|G yields the con-
clusion that the probability of the correct symbol decision is
the product of the conditional probabilities Pr{cI |H ,G} =
1−Pr{eI |H ,G} and Pr{cQ |H ,G}=1−Pr{eQ |H ,G}, which
are respectively correct decision probabilities for constituent
MI -ASK and MQ-ASK constellations when conditioned on
G, we can thus write the probability of an erroneous detection
as

Pr{e |H ,G} = 1− Pr{c |H ,G}, (382a)

= 1− Pr{cI |H ,G}Pr{cQ |H ,G}, (382b)

= 1− (1− Pr{eI |H ,G})

× (1− Pr{eQ |H ,G}), (382c)

where substituting Pr{eI |H ,G} and Pr{eQ |H ,G} yields

Pr{e |H ,G} = 2
(
1− 1/MI

)
Q
(
βI
√
γ /G

)
+ 2

(
1− 1/MQ

)
Q
(
βQ
√
γ /G

)
− 4

(
1− 1/MI

)(
1− 1/MQ

)
× Q

(
βI
√
γ /G

)
Q
(
βQ
√
γ /G

)
. (383)

Then, the conditional SER of the rectangular M-QAM con-
stellation is written as Pr{e |H} =

∫
∞

0 Pr{e |H , g}fG(g)dg,
where substituting (84) yields

Pr{e |H} = 2
(
1− 1/MI

)
I1
(
βI
√
γ
)

+ 2
(
1− 1/MQ

)
I1
(
βQ
√
γ
)

− 4
(
1− 1/MQ

)(
1− 1/MQ

)
I2
(
βI
√
γ , βQ

√
γ
)
,

(384)

where I1(x) and I2(x, y) are given by

I1(x) =
∫
∞

0
Q
(√

x2/g
)
fG(g)dg, (385)

I2(x, y) =
∫
∞

0
Q
(√

x2/g
)
Q
(√

y2/g
)
fG(g)dg, (386)

where x, y∈R+. Inserting Q(x)= 1
2erfc

(
x/
√
2
)
[3, Eq.(2.3-

18)] and [174, Eq. (06.27.26.0006.01)] into (385), and ac-
cordingly using [140, Eqs. (2.8.4) and (2.9.1)], I1(x) results

Pr
{
e
∣∣H} = 2

(
1− 1/MI

)
Qν
(√
β2I γ

)
+ 2

(
1− 1/MQ

)
Qν
(√
β2Qγ

)
− 2

(
1− 1/MI

)(
1− 1/MQ

)
Qν
(√
β2I γ ,

π

2
− φ

)
− 2

(
1− 1/MI

)(
1− 1/MQ

)
Qν
(√
β2Qγ , φ

)
, (378)
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in (46). Therefore, we have I1(x) = Qν(x). In addition,
inserting [194, Eq. (4.6)and(4.8)] into (386) and using [173,
Eq. (3.471/9)] and then exploiting Definition 2, we obtain
I2(x, y) as I2(x, y)= 1

2Qν(x, π/2 − φ) +
1
2Qν(y, φ). Finally,

substituting I1(x) and I2(x, y) into (384) results in (378),
which completes the proof of Theorem 67.
Theorem 68: For the ML decision rule, the conditional

SER of the square M-QAM signaling is given by

Pr{e |H} = 4
(
1−

1
√
M

)
Qν

(√
3γ

M − 1

)
−4
(
1−

1
√
M

)2
Qν

(√
3γ

M − 1
,
π

4

)
, (387)

where γ is the SNR defined in (344).
Proof: Whenwe haveMI =MQ=

√
M , we perceive that

theM-QAMconstellation becomes a two-dimensional square
constellation, where each one of the inphase and quadrature
components can be therefore considered as

√
M-amplitude

shift keying (ASK) constellation. Accordingly, with the aid of
(356), we find out that the inphase and quadrature minimum
distances, i.e., 1I and 1Q are equal, that is

1I = 1Q =

√
6ES
M − 1

, (388)

which yields κ = 1/2 as observed from (373), and further
βI = βQ=

√
3/(M − 1) from (379). Eventually, substituting

these results into (378) yields (387), which completes the
proof of Theorem 68.

Let us check some special cases for completeness. For
4-QAM, (387) reduces to

Pr{e |H} = 2Qν
(√
γ
)
− Qν

(√
γ , π/4

)
, (389)

where referring (49) with the total integration angle,
i.e., π/2 + π/2 − π/4 = π − π/4, we can reduce (389)
more to

Pr{e |H} = Qν
(√
γ , 3π/4

)
, (390)

In addition, note that we have

lim
ν→∞

Qν
(
x,
π

4

)
= Q(x)2. (391)

Thus, when the normality factor ν → ∞, (387) reduces to
[3, Eq. (4.3-30)], [1, Eq. (8.10)] as expected.

For analytical accuracy and numerical completeness and
correctness, in Fig. 13, we show the SER of M-QAM signal-
ing over AWMN channels by using Theorem 68 for analytical
accuracy and performing simulations for numerical correct-
ness. We also therein observe that, for ν → 0, the system
performance deteriorates in the high-SNR regime. When we
compare the performance of M-QAM to that of M-ASK (i.e.,
namely comparing Fig. 13b to Fig. 12c forM=8), we notice
that M-QAM gives better performance.

d: CONDITIONAL SER OF M-PSK MODULATION
Considering the M-PSK constellation as the rotational exten-
sion of the BPSK constellation to the phase shift keying, let
us denote its modulation symbols by {s1, s2, . . . , sM }, where
sm = αeθms such that s denotes an arbitrary unit vector
(i.e., ‖s‖ = 1), the amplitude α ∈ R+ determines the power
per modulation symbol such that we can readily express
the power of sm as Em = ‖sm‖2 = α2. Further, the phase
rotations θm, 1 ≤ m ≤ M encode information within the
M-PSK modulation symbols and are uniformly chosen for a
modulation levelM , that is

θm=2π (m− 1)/M , 1 ≤ m ≤ M . (392)

Accordingly, we can rewrite the M-PSK modulation symbols
as sm = α exp

(
2π (m − 1)/M

)
s, 1 ≤ m ≤ M and therein

making use of Em = α2, 1 ≤ m ≤M , we obtain the average
power ES as follows

ES =
M∑
m=1

Pr{sm}Em = α2. (393)

Therefore, we have α=
√
ES. Let us now find the conditional

SER for the M-PSKmodulation. Assuming sm is transmitted,
we can write the received vector Rc using the mathematical
model given by (302) as follows

Rc = αHeθms+ Zc (394)

where Zc ∼ CML
ν (0,

N0
2 I) and Rc ∼ CML

ν (αHe
θms, N0

2 I).
Since the information is carried by means of phase shift
keying in form of 2π/M multiplies (i.e., the angle difference
between the adjacent symbols is 2π/M ), a decision error
occurs when the additive noiseZc causes an enough rotational
shift more than π/M in clockwise or counterclockwise direc-
tion in Rc. We give the projection of Rc on sm as

Pc = sHmRc = αH + Zc (395)

where Zc ∼ CMν(0,N0/2) follows the PDF that we write
with the aid of Theorem 11 as

fZc (z) =
2
π

|z|ν−1

0(ν)3ν+10

Kν−1

(
2 |z|
30

)
, (396)

defined over z ∈ C with the normality factor 30 =
√
N0/ν.

Therefore, Pc∼CMν(αH ,N0/2) is decomposed as

Pc = Ic + Qc, (397)

where Ic ∼Mν(αH ,N0/2) and Qc ∼Mν(0,N0/2). Hence,
the amplitude fluctuation caused by the additive complex
noise Zc is apparently written as Ac =

√
I2c + Q2

c . The ro-
tational shift, which is another effect caused by the additive
complex noise Zc, is written as 2c = arctan

(
Qc/Ic

)
, which

follows such a random distribution that a decision error oc-
curs when |2c|>π/M (i.e., a correct decision occurs when
|2c|<π/M ). In other words, the error probability when sm
was transmitted is readily written as

Pr
{
e |H , sm

}
= Pr

{
|2c| > π/M

}
, (398a)

= 1− Pr
{
−π/M < 2c < π/M

}
. (398b)
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FIGURE 13. The SER of M-QAM signaling over AWMN channels.

Since assuming that all modulation symbols are equiproba-
ble, we perceive that, due to the rotational symmetry of the
M-PSK constellation, Pr

{
e |H , sm

}
= Pr

{
e |H , sm̂

}
for all

m 6= m̂. The conditional SER of the M-PSK is therefore
equal to the probability of making a decision error when sm
is transmitted, and accordingly we write

Pr{e |H} =
M∑
m=1

Pr{e |H , sm}Pr{sm}, (399a)

= Pr{e |H , sm}, (399b)

= 1− Pr{−π/M < 2c < π/M}. (399c)

Referring to (397), and therefrom having both the amplitude
Ac =

√
I2c + Q2

c and the phase 2c = arctan
(
Qc/Ic

)
, we can

deduce the inphase and quadrature of the projection Pc as

Ic = Ac cos
(
2c
)
andQc = Ac sin

(
2c
)
, fromwhich we derive

the joint PDF of Ac and 2c by utilizing (396), that is

fAc,2c (a, θ) =
2�(a, θ)ν−1

π0(ν)3ν+10

Kν−1

(
2
30
�(a, θ)

)
, (400)

where �(a, θ) is given by

�(a, θ) =
√
a2 − 2a

√
H2ES cos(θ)+ H2ES. (401)

Accordingly, when we integrate (400) over a∈R+, we obtain
the marginal PDF of 2c, that is f2c (θ )=

∫
∞

0 fAc,2c (a, θ)da,
where substituting (400) yields

f2c (θ ) =
∫
∞

0

2�(a, θ)ν−1

π0(ν)3ν+10

Kν−1

(
2
30
�(a, θ)

)
da, (402)
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FIGURE 14. The SER of M-PSK modulation over AWMN channels.

which does not simplify to a simple closed form and thusmust
be evaluated numerically. Nevertheless, making use of f2c (θ ),
we calculate the probability Pr

{
θ0<2c<θ1

}
=
∫ θ1
θ0
f2c (θ )dθ

and thereby derive the conditional SER of M-PSK constella-
tion in the following.
Theorem 69: For the ML decision rule, the conditional

SER of the rectangular M-PSK signaling is given by

Pr{e |H} = 1−
∫ π/M

−π/M
f2c (θ )dθ. (403)

Proof: The proof is obvious using (398b) with the
marginal PDF of 2c given in (402) above.
A closed-form expression to (403) does not exist for

M > 4, and therefore the exact value of Pr{e |H} must
be calculated numerically and of course can be accurately

approximated using Chebyshev-Gauss quadrature formula
[172, Eq. (25.4.39)]. The other approach, which is simi-
lar to the one followed in [176], to find the conditional
SER of M-PSK constellation is to integrate the PDF of
Zc∼CMν(0,N0/2) over the region of D={z ∈ C |−π/M<

arg(z)<π/M} and as presented in the following.
Theorem 70: For the ML decision rule, the conditional

SER of the M-PSK signaling is given by

Pr{e |H} = Qν
(√

2γ sin
( π
M

)
, π −

π

M

)
, (404)

where γ is the instantaneous SNR defined in (344).
Proof: Referring to (395), we have Zc ∼ CMν(0,N0/2)

with the decomposition Zc = Xc + Yc in Cartesian form,
where Xc ∼ Mν(0,N0/2) and Yc ∼ Mν(0,N0/2). Fur-
ther, we also have the Euler’s form Zc = Ac exp

(
8c

)
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FIGURE 15. Received vector representation of the M-PSK signaling whose
projection model is given by (395) with the decision region
D={z ∈ C| − π/M < arg(z) < π/M}.

in polar form, where we express Ac =
√
X2
c + Y 2

c and
8c = arctan(Yc/Xc). Using (396), we obtain the joint PDF
of Ac and 8c as

fAc,8c (a, φ) = fZc (z) JZc|Ac,8c , (405a)

= fZc (a exp(φ)) JZc|Ac,8c , (405b)

where fZc (z) denotes the PDF of Zc, given in (396), and
JZc|Ac,8c denotes the Jacobian of z = a exp

(
φ
)
and is

derived as JZc|Ac,8c = a, whose replacement in (405) yields

fAc,8c (a, φ) =
2
π

aν

0(ν)3ν+10

Kν−1

(
2a
30

)
, (406)

which is defined over a∈R+ and θ ∈ [−π, π). We notice that,
as depicted in Fig. 15, a decision error occurs if Zc falls into
the erroneous decision region. Then, we write the conditional
SER of M-PSK constellation as

Pr
{
e |H

}
= 2

∫ π

π/M

∫
∞

|EF|
fAc,8c (a, φ) dφ da, (407)

where |EF| is the distance between the modulation symbol
(i.e., point E) and the boundary point (i.e., point F). The length
|EF| is written from Hα sin(π/M )=|EF| sin(φ − π/M ) as

|EF| = 2γ
(
30

λ0

)2 sin(π/M )
sin(φ − π/M )

, (408)

with 30 =
√
N0/ν, λ0 =

√
2/ν, and γ = H2ES/N0. Conse-

quently, substituting (408) into (407) and sequentially using
[139, Eqs. (8.2.2/8), (2.24.2/3) and (8.4.23/1)], we obtain

Pr
{
e |H

}
=

21−ν

π0(ν)

∫ π

π/M

(
2
√
2γ sin(π/M )

λ0 sin(φ − π/M )

)ν
×Kν

(
2
√
2γ sin(π/M )

λ0 sin(φ − π/M )

)
dφ, (409)

where applying the change of variable θ=φ−π/M and using
Definition 2 yields (404), which proves Theorem 70.
Let us now consider some special cases for the closed-

form conditional SER of the M-PSK signaling. The BPSK
constellation is the most reliable modulation as a special case

of the M-PSK constellation. Accordingly, setting M = 2
in (404) and utilizing the property Qν

(
x
)
= Qν

(
x, π/2

)
,

we obtain the conditional SER of BPSK constellation as
follows

Pr{e |H} = Qν
(√

2γ , π/2
)
, (410a)

= Qν
(√

2γ
)
, (410b)

which is perfect agreement with (345). Further, setting
M=4 in (404), we obtain the conditional SER of QPSK (i.e,.
4-QAM) constellation, that is

Pr{e |H} = Qν
(√

2γ sin
(
π/M

)
, π − π/M

)∣∣∣
M=4

, (411a)

= Qν
(√
γ , 3π/4

)
, (411b)

which is in agreement with (390) as expected.
For the analysis of impulsive noise effects on the perfor-

mance, we demonstrate in Fig. 14 how the conditional SER of
M-PSK signaling over complex AWMN channels varies with
respect to the SNR, the normality ν and the modulation level
M , and notice that numerical and simulation-based results are
in perfect agreement. Further, we have observed previously
obtained results. As such, the impulsive nature of the additive
noise increases (i.e., the normality ν decreases), the per-
formance deteriorates in high-SNR regime while negligibly
improves in low-SNR regime.

B. NON-COHERENT SIGNALLING
In the previous subsection, we have investigated the coherent
signaling in which the receiver has perfect knowledge about
the received carrier phase. Detection techniques based on the
absence of any knowledge about the received carrier phase
are referred to as non-coherent detection techniques [1]–[3].
In the following, we consider the MAP and ML detection
rules for non-coherent signaling in which the receiver does
not have any information about both the transmitted modu-
lation symbols and the carrier phase, and we obtain the SER
performance of non-coherent signaling. With the aid of the
mathematical model, which is given in (267), we can re-
express the received vector as R = He2FS + Z, where the
variables arewell-explained immediately after (267). In need-
ing to re-explain these variables, H denotes the fading enve-
lope following a non-negative random distribution,2 denotes
the fading phase uniformly distributed over [0, 2π ]. Further,
bothH and2 are assumed constant due to channel coherence
[1]–[3]. Further, S denotes the modulation symbol vector
randomly chosen from the fixed set of modulation symbols
{s1, s2, . . . , sM } according to the probabilities given by

pm = Pr{S = sm}, for all 1 ≤ m ≤ M , (412)

such that
∑M

m=1 pm = 1. For non-coherent differential phase
shift keying (DPSK) signaling [2], [3], the modulation sym-
bols s1, s2, . . ., sM are not required to be orthogonal with each
other, i.e.,

sHm sn 6= 0, for m 6= n (413a)

sHm sm = Em, (413b)
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where Em is the energy of the modulation symbol m. Without
loss of generality, we assume that the energy of the modula-
tion symbols are ordered, i.e., E1 ≤ E2 ≤ . . . ≤ EM . During
each modulation symbol, the received vector R depends sta-
tistically on S and 2 with the conditional PDF fR|S,2(r|s, θ),
that is

fR|S,2(r|s, θ) =
2
πL

‖r− He2Fs‖ν−L6

0(ν) det(6) λν+L0

×Kν−L
( 2
λ0

∥∥r− He2Fs∥∥
6

)
. (414)

The PDF of the received vector R conditioned on the modu-
lation symbols S, i.e., fR|S(r|s) is written as

fR|S(r|s) =
∫ 2π

0
fR|S,2(r|s, θ)f2(θ )dθ. (415)

Since 2 is, without loss of generality, assumed uniformly
distributed, fR|S(r|s) is rewritten as

fR|S(r|s) =
1
2π

∫ 2π

0
fR|S,2(r|s, θ)dθ. (416)

Thus, the joint PDF of R and S is written as fR,S(r, s) =
fR|S(r|s)fS(s), where fS(s) is given by (269). In the receiver,
the optimal detector without knowledge of the fading phase
2 observes the received vector R and produces the index
of the most probable transmitted modulation symbol that
maximizes fR,S(r, s), that is

m̂ = argmax
1≤m≤M

fR,S(R, sm), (417a)

= argmax
1≤m≤M

fR|S(R|sm) Pr{S = sm}, (417b)

= argmax
1≤m≤M

pm
2π

∫ 2π

0

2
πL

‖r− He2Fsm‖
ν−L
6

0(ν) det(6) λν+L0

× Kν−L
( 2
λ0

∥∥r− He2Fsm∥∥6)dθ, (417c)

which means that if the transmitted symbol m and the opti-
mally detected symbol m̂ are not the same, a decision error
occurs with the probability Pr{e}=Pr{m̂ 6= m}. We can even
simplify (417c) more as shown in the following.
Theorem 71: For the complex vector channel introduced

in (267), the non-coherent MAP detection rule is given by

m̂ = argmax
1≤m≤M

pm exp
(1
2
H2sHmF

H6−1Fsm
)

×I0
(
H
∣∣sHmFH6−1FR∣∣) , (418)

where I0 (·) is the modified Bessel function of the
first kind of zero order [173, Eq. (8.406/3)], [174,
Eq. (03.02.02.0001.01)].

Proof: In the mathematical channel model given by
(267), the vector R received during the transmission of the
modulation symbol sm will have a multivariate CESMcLeish
distribution, i.e., R ∼ CML

ν

(
He2sm,6

)
. Using both (216)

and (217), we decompose the vector R given the symbol S as
follows

(R|S) = He2Fsm +
√
GD (N1 + N2), (419)

where 6 = DDH , N1 ∼ N L(0, I), N2 ∼ N L(0, I) and
G ∼ G(ν, 1). Further, N1 and N2 are mutually independent.
Accordingly, the PDF of R conditioned on both S and G,
i.e., fR|S,G(z|s, g) can be written as

fR|S,G(r|s, g) =
1
2π

∫ 2π

0

exp
(
−

1
2g‖r− He

θFs‖26
)

(2π )LgL det(6)
dθ,

with the aid of which the conditional PDF fR|S(R|s) is ob-
tained by fR|S(R|s)=

∫
∞

0 fR|S,G(R|s, g) fG(g) dg, where fG(g)
is the PDF of G∼G(ν, 1), and given in (84). Upon substitut-
ing fR|S(R|sm) into (276), the rule is rewritten as

m̂
(a)
= argmax

1≤m≤M
pm

∫
∞

0
fR|S,G(R|sm, g)fG(g) dg, (420a)

(b)
= argmax

1≤m≤M
pmfR|S,G(R|sm,E[G]), (420b)

where the following steps are used. In step (a), we observe
that (281) is being averaged by the PDF fG(g), and notice that
fG(g)≥ 0 for all g ∈ R+, which simplifies (282a) to (282b)
with E[G] = 1. In step (b), we insert (281) into (282b) and
drop all the positive constant terms. Then, we obtain

m̂ = argmax
1≤m≤M

pm
2π

∫ 2π

0
exp

(
−
1
2

∥∥R− HeθFsm∥∥26)dθ, (421)
where ‖R− HeθFsm‖

2
6 can be decomposed as∥∥R− HeθFsm∥∥26 = H2sHmF

H6−1Fsm
−2H<

{
e−θ sHmF

H6−1FR
}
+ RH6−1R. (422)

Putting (422) into (421) and ignoring the termRH6−1R since
not depending on the modulation index m yields

m̂ = argmax
1≤m≤M

pm
2π

exp
(1
2
H2sHmF

H6−1Fsm
)

×

∫ 2π

0
exp

(
H
∣∣sHmFH6−1FR∣∣ cos(φ − θ )) dθ, (423)

where φ denotes the phase of sHmF
H6−1FR. Notice that

the integration in (423) is certainly a periodic function of
φ with period 2π , and thus φ has no effect on the result.
Utilizing the equality I0 (x)=

1
2π

∫ 2π
0 exp

(
x cos(θ)

)
dθ [173,

Eq. (8.431/3)], [174, Eq. (03.02.07.0001.01)], we readily
obtain (418), which proves Theorem 71.

Note that the decision rule given in (418) cannot be made
simpler. However, in the case of equiprobable modulation
symbols, the non-coherent ML rule is given in the following.
Theorem 72: For the complex vector channel introduced

in (267), the non-coherent ML detection rule is given by

m̂ = argmax
1≤m≤M

exp
(1
2
H2sHmF

H6−1Fsm
)

×I0
(
H
∣∣sHmFH6−1FR∣∣) . (424)
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Proof: The proof is obvious using Theorem 71.
In order to avoid non-zero cross correlation between chan-

nels, we should choose the precoding matrix filter F to max-
imize the power of the received signal. Then, referring to
the mathematical model given by (267), the precoding matrix
filter F meets 6= N0

2 FFH, and the received vector equalized
by F before being fed to the optimal detection is given by

Rnc = F−1R, (425a)

= F−1
(
He2FS+ Z

)
, (425b)

≡ He2S+ F−1Z, (425c)

= He2S+ Znc, (425d)

where Z∼CML
ν (0,6) whose PDF is already given by (268),

and Znc ∼ CML
ν (0,

N0
2 I) follows the PDF obtained with the

aid of both Theorem 42 and the special case (200), that is

fZc (z) =
2
πL

∥∥z∥∥ν−L
0(ν)3ν+L0

Kν−L
( 2
30

∥∥z∥∥) (426)

with the component deviation factor30=
√
N0/ν (i.e., N0/ν

variance per each CCS Laplacian noise component). Further,
the equalization, which is presented above in (425), simplifies
the complex correlated AWMN vector channel the uncorre-
lated complex AWMN vector channels, whose mathematical
model is typically given by

Rnc = He2S+ Znc. (427)

where the knowledge of 2 is as mentioned above not avail-
able at the receiver. The power of the modulation symbol m,
which is denoted by Em, is given by Em=‖sm‖2= sHm sm for
all 1≤m≤M . Thus, we write the average power of S as

ES =
M∑
m=1

Pr{S = sm}Em =
M∑
m=1

pmEm. (428)

Therefore, considering the all modulation symbols, the total
SNR is written as

γ =
H2ES
N0
=

M∑
m=1

pmγm, (429)

where γm is the instantaneous SNR for the transmission of
the modulation symbol m and written as γm = H2Em/N0.
In addition, note that, during each modulation symbol, the re-
ceived vector Rc statistically depends on both S and 2 with
the conditional PDF fRnc|S,2(r|s, θ), that is

fRnc|S,2(r|s, θ) =
2
πL

∥∥r− He2s∥∥ν−L
0(ν)3ν+L0

×Kν−L
( 2
30

∥∥r− He2s∥∥). (430)

Accordingly and correspondingly, the non-coherent MAP de-
cision rule is obtained for the uncorrelated complex AWMN
vector channels in the following.

Theorem 73: For complex uncorrelated AWMN vector
channels, defined in (427), the non-coherent MAP rule is
given by

m̂ = argmax
1≤m≤M

pm exp
(
γm
)
I0

(
2
H
N0

∣∣sHmRnc∣∣) , (431a)

(a)
= argmax

1≤m≤M
pmγm I0

(
2
H
N0

∣∣sHmRnc∣∣) , (431b)

(b)
= argmax

1≤m≤M
2 pmγm

H
N0

∣∣sHmRnc∣∣, (431c)

= argmax
1≤m≤M

pmγm
∣∣sHmRnc∣∣, (431d)

= argmax
1≤m≤M

pmγmRm, (431e)

where the decision variable Rm=
∣∣sHmRnc∣∣, 1≤m≤M.

Proof: It is obvious to obtain (431a) by using
Theorem 71 and then selecting both 6 = N0

2 I and F = I.
Subsequently, the following steps are performed. In step (a)
of (431), The fact that exp(x) is monotonically increasing
simplifies (431a) to (431b). In step (b), we notice that I0(x)
is also a monotonically increasing function for all x ∈ R+.
Therefore, we can reduce (431b) to (431c). Eventually,
ignoring the constant terms 2, H and N0 and denoting
Rm =

∣∣sHmRnc∣∣, we obtain (431e), which completes the proof
of Theorem 73.
From Theorem 73 above, we conclude that a non-coherent

optimal detection correlates Rnc with all modulation symbols
{s1, s2, . . . , sM } and chooses the one that yields themaximum
envelope. However, the probabilities of the modulation sym-
bolsmust be available. Otherwise, theMAPdetection reduces
to the ML detection given in the following theorem.
Theorem 74: For complex uncorrelated AWMN vector

channels, defined in (427), the non-coherent ML rule is given
by

m̂ = argmax
1≤m≤M

exp
(
γm
)
I0

(
2
H
N0

∣∣sHmRnc∣∣) , (432a)

= argmax
1≤m≤M

γm I0

(
2
H
N0

∣∣sHmRnc∣∣) , (432b)

= argmax
1≤m≤M

γm
∣∣sHmRnc∣∣, (432c)

= argmax
1≤m≤M

γmRm, (432d)

Proof: The proof is obvious using Theorem 72 and
following the same steps in the proof of Theorem 73.

Note that the non-coherent MAP and ML decision rules,
given in (431) and (432), respectively, cannot be made much
much simpler. However, in case of that the modulation sym-
bols are equiprobable and have equal-energy, we can ignore
the scales pm and γm, and the ML detection rule becomes

m̂ = argmax
1≤m≤M

∣∣sHmRnc∣∣, (433a)

= argmax
1≤m≤M

Rm. (433b)

VOLUME 8, 2020 19183



F. Yilmaz: McLeish Distribution: Performance of Digital Communications Over AWMN Channels

e: CONDITIONAL SER OF NON-COHERENT ORTHOGONAL
SIGNALLING
To improve the performance of non-coherent receivers [2], [3]
(i.e., to increase the separability of the modulation symbols
while using non-coherent detection rules), we assume that the
modulation symbols s1, s2, . . ., sM are orthogonal with each
other, i.e.,

sHm sn =

{
0 if m 6= n,
Em otherwise.

(434)

As we observe in both (431e) and (432d), a non-coherent
MAP /ML detection computes and compares the scaled ver-
sions of Rm = |sHmRnc| for all 1 ≤ m ≤M , and subsequently
chooses the modulation symbol that produces the maximum
envelope. With the aid of Theorem 42, we know that Rm
follows a CCSMcLeish distribution, and thus its inphase and
quadrature components followMcLeish distribution. In more
details, if the transmitted symbol is not the modulation sym-
bol m (i.e., S 6=sm), we notice

<

{
sHmRnc

}
∼Mν(0,EmN0/2), (435a)

=

{
sHmRnc

}
∼Mν(0,EmN0/2). (435b)

Moreover, if the transmitted symbol is themodulation symbol
m (i.e., S=sm), we notice

<

{
sHmRnc

}
∼Mν(HEm cos(2),EmN0/2), (436a)

=

{
sHmRnc

}
∼Mν(HEm sin(2),EmN0/2). (436b)

It is accordingly worth mentioning that, in both (435) and
(436), the components <

{
sHmRnc

}
and =

{
sHmRnc

}
are uncor-

related but statistically not independent.
Theorem 75: When S 6= sm, the envelope Rm = |sHmRnc|

conditioned on the impulsive noise effects G follows Rayleigh
distribution with the PDF given by

fRm|G(r|g) =
2r

gEmN0
exp

(
−

r2

gEmN0

)
, (437)

defined over r ∈ R+. Further, the envelope Rm = |sHmRnc|
has a non-negative random distribution, which is modeled by
K-distribution, whose PDF is given by

fRm (r) =
4rν

0(ν)3ν+1m
Kν−1

(
2r
3m

)
, (438)

defined in r ∈ R+, where the component deviation factor is
given by 3m=

√
Em30=

√
EmN0/ν (i.e., 30=

√
N0/ν).

Proof: Defining Im = <{sHmRnc} and Qm = ={s
H
mRnc},

we notice that Im andQm are uncorrelated but statistically not
independent. Further, with the aid of Theorem 10, we have
Im=
√
GXm and Qm=

√
GYm. Thus, we can write

Rm =
√
G
√
X2
m + Y 2

m =
√
GVm, (439)

with the distributions G∼ G(ν, 1), Xm ∼N (0,EmN0/2) and
Ym∼N (0,EmN0/2). Using [3, Eq. (2.3-42)], the component
Vm=

√
X2
m + Y 2

m follows a Rayleigh distribution whose PDF

is given by [3, Eq. (2.3-43)]. Thus, the PDF of Rm conditioned
on G is written as (437), which completes the first step of the
proof. We obtain the PDF of Rm as

fRm (r) =
∫
∞

0
fRm|G(r|g)fG(g)dg, (440a)

=

∫
∞

0

2r
gEmN0

exp
(
−

r2

gEmN0

)
fG(g)dg, (440b)

where the PDF of G∼G(ν, 1) is given in (84). Finally, using
[173, Eq. (3.478/4)] in (440b) yields (438), which completes
the proof of Theorem 75.
Theorem 76: When S = sm, the envelope Rm = |sHmRnc|

conditioned on the impulsive noise effects G follows Ricean
distribution with the PDF given by

fRm|G(r|g) =
2r

gEmN0
I0
( 2κmr
gEmN0

)
exp

(
−
r2 + κ2m
gEmN0

)
, (441)

where the Ricean parameter κm=HEm. Furthermore, the en-
velope Rm = |sHmRnc| has a non-negative distribution whose
PDF is

fRm (r)=
r
π

∫ 2π

0

qm(r, θ)ν−1

0(ν)3ν+1
Kν−1

(
2
3
qm(r, θ)

)
dθ, (442)

defined over r ∈ R+, where the deviation factor is given by
3=
√
Em30, and qm(r, θ) is defined as

qm(r, θ) =
√
r2 + 2 rκm cos(θ)+ κ2m. (443)

Proof: When S = sm, the envelope Rm = |sHmRnc| is
also decomposed as (439) by following the same steps in the
proof of Theorem 75. Referring to both (436a) and (436b), we
notice that G∼ G(ν, 1), and Xm ∼N (HEm cos(2),EmN0/2)
with Ym ∼ N (HEm sin(2),EmN0/2). Further, utilizing [3,
Eq. (2.3-55)], we notice that Vm follows the Ricean distri-
bution with the PDF given by [3, Eq. (2.3-56)]. Therefore,
the PDF of Rm conditioned on G is written as (441) in
which we obtain κ2 = E[Im|G]2 + E[Qm|G]2 = H2E2

m in
accordance with Theorem 10. Herewith, by means of using
[173, Eq. (3.339)], we can write

fRm|G(r|g) =
2r

gπEmN0

∫ π

0
exp

(
−
q2m(r, θ)
gEmN0

)
dθ, (444)

where qm(r, θ) is defined above in (443). The PDF of Rm can
be obtained by fRm (r)=

∫
∞

0 fRm|G(r|g)fG(g)dg, that is

fRm (r) =
2r

gπEmN0

∫ π

0

∫
∞

0
exp

(
−
q2m(r, θ)
gEmN0

)
× fG(g)dgdθ, (445)

where fG(g) is given in (84). Finally, using [173,
Eq. (3.478/4)], we can readily rewrite the PDF of Rm as in
(442), which completes the proof of Theorem 76.
Let us now consider the conditional SER of non-coherent

MAP detection for orthogonalmodulations.We canwrite The
probability of erroneous decision as

Pr
{
e
∣∣H} = 1− Pr

{
c
∣∣H}, (446)
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where Pr
{
c
∣∣H} is the the probability of correct decision, and

can be readily rewritten as

Pr
{
c
∣∣H} = M∑

m=1

Pr
{
c
∣∣H , sm}Pr{S = sm

}
, (447)

where Pr
{
c
∣∣H , sm} denotes the probability of correct de-

cision. Referring to Theorem 73, when the modulation
symbol m is transmitted, a correct decision is made iff
pnγnRn < pmγmRm for all 1≤ n≤M and m 6= n. Therefore,
the probability of correct decision can be readily written as

Pr
{
c
∣∣H , sm} = Pr

{⋂
n6=m

pnγnRn < pmγmγm
∣∣∣H , sm},

where the envelopes R1,R2, . . . ,RM are certainly uncorre-
lated as a result of that modulation symbols are orthogonal
(i.e., sTmsn= 0 for all m 6= n). They will however be entirely
independent when conditioned on impulsive noise effects
(i.e., conditioned on G). Then, we rewrite Pr{c |H , sm} as

Pr
{
c
∣∣H , sm} = ∫ ∞

0
Pr
{
c
∣∣H , sm, g}fG(g)dg, (448)

where Pr
{
c
∣∣H , sm, g} is given by

Pr
{
c
∣∣H , sm, g} = M∏

n6=m

Pr
{
Rn <

pmEm
pnEn

Rm

}
, (449)

where Rm follows a Ricean distribution whose PDF is given
by (441). For 1 ≤ n 6= m ≤M , Rn has Rayleigh distribution
whose PDF is given by (437). From this point on, we rewrite

Pr
{
c
∣∣H , sm, g} = E

[ M∏
n6=m

FRn
(pmEm
pnEn

Rm
)]
, (450)

where FRn (r) is the CDFs of Vn for all 1≤ n 6=m≤M . With
the aid of the equations from (446) to (450), the conditional
SER of non-coherent orthogonal signaling is given in the
following.
Theorem 77: For the MAP decision rule given by

Theorem 73, the conditional SER of non-coherent orthogo-
nal signaling is given by

Pr{e |H} =
1
0(ν)

2M−1∑
k=1

M∑
m=1

(−1)1+
∑M

n=1 knpm
1+8k,m

×G2,0
0,2

[
ν8k,mγm

1+8k,m

∣∣∣∣ 0, ν
]
δkm,0, (451a)

=
1
0(ν)

2M−1∑
k=1

M∑
m=1

(−1)1+
∑M

n=1 knpm
(1+8k,m)3ν0

×

(
28k,mγm

1+8k,m

) ν
2

×Kν

(
2
30

√
28k,mγm

1+8k,m

)
δkm,0, (451b)

where the indexing kn is defined by kn=b2k/2nc − 2bk/2nc.
Further, 8k,m is the normalized SNR for the modulation
symbol m and defined by

8k,m =

M∑
n=1

(
pm
pn

)2(
γm

γn

)3
kn, (452)

Further, for all 1 ≤ m ≤ M, pm is the probability of the
modulation symbol m, and γm is the instantaneous SNR for
the transmission of the modulation symbol m.

Proof: Note that, with the aid of [138, Eq. (4.24)], (449)
can be shown to be (450), in which the expectation is achieved
with respect to the distribution Vm, and where FVn is the CDF
of the distribution Vn and easily found as [3, Eq. (2.3-50)],

FRn (r) = 1− exp
(
−

r2

gEnN0

)
, r ∈ R+. (453)

For non-zero distinct x1, x2, . . . , xN , we can show that

N∏
n6=m

(1+ xn) = 1+
2N−1∑
k=1

N∏
n=1

xknn δkm,0, (454)

where kn = b2k/2nc − 2bk/2nc, and therein bxc is the floor
function that returns the greatest integer less than or equal
to x. Further, δx,y is the Kronecker’s delta function that re-
turns 1 iff x=y and 0 otherwise. Putting (453) into (450) and
using (454), we can rewrite (450) as follows

Pr
{
c
∣∣H , sm, g} = 1+

2M−1∑
k=1

(−1)
∑M

n=1 kn

×E
[
exp

(
−
8k,m

gE0N0
R2m

)]
δkm,0, (455)

where 8k,m is defined in (452). As mentioned before, Rm
follows a Ricean distribution whose PDF is given by

fRm (r) =
2v

gEmN0
I0
( 2κmr
gEmN0

)
exp

(
−
r2 + κ2m
gEmN0

)
, (456)

where κm is a constant defined as κm = HEm. Further, note
that E[exp(−sR2m)], where s=8k,m/(gE0N0), is specifically
required in (455). Thanks to

∫
∞

0 x exp(−x2/a)I0 (bx) dx =
a exp(ab2)/2 [173, Eq. (2.15.20/8)], we derive

E
[
exp

(
−sR2m

)]
=

exp
(
−

sκ2m
1+sgEmN0

)
1+ sgEmN0

. (457)

Eventually, inserting both (455) and (457) into (448) yields

Pr
{
c
∣∣H , sm} = 1+

1
0(ν)

2M−1∑
k=1

(−1)
∑M

n=1 kn

1+8k,m

×M1/G

( 8k,mγm

1+8k,m

)
δkm,0. (458)

where M1/G(s), s ∈ R+ is the reciprocal MGF and defined
as M1/G(s) =

∫
∞

0 exp(−s/g)fG(g)dg, in which putting (84)
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and using both [139, Eqs. (8.4.3/1) and (8.4.3/2)] within [140,
Eq. (2.8.4)], we obtain

M1/G(s) =
1
0(ν)

G2,0
0,2

[
sν

∣∣∣∣ 0, ν
]
. (459)

Putting both (459) and (458) into (447) and using (446),
we obtain (451a), in which using [139, Eqs. (8.2.2/15) and
(8.4.23/1)] results in (451b), which proves Theorem 77.
Theorem 78: For the ML decision rule given by

Theorem 74, the conditional SER of non-coherent orthogonal
signaling is given by

Pr
{
e
∣∣H} = 1

M0(ν)

2M−1∑
k=1

M∑
m=1

(−1)1+
∑M

n=1 kn

1+8k,m

×G2,0
0,2

[
ν8k,mγm

1+8k,m

∣∣∣∣ 0, ν
]
δkm,0, (460a)

=
1

M0(ν)

2M−1∑
k=1

M∑
m=1

(−1)1+
∑M

n=1 kn

(1+8k,m)3ν0

×

(
28k,mγm

1+8k,m

)ν/2
×Kν

(
2
30

√
28k,mγm

1+8k,m

)
δkm,0, (460b)

where 8k,m=
∑M

n=1(γm/γn)
3kn.

Proof: The proof is obvious setting pm = 1/M for
1≤m≤M in Theorem 77.
Theorem 79: When the modulation symbols are equiprob-

able and have equal-energy, and referring to (433), the condi-
tional SER of non-coherent orthogonal signaling is given by

Pr
{
e
∣∣H} = 1

0(ν)

M−1∑
k=1

(−1)1+k

1+ k

(
M − 1
k

)
×G2,0

0,2

[
νkγ
1+ k

∣∣∣∣ 0, ν
]
, (461a)

=
2
0(ν)

M−1∑
k=1

(−1)1+k

(1+ k)3ν0

(
M − 1
k

)
×

(
2kγ
1+ k

) ν
2

Kν

(
2
30

√
2kγ
1+ k

)
, (461b)

where γ =H2ES/N0 denotes the instanetaneous SNR.
Proof: In case of that the modulation symbols sm,

1 ≤ m ≤ M are equiprobable and have equal energy (i.e.,
when Em = ES and Pr{S = sm} = 1/M for all 1 ≤ m ≤ M ),
(449) can be shown to be

Pr
{
c
∣∣H , sm, g} = E

[
FRn (Rm)

M−1], (462)

where substituting (453) and then utilizing binomial expan-
sion [172, Eq. (3.1.1)] results in

Pr
{
c
∣∣H , sm, g} = 1+

M−1∑
k=1

(−1)k
(
M − 1
k

)
×E

[
exp

(
−

kR2m
gESN0

)]
, (463)

where the expectation is achieved with respect to the distribu-
tion Rm and can be readily derived by setting s=k/g/ES/N0
in (457). From this point, we derive the closed-form expres-
sion of Pr{e|H , sm}, from which we can obtain Pr{e|H , sm}=∫
∞

0 Pr{e|H , sm, g}fG(g) dg. Accordingly, the proof is obvious
performing almost the same steps in the proof of Theorem 77.

Theorem 80: The conditional BER of orthogonal signal-
ing, including BFSK, with non-coherent ML detection, where
the binary modulation symbols are equiprobable and have
equal-energy, is given by

Pr
{
e
∣∣H} = 1

0(ν)
G2,0
0,2

[
νkγ
1+ k

∣∣∣∣ 0, ν
]
, (464)

=
1
0(ν)

(
γ

32
0

)ν
2

Kν

(
2

√
γ

32
0

)
. (465)

Proof: The proof is obvious setting M = 2 in Theo-
rem 77 and performing simple algebraic manipulations.
Let us now consider the special cases in order to check

the numerical validity of the results presented above. It is
worth noticing that, when the normality gets close to zero
(i.e., while ν→0+), the complex AWMN channel turns into
the noiseless channel and accordingly the conditional SER
approaches to zero (i.e., Pr{e |H}→0+) as expected. Further,
in case of ν=1, we simplify (461) to

Pr
{
e
∣∣H} = M−1∑

k=1

(−1)1+k

1+ k

(
M − 1
k

)
×G2,0

0,2

[
kγ

1+ k

∣∣∣∣ 0, 1
]
, (466a)

= 2
M−1∑
k=1

(−1)1+k

1+ k

(
M − 1
k

)

×

√
kγ

1+ k
K1

(
2

√
kγ

1+ k

)
, (466b)

which is the conditional SER of non-coherent signaling over
complex AWLN channels. Setting M = 2 in (466) results in
the error probability for binary orthogonal signaling, includ-
ing binary orthogonal FSK, with non-coherent detection in
complex AWLN channels, that is

Pr
{
e
∣∣H} = √γ /2K1

(√
2γ
)
. (467)

When the normality factor ν gets larger (i.e., ν→∞), the ad-
ditive white noise turns into AWGN noise, and accordingly
utilizing [139, Eqs. (8.2.2/12) and (8.4.3/1)] within

lim
ν→∞

1
0(ν)

G2,0
0,2

[
νkγ
1+ k

∣∣∣∣ 0, ν
]
= exp

(
−

kγ
1+ k

)
, (468)

the symbol error probability (461) readily simplifies more to

Pr
{
e
∣∣H} = M−1∑

k=1

(−1)1+k

1+ k

(
M − 1
k

)
exp

(
−

kγ
1+ k

)
,

(469)

19186 VOLUME 8, 2020



F. Yilmaz: McLeish Distribution: Performance of Digital Communications Over AWMN Channels

FIGURE 16. The SER of non-coherent orthogonal signaling over AWMN channels.

which is in perfect agreement with the conditional SER per-
formance of non-coherent ML detection of equal-power or-
thogonal symbols [1, Eq. (8.67)], [3, Eq. (4.5-43)]. For
binary orthogonal signaling, including binary orthogonal
FSKwith non-coherent detection over complexAWGN chan-
nels, (469) reduces to [3, Eq. (4.5-45)], [1, Eq. (8.69)],
that is

Pr
{
e
∣∣H} = 1

2
exp

(
−
γ

2

)
. (470)

For numerical accuracy and convenience, in Fig. 16, which is
given at the top of the next page, we give the conditional SER
of non-coherent orthogonal signaling over complex AWMN
channels.

f: CONDITIONAL SER OF NON-COHERENT DIFFERENTIAL PSK
The other type of non-coherent signaling is the DPSK (i.e.,
the differentially encoded PSK) in which the information is
encoded within the phase transition between two consecutive
symbols and its demodulation / detection does not require
the estimation of the carrier phase. In accordance with the
channel model given by (267), the two consecutive received
signal vectors can be readily written as

R1 = He2FS1 + Z1, (471)

R2 = He2FS2 + Z2, (472)

where Z1 ∼ CML
ν (0,6) and Z2 ∼ CML

ν (0,6) are uncorre-
lated but certainly not independent, and S1 and S2 are two
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consecutive symbols. Accordingly, the vector representation
of the lowpass equivalent of the received signal over a period
of two symbol intervals is formally written as[

R1

R2

]
︸ ︷︷ ︸
Rs

= He2
[
F 0
0 F

]
︸ ︷︷ ︸

Fs

[
S1
S2

]
︸︷︷ ︸
S

+

[
Z1
Z2

]
︸ ︷︷ ︸
Zs

, (473)

where Zs∼CM2L
ν (0,6s) is a CES multivariate McLeish dis-

tribution whose the covariance matrix can be readily obtained
as

6s =

[
6 0
0 6

]
, (474)

since the inphase and quadrature vectors of Zs are mutually
uncorrelated. Moreover, in (473), S denotes the modulation
symbol vector randomly chosen from the set of possible
fixed modulation symbols {s1, s2, . . . , sM }. As such, the mth
message over a period of two modulation symbols can be
written as

sm =
[

s exp(φ6)
s exp( (φm + φ6))

]
, 1≤m≤M (475)

where s is such a signal that the power of the mth message,
i.e., Em = sHm sm is derived as Em = 2sH s. Accordingly,
the average power of signaling ES is given by

ES =
M∑
m=1

Em Pr{S = sm} = 2sH s. (476)

Further, in (475), φ6 is the random phase due to non-coherent
detection, and φm = 2π (m − 1)/M is the phase transition
that encodes the information into the mth message. Since
the information is entirely encoded in the phase transition
between two consecutive symbols, the detection has to be
carried over a period of two consecutive symbols. Referring
to the slow variance uncertainty, explained in Section IV-A,
the variance fluctuation during two consecutive symbols is
therefore assumed approximately constant. With respect to
(473), the non-coherent MAP receiver is given in the follow-
ing theorem.
Theorem 81: For the complex vector channel given

in (473), the non-coherent MAP detection rule of DPSK is
given by

m̂ = argmax
1≤m≤M

pmI0
(
H
∣∣sHFH6−1FR1

× exp(−φm)sHFH6−1FR2
∣∣). (477)

Proof: Note that theMAP detection of DPSK uses (418)
for optimal detection. Accordingly, we have

m̂ = argmax
1≤m≤M

pm exp
(1
2
H2sHmF

H
s 6
−1
s Fssm

)
× I0

(
H
∣∣sHmFHs 6−1s FsRs

∣∣) , (478)

which can be rewritten in terms of R1, R2, F, and 6, that is

m̂ = argmax
1≤m≤M

pm exp
(
H2sHFH6−1Fs

)
× I0

(
H
∣∣exp(−φ6)sHFH6−1FR1

+ exp(− (φ6 + φm))sHFH6−1FR2
∣∣), (479)

where exp(−φ6) can be ignored due to
∣∣e−φ6x∣∣ = |x|.

In addition, since the term exp
(
H2sHFH6−1Fs

)
in (479)

is independent of index m, we can readily ignore it, which
results in (477) and completes the proof of Theorem 81.
Theorem 82: For the complex vector channel given in

(473), the non-coherent ML detection rule of DPSK is given
by

m̂ = argmax
1≤m≤M

I0
(
H
∣∣sHFH6−1FR1

+ exp(−φm)sHFH6−1FR2
∣∣). (480)

Proof: The proof is obvious using Theorem 81.
In order to avoid non-zero cross correlation between chan-

nels, we can equalize the channel by the precoding filter
matrix Fs whose diagonal matrix F ∈ C2L×2L supports
6= N0

2 FFH for optimal reception, and then we can obtain

Rnc = F−1s Rs, (481a)

= F−1s
(
He2FsS+ Zs

)
, (481b)

≡ He2S+ F−1s Zs, (481c)

= He2S+ Znc. (481d)

where Rnc = [RT1,nc R
T
2,nc]

T is the received random vector
in which R1,nc = F−1R1 and R2,nc = F−1R2 are two ran-
dom vectors non-coherently recovered over a period of two
modulation symbols. Moreover, Znc ∼ CM2L

ν (0, N0
2 I) such

that Znc = [ZT1,ncZ
T
2,nc]

T , where Z1,nc ∼ CML
ν (0,

N0
2 I) and

Z2,nc∼CML
ν (0,

N0
2 I). Consequently, the non-coherent MAP

receiver is given in the following theorem.
Theorem 83: For complex uncorrelated AWMN vector

channels, defined in (481), the non-coherent MAP rule is
given by

m̂ = argmax
1≤m≤M

pm cos(8− φm), (482)

where the decision variable 8 is defined as the phase differ-
ence of the received signal in two adjacent intervals, that is

8 = arg
(
sHR2,nc

)
− arg

(
sHR1,nc

)
, (483)

where arg(z) gives the argument of the complex number z
[174, Eq. (12.02.02.0001.01)].

Proof: Using Theorem 82 and then selecting both
6= N0

2 I and F=I, we have

m̂ = argmax
1≤m≤M

pmI0

(
2H
N0

∣∣∣sHR1,nc + e−φm sHR2,nc

∣∣∣).
(484)

Noticing that I0(x) is a monotonic increasing function for all
x∈R+, we have argmaxx I0

(
f (x)

)
= argmaxx f

2(x), for any
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monotonic increasing function f : R→ R. In consequence,
ignoring 2H/N0, we can reduce (484), that is

m̂ = argmax
1≤m≤M

pm
∣∣sHR1,nc + exp(−φm)sHR2,nc

∣∣2. (485)

Using |x + y|2=|x|2+ |y|2+ 2<{x∗y} and noticing that both
|sHR1,nc|

2 and |sHR2,nc|
2 are independent of indexm, we can

simplify (485) into

m̂ = argmax
1≤m≤M

pm<
{
C∗1C2 exp(−φm)

}
. (486a)

= argmax
1≤m≤M

pm<
{
|C1| exp(− arg(C1))

× |C2| exp( arg(C2)) exp(−φm)
}
, (486b)

where C1 = sHR1,nc and C2 = sHR2,nc are two com-
plex envelopes recovered from two consecutive symbols,
respectively, such that C1 ∼ CMν(Heφ6 ,ESN0/4) and
C2∼CMν(He (φ6+φm),ESN0/4). Further, arg(z) is the argu-
ment of the complex number z, such that z=|z| e arg(z) [174,
Eq. (12.02.16.0029.01)]. In addition, worth noting that |C1|

and |C2| are independent of index m. Accordingly, (486b) is
reformulated as

m̂ = argmax
1≤m≤M

pm<
{
e (arg(C2)−arg(C1)−φm)

}
, (487a)

= argmax
1≤m≤M

pm<
{
e (8−φm)

}
, (487b)

where 8 denotes the phase difference of the received signal
in two adjacent intervals, simply defined as8=arg(C2C∗1 )=
arg(C2)− arg(C1) and given by (483). Using Euler’s formula
[172, Eq. (4.3.2)], (486b) readily simplifies to (477), which
completes the proof of Theorem 83.
Theorem 84: For complex uncorrelated AWMN vector

channels, defined in (481), the non-coherent ML rule is given
by

m̂ = argmax
1≤m≤M

cos(8− φm). (488)

Proof: The proof is obvious using Theorem 83.
As observed in both Theorem 83 and Theorem 82, the re-

ceiver computes this phase difference 8 by using (483) and
compares it with all φm = 2π (m − 1)/M , 1 ≤ m ≤ M and
selects the m for which φm maximizes cos(8 − φm), thus
resulting in minimum distance between 8 and φm. In the
following, we obtain the exact error probability of M-DPSK
signaling with non-coherent detection over complex AWMN
noise channels.
Theorem 85: The conditional SER of the M-DPSK signal-

ing with non-coherent ML detection is given by

Pr{e |H} =
2

π0(ν)λν0

∫ π− π
M

0

(
2γ sin2( πM )

1+ cos( πM ) cos(θ)

)ν
2

×Kν

(
2
λ0

√
2γ sin2( πM )

1+ cos( πM ) cos(θ)

)
dθ, (489)

where γ =H2ES/N0 is the instantaneous SNR.

Proof: According to (483), the decision variable 8 is
simply defined as the phase difference between C1=sHR1,nc
and C2 = sHR2,nc, where C1 ∼ CMν(Heφ6 ,ESN0/4) and
C2 ∼ CMν(He (φ6+φm),ESN0/4) are such two uncorrelated
but not independent complex McLeish distributions that, us-
ing Theorem 10, their decomposition is written as

C1 =
1
2
HES eφ6 + G(X1 + Y1) (490)

C2 =
1
2
HES e (φ6+φm) + G(X2 + Y2), (491)

where X1 ∼ N (0,ESN0/4), Y1 ∼ N (0,ESN0/4), X2 ∼
N (0,ESN0/4) and Y2 ∼ N (0,ESN0/4) are mutually i.i.d
Gaussian distributions. Further, G∼G(ν, 1) follows the PDF
given in (84). When conditioned onG, both C1 and C2 follow
Gaussian distributions, and hence, 8 = arg(C2C∗1 ) condi-
tioned onG is observed as the phase between two independent
and identically distributed complex Gaussian distributions.
Using [221, Eq. (5)], we have

Pr
{
−φ<8<φ

∣∣G}=1− 1
2π

∫ π−φ

φ−π

e−
γ
G h(φ,θ)dθ, (492)

with h(φ, θ)= sin2(φ)/(1+ cos(φ) cos(θ)), where γ denotes
the instantaneous SNR given by γ =H2ES/N0. When sm is
transmitted, a correct decision is made iff φm − π/M <8<

φm + π/M since arg(sms∗m±1) = π/M . With the circularity
of complex AWMN noise, we notice that Pr{φm − π/M <

8 < φm + π/M} and Pr{−π/M < 8 < π/M} are the
same. Hence, we can write the probability of making a correct
decision as

Pr
{
c
∣∣H , sm,G} = Pr

{
−π/M < 8 < π/M

}
. (493)

Using Pr{e |H , sm,G} = 1 − Pr{c |H , sm,G} and (492) and
making allowance for the symmetry between the integration
from −(π − π/M ) to zero and the integration from zero to
(π − π/M ), we have

Pr
{
e
∣∣H , sm,G} = 1−

1
2π

∫ π−φ

−(π−φ)
e−

γ
G h(π/M ,θ )dθ, (494)

Noticing Pr
{
e
∣∣H , sm,G} = Pr

{
e
∣∣H , sn,G} for all m 6= n,

we can obtain the probability Pr
{
e
∣∣H ,G} as follows

Pr{e|H ,G} =
M∑
m=1

Pr{e|H , sm,G}Pr{sm}, (495a)

= Pr{e|H , sm,G}. (495b)

Hence, the SER Pr{e|H} of non-coherent M-DPSK sig-
naling over complex AWMN channels can be written as
Pr{e|H} =

∫
∞

0 Pr{e|H , g}fG(g)dg, where substituting both
(84) and (495) results in Pr{e|H} = 1

π

∫ π−π/M
0 IM (γ, θ) dθ ,

where IM (γ, θ) is obtained using [173, Eq. (3.478/4)], that is

IM (γ, θ) =
2

0(ν)λν0

(
2γ hM (π/M , θ)

)ν/2
×Kν

(
2
λ0

√
2γ h(π/M , θ)

)
. (496)
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FIGURE 17. The SER of non-coherent M-DPSK modulation over AWMN channels.

Finally, using (496) in Pr{e|H} given above yields (489),
which completes the proof of Theorem 85.
Theorem 86: The conditional SER of the BDPSK signaling

with non-coherent ML detection is given by

Pr{e |H} =
1

0(ν)λν0

(
2γ
)ν
2Kν

(
2
λ0

√
2γ
)
. (497)

Proof: The proof is obvious using Theorem 85.
For numerical accuracy and analytical validity with respect

to SNR, normality and modulation levels, we show in Fig. 17
the conditional SER of non-coherent M-DPSK signaling over
complex AWMN channels, where numerical and simulation-
based results are in perfect agreement. We also therein
acknowledge that the SER performance deteriorates in high-
SNR regime while negligibly improves in low-SNR regime

when the impulsive nature of the additive noise increases
(i.e., the normality ν decreases).

VI. SUMMARY AND CONCLUSIONS
In this article, we introduce and investigate a more general
additive non-Gaussian distribution that we term as McLeish
distribution. We study the basic statistical principles behind
the laws of McLeish distribution, not only ranging from
non-Gaussian distribution to Gaussian distribution but also
starting with the univariate case and continuing through to the
multivariate case either in real domains or complex domains.
Notably, we propose the following distributions and obtain
closed-form PDF, CDF, MGF, and moment expressions for
their statistical characterization:

• McLeish distribution,
• The sum of McLeish distributions,

19190 VOLUME 8, 2020



F. Yilmaz: McLeish Distribution: Performance of Digital Communications Over AWMN Channels

• CCS /CES McLeish distribution,
• Multivariate McLeish distribution,
• Multivariate McLeish distribution with real, symmetric
and positive-definite covariance matrix,

• Multivariate CCS / CES McLeish distribution,
• Multivariate CCS / CESMcLeish distribution with com-
plex, Hermitian symmetric and positive-definite covari-
ance matrix.

As a result of these closed-form expressions, each of which is
mathematically tractable and practically (physically) under-
standable, we propose the framework of the laws of McLeish
distribution for the first time in the literature. Further, we offer
solutions to the challenges and problems caused by impul-
sive effects that lead to the heavy-tailed distribution of non-
Gaussian noise. So much so that with this framework, we can
obtain mathematically tractable results that facilitate the an-
alytical and numerical solutions of many problems in science
and engineering.

Besides, aside from the statistical laws of McLeish distri-
bution, we propose and demonstrate that the random nature of
McLeish distribution can model different impulsive noise en-
vironments commonly encountered in wireless communica-
tions. We theoretically justify the existence of McLeish noise
distribution in communication systems in case of uncertainty
due to that the additive noise distribution has impulsive effects
causing the variance of additive noise varies over time.We an-
alyze how these impulsive effects can be reasonably modeled
as uncertainty in the variance of additive noise. For the first
time in the literature, we use Allan’s variance to determine
the coherence time at which the variance of the additive
noise can be considered constant. Concerning this coherence
time, we demonstrate how to classify the additive noise chan-
nels as i) constant variance, ii) slow-variance uncertainty,
and iii) fast-variance uncertainty. Accordingly, we investigate
and prove the existence of McLeish noise distribution and
show that the thermal noise in electronic materials follows
McLeish distribution rather thanGaussian distribution. Also,
we demonstrate that MAI /MUI follows McLeish distribu-
tion rather than Laplacian distribution. To represent how
McLeish distribution can model a wide range of realistic
impulsive effects (uncertainty of noise variance), we find
out that the McLeish distribution exhibits a superior fit to
the different impulsive noise from non-Gaussian to Gaussian
distribution.

Consequently, as an outcome of modeling additive noise
as McLeish distribution, we present additive white McLeish
noise (AWMN) channels for the first time in the literature.
For coherent / non-coherent signaling over AWMN channels,
we propose analytical MAP and ML symbol decision rules
for optimum receivers and thereby obtain closed-form ex-
pressions for both BER of binary modulation schemes and
SER of various M-ary modulation schemes. We conclude
and identify how the non-Gaussian nature of additive noise
impacts on the performance of communications systems by
using McLeish distribution. Furthermore, we verify the va-
lidity and accuracy of our novel BER / SER expressions by

some selected numerical examples and some computer-based
simulations.
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