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ABSTRACT Day-ahead electricity pricing is an important strategy for electricity providers to improve grid
stability through load scheduling. In this paper, we investigate a general framework for modelling electricity
retail pricing based on load demand and market price information. Without any a priori knowledge, we have
considered a finite time approach with dynamic system inputs. Our objective is to minimize the average
system cost and rebound peaks through energy procurement price, load scheduling and renewable energy
source (RES) integration. Initially, the energy consumption cost is calculated based on market clearing price
and scheduled load. Then, through reformulation and subsequent modification of optimization problem,
we utilize a day-ahead price information to construct individualized price profiles for each user, respectively.
To analyse the applicability of proposed pricing policy, analytical solution is obtained which is further
validated through comparison with solution obtained from genetic algorithm (GA). From results, it is
observed that proposed price policy is non-discriminatory in nature and each user obtained a fair electricity
tariff rather than a day-ahead price, which is based on load demand and consumption variation of other users.
We also show that optimization problem is sequentially solved with bounded performance guarantee and
asymptotic optimality. Finally, simulations are carried in different scenarios; aggregated load and market
price, and aggregated load, individualized load, market price and proposed price. Results reveal that our
proposed mechanism can charge the price to each user with 23.77% decrease or 5.12% increase based on
system requirements.

INDEX TERMS Demand response, optimization, non-discriminatory prices, individualized prices, smart
grid, renewable energy.

NOMENCLATURE
T total time duration
U total number of users
` set of load
k price factor
mrl must run load
dl discrete load
cl continuous load
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Emrl energy consumption of must run load
Edl energy consumption of discrete load
Ecl energy consumption of continuous load
Eus unscheduled energy consumption
Eu total energy consumption of all users
Eunsch energy consumption of unscheduled load
℘ power rating
β ON/OFF states of different loads
C electricity cost
ψ real time electricity price
C total
uti total cost of utility for selling energy

Spt electricity pricing tariff
ecu1 energy consumption of user 1
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f (t) function of time shift of all appliances
τa,` actual start time of load `
τs,` start time of load
τe,` end time of load
τsch,` scheduled time of load
τon,` ON time of load
τlot,` duty cycle of load
ϒ peak to average ratio
ϕ individualized new price signal
γ power consumption limit
ζ fitness of particles
ηPV energy conversion efficiency (%) of PV sys-

tem
EPV solar energy generated from PV system
APV area of the solar irradiance (m2)
I(r,t) solar irradiance
Ta outdoor temperature
Eg energy obtained form grid

I. INTRODUCTION
Electricity pricing mechanisms in a day-ahead market charge
a fixed price to residential customers for specific time peri-
ods. The objective is to keep a balance between inefficient
pricing system that charge a single price for a long time period
and complex real time systems that prevails in electricity
market [1]. The goal of dynamic pricing schemes is to make
more efficient utilization of generation capacity through load
scheduling, optimization and incentivising. This enables the
customers to enhance their consumption level during off and
on-peaks hours, without heavily relying on costlier genera-
tion and other dependences [2]–[7].

In smart grid, various types of demand response (DR)
programs are available which are specifically designed to
manage end user loads and CO2 emissions reduction in
response to electricity prices [8]–[13]. Generally, there are
two types of DR programs being widely used while develop-
ing energy management programs; direct load control (DLC)
and price based [14], [15]. In former, the utility has control
to directly turn-off selected load during variation in fre-
quency or overload conditions to maintain the power system
stability [16]–[19]. Although, these schemes are useful in
improving grid stability, however, this may lead to loss of
social welfare and comfort of end users [20]. Thus, in the
presence of dynamic load and energy consumption patterns,
DLC is rather considered a passive approach in handling
load. In contrast, the price based schemes [21]–[25] are
specifically designed for the residential customers to actively
participate in DR programs to reschedule the patterns of loads
[26], [27]. In addition to price based schemes [28]–[33],
others offered attractive incentives and penalties for exceed-
ing pre-specified consumption levels. In existing researches,
the electricity prices are usually given in advance, hence
without optimizing price structures, the temporal comple-
mentarity among end users having different load profiles is

neglected. Because, without complementarity, it seems diffi-
cult to design a flexible pricing tariffs depending on diverse
power consumption and market pricing trends. Although,
some researchers have done a preliminary work on pricing
mechanism, however, there required more appropriate model
to customize retails electricity prices in smart grid area.

In literature [33]–[42], DSM techniques are implemented
in many ways focusing wholesale, distribution, and incen-
tivized sides. In most of DSM techniques, DR programs
have key importance in order to make them feasible for both
utilities and consumers. Wholesale energy market focusses to
keep balance between generation and demand, and transmits
energy to end users on variable or flat prices depending on
the nature of DR program [43]. In DLC techniques, utility
has partial access to some loads on consumer sides. During
high peaks, utility can shut down these loads to avoid possible
blackouts. It can, therefore, improve the grid’s stability, but
at the cost of user comfort. Considering incentivized demand
sidemanagement (DSM) techniques, amajor focus is towards
electricity bill reduction of end users while taking into con-
sideration grid side [44], [45]. Authors in [46] proposed indi-
vidualised demand aware price policies to calculate separate
price signals for each user. Initially, a low tariff area depend-
ing on historical load demand is found, based on which the
load is scheduled. Unlike other pricing schemes, this scheme
charges customers depending whether the required load falls
under low tariff area or not. Consequently, the load consump-
tion cost is calculated. In [47], a customised retail price has
been calculated on the basis of historical load demand data
and [48] provides a uniform pricing policy based on dual
tariff system. The initial problem was set to minimize the
peak demand, while, the second problem is set to balance
supply-demand. Another way of modelling electricity prices
is the consideration of time of use (TOU) pricing tariff in
conjunctionwith thresholding policy, which is reported in [1].
The main objective is the formulation of problem in such that
adaptive prices are obtained which are load dependant. In [2],
authors used a threshold policy in the sense that users can
only consume power when price is below a certain threshold
in order to minimize energy consumption price. However,
none of the work except [1], [2], [46]–[48] considers the
problem of fair pricing distribution, considering utility and
user objectives. Thus, by considering the problem of unfair
price distribution among all users, we have proposed a novel
pricing mechanism by keeping in view the aforementioned
trade-offs. The proposed work in this paper focusses both
the energy retailer and consumer sides. In addition, the other
constraints of grid and consumer sides are also included,
while formulating the cost distribution problem. The under-
lying assumption is that, despite only considering the cost,
comfort, or stability objectives, the affect of low, medium and
high energy consumption on electricity bills are also studied.
It is also worth noting here that the proposed mechanism
is equally feasible for both wholesale energy retailers and
incentivized consumers. Most importantly, the utility revenue
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remains unchanged, which is discussed in section VIII, while
using the proposed individualized pricing mechanism. The
key contributions of this work are given as:

• Load is categorized in such a way to facilitate all types of
user including those who do not want to schedule their
load in response to market clearing price. In other words,
continuous power supply is provided without waiting
low tariff area which can cause rebound peaks. To over-
come rebound peaks problem, load of other categories
is scheduled in order to balance supply-demand and cost
minimization objectives.

• Based on traditional pricing mechanism (section IV-C),
a novel pricing mechanism is proposed to charge cus-
tomized prices to all types of users without compromis-
ing the objectives of other users.

• To compare the performance of proposed mechanism,
analytical results are obtained and compared with mar-
ket pricing technique (Figs. 4,5, table 3). Furthermore,
the applicability of proposed pricing model is also
assessed in terms of renewable energy integration. For
this purpose, the user-3 is supposed to equipped a pho-
tovoltaic module and then variation on others tariff is
analysed. It is found that proposed pricing model is
equally feasible in case of RES integration.

• Based on the mathematical models and respective con-
straints on loads, the optimization problems is formu-
lated using Knapsack techniques and a heuristic solution
is obtained using GA. It is also observed that algorithm
converged within feasible time to provide global opti-
mum solution. Finally, extensive simulations are con-
ducted to validate the proposed idea in terms of cost
reduction and fair cost distribution. From results pre-
sented in table 3, it can be concluded that proposed
mechanism charged electricity prices on the basis of
actual consumption levels, rather than only considering
electricity prices and aggregated demand.

The remaining paper is distributed in the following sec-
tions. Section II gives state of the art work, section IV
discusses system model, where major attentions are given
to highlight the needs and feasibility of proposed method.
Section V presents problem formulation using multiple knap-
sack technique. Section VI then discusses the proposed load
scheduling algorithms. Sections VII and VIII discuss sim-
ulation methodology and discussions, respectively. At the
end, conclusion and future work have been presented in
section IX.

II. LITERATURE REVIEW
Different optimization techniques [19]–[21], [49]–[54] to
optimally control residential load based on market clearing
prices are reported in literature. Among these techniques,
[45], [55]–[60] used TOU and real time pricing (RTP),
[49], [61]–[63] used proposed dynamic pricing (DP) mech-
anism, [46] used customized pricing (CP) mechanism, while,

other pricing mechanisms are discussed in [64]–[67]. Details
of each category are given as follows.

A. RTP and TOU
In [45], authors have proposed a decentralized approach
to coordinate end users DR. In order to avoid chances of
rebound peaks, customers’ load profiles have been modified
and exchanged with service provider. This process continues
until service provider announces the final load profile in such
that overall cost and user discomfort are minimized. It is
also studied that without coordination between consumer and
energy retailer, there are chances of rebound peakswhichmay
disturb system stability. In [55], an agent based modelling
and simulation technique is used to measure performance of
DR in commercial building. From different perspectives, it is
studied that without price based DR program, commercial
buildings do not get significant impact. Furthermore, this
impact differs with different scales of DR participation based
on market condition. In [56], a multi-objective optimization
of TOU price under multi-model structure is studied in order
to reduce end user cost and satisfaction. For this purpose, load
demand data is first pre-processed and then divided into dif-
ferent clusters using k-nearest neighbour and adaptive affinity
propagation methods. To solve the optimization problem,
non-dominated sorting genetic algorithm with probabilistic
deviation is used to find optimal solution to achieve afore-
mentioned objectives. In [57], particle swarm optimization
algorithm is used to minimize peak-valley difference and
power loss in regard with TOU pricing. To find optimal solu-
tion with reduced complexity, multi-objective constrained
optimization problem is transformed into single objective
unconstrained optimization problem. Results reveal that pro-
posed strategy optimally manages the load for different time
periods. It can also be seen that without TOU pricing, the load
faces more fluctuations. While, the load profile seems more
stable when employ constrained and unconstrained methods.
However, this work is different from our proposed work in
such a way that real time load patterns and price are not
considered, which may discourage users to participate in DR
programs. In [58], a heuristic DR scheme is used tomodel end
user appliances without taking individualised consumption
patterns. In order to develop optimized consumption pattern,
a load demand vector is obtained from energy management
controller using stochastic programming with the objective
to PAR minimization.

B. DP and CP
The work reported in [49] has considered a DP scheme with
the objective of energy efficiency in SG. With consideration
of renewable energy buying-back scheme, a DP scheme is
reformulated as a convex optimization dual problem, based
on which a time dependant price is developed. As the scheme
works in a distributed fashion, so both the utility and end
user take their benefits. Unlike other schemes, the objective
of this work is novel, however, end users having cost reduc-
tion as a primary objective are not given priority. In [61],

16878 VOLUME 8, 2020



M. B. Rasheed et al.: DP Mechanism With the Integration of RES in Smart Grid

a Stackelberg game approach is developed to model interac-
tion between user and electricity producer to find possible
trade-off between a consumer surplus and net-profit. Fur-
thermore, a renewable energy storage system is also inte-
grated to analyse the behaviour, that shows that benefits go to
retailer if the installed capacity is smaller. On the other hand,
the user can take benefits of renewable energy if capacity
increased from a given threshold level. Authors overcome this
problem by using Reinforcement learning strategy without
any priori knowledge of both, consumers and retailer sides.
In [62], a service provider acts as a broker between utility
and customer to purchase electricity from utility company and
selling back to end users. The inherent uncertainties due to
dynamic load consumption and aggregator based price signal,
a reinforcement learning scheme without a priori knowledge
is used that allows each of the service provider to learn its
strategy. DP [62], however, is useful for utilities in stabi-
lizing the electric grid. On the other hand, it is difficult to
implement due to lack of knowledge of variation in consumer
load demand. Similarly, consumers also face difficulties in
managing their loads due to price variation. The work [63]
uses a TOU mechanism to develop a DP based on customers
load profiles. The load demand data is communicated to
system operator. In a response, a daily price signal comprising
low, mid and high pricing tariffs are designed to reduce
high peaks. In [46], a demand aware price policy has been
developed based on individualized load demand profiles of
all users. Unlike other schemes, this scheme differs in such a
way that each user receives a separate price signal which is
discriminatory in nature. It means, the end users are provided
the facility to manage their load demand without heavily
relying on market price signal only.

C. OTHER SCHEMES
The work presented in [64] is based on a three stage frame-
work, where DR aggregator determines the incentives offered
to participating customers for joining load management pro-
grams. Initially, the aggregator interacts with wholesale elec-
tricity retailer and end users to model their behaviours using
satisfying theory. Then based on aspiration level and disu-
tility, aggregator decides the tariff and incentives. Another
work presented in [65] used a simplified conduction heat
transfer method to model energy consumption in a residen-
tial unit. In [66], authors used a model predictive control
theory to reduce energy cost through incorporating building
dynamics. Is is observed that, rather than saving energy from
building material, up to 15% & 28% energy can be saved
depending on other factors such as outside temperature and
efficient load scheduling. A non-cooperative game approach
is developed considering customer’s behaviours to decide
whether or not it is feasible for a customer to participate in
load management programs [67]. Because, in traditional load
management programs, it was pre-assumed that customers
are rational in their decisions and voluntarily participate in
load management programs. In order to reduce electricity
cost, a prospect theory (PT) is used to explicitly incorporate

the impact of user behaviour on DSM decision. Furthermore,
a new algorithm based on fictitious game is used to develop
a Nash equilibrium.

Detailed literature review shows that few researches pro-
posed a day-ahead pricing based optimal load scheduling to
minimize electricity consumption cost [44], [45], [55]–[58],
while other works are based on DP and customized
pricing mechanisms [61]–[63]. Among price based DR
mechanism, few authors proposed customized pricing mech-
anisms, which are developed based on day-ahead pricing
schemes [46], [64]–[67]. The works discussed in [45], [55],
[56] use price based DR mechanism to reduce cost and
rebound peaks. However, the authors do not consider fair
distribution of electricity price among all users. Similarly,
the main focus of [57] is to minimize power loss mini-
mization. Unlike our proposed work, the focus of [58] is to
schedule appliances on the basis of aggregated load profiles
leading to unfair price distribution. The authors in [46] have
done a remarkable work by considering individualized load
demand profiles. In conclusion, the focus of other works is
to schedule end user load based on market or customized
price signal in such a way to minimize cost, rebound peaks
and system stability. However, to facilitate end users in terms
of fair pricing through individualized load consumption and
pricing policies is still missing and an needs to be considered
carefully.

III. MOTIVATION
As discussed in section II, the DSM techniques are effi-
cient in reducing energy consumption in response to dynamic
price signals which are often been recognized to reduce high
peaks [11], [12]. In these works, end users can change their
consumption schedules in response to price signals rather
than static energy optimization techniques [13]. It increases
the stability, flexibility [28], [29] and reliability [30], [31] of
electric grid by managing end user’s loads. DSM is used for
its ability to increase the stability of electric grid with reduced
cost [32], [33]. Furthermore, by encouraging end users to
participate in DSM programs in response to dynamic price
signals, the need for more expensive electricity generators
to meet peak demands can be minimized. DSM programs
are also useful in balancing the energy demand and genera-
tion capacities. Otherwise, these generating facilities would
have been idle during off-peak hours which may lead to
reduced revenue. By introducing DSM programs, participat-
ing, and electricity suppliers all can take benefits. The dereg-
ulations of the electricity pricing markets, and advancements
in ICT [32], [44], have motivated for the development of
more optimal DSM programs. As a result, energy retailers,
and electricity transmission organizations have been imple-
menting DSM programs to facilitate end users with lower
prices, and increase the elasticity from generation facilities
to retail markets [34]. In this way, end users can reduce
their electricity bills alongwith maximum comfort. DSM
researchers have addressed the: (i) minimization of energy
consumption and user discomfort, (ii) the stabilization of
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energy generation and electricity prices, using optimization
techniques [35], [36], [44]. Moreover, they also considered
the integration of RESs, such as solar, electric vehicle, energy
storage systems, etc., [37]–[39], centralized and decentral-
ized load management techniques [44], models of consumer
behaviours [40], and the trends of DSM participation [41].

Despite the importance and benefits of DSM programs,
utilities and researchers have reported different approaches
on their objectives. A common approach being adopted by
DSM researcher is to maximize the end user comfort in terms
of electricity cost minimization in response to time varying
price signals. Meanwhile, DSM researchers focussing utility
side have introduced baseline capacity limits to enhance the
stability of power grid during peak hours [42]. Furthermore,
they also introduced the peak power plants to compensate the
load while charging high prices during particular hours [33].
From the above discussion, we can easily conclude that
the major objective of DSM and DR techniques is twofold:
(i) to minimize the electricity cost of end users alongwith
high comfort level, and (ii) minimize the high peaks along-
with electricity cost reduction [68], [69]. Here is a trade-off
between user comfort and electricity cost reduction. If the
focus is towards electricity cost minimization, it is very dif-
ficult to achieve high comfort at the same time. However,
some techniques are being proposed which take into account
this trade-off and proposed different solutions. But, no one
considered the DSM by taking into account individualized
energy consumption patterns regardless of DR signal which
is based on aggregated energy demand.

This work builds upon the same concept which is given
in [54], in which the analytical simulations were performed
to highlight the impact of individualized price profiles on
end user cost. In the proposed work, we first develop a
mathematical model for obtaining price profiles of all users.
Then the well established optimization problem is solved by
using non-linear programming (NLP) technique to schedule
connected loads usingmarket clearing price. Here, it is impor-
tant to understand that the load scheduling is performed on
the basis of dynamic electricity prices. Furthermore, the pro-
posed work is not primarily designed to control or design new
electricity prices. Thus, the mathematical model presented
through Eqs. 1-8, however, does not address the individu-
alized energy consumption trends creating discrimination in
electricity prices. So, to overcome this limitation, the math-
ematical model is further modified to consider both, indi-
vidualized load trends and dynamic prices. Eventually, along
with fair price distribution among all users, a balanced load
profile is also obtained which ultimately improves power
system stability. In addition, on-site RES is also incorporated
to further visualize the impact of proposed mechanism on end
user cost profile. However, prior to this, loads are categorized
on the basis of power rating and user preferences. Finally,
the results obtained using traditional and proposed mecha-
nism are compared to validate the key findings (Table 2).

The optimization and scheduling of residential loads
are of greatest interest in the world due to variations in

energy demand. As the natural energy sources are deplet-
ing quickly, and the world is struggling in finding green
energy sources to fulfil future energy demand with reduced
carbon emissions. Furthermore, the additional reliance on
green energy and climate control buildings exacerbates reli-
able delivery of power with forecasted demands to ensure
reliability. Fortunately, the potential customers use global
pricing schemes (i.e., RTP, TOU) within a single utility or
DSO. So that end user and utility can take equal benefits with
mutual information sharing via AMI. Although DR programs
are utility centric where end users take monetary benefits,
encouraging by utilities to take part in these programs. As dis-
cussed in section III, DR prices are calculated on the basis
of aggregated energy consumption. In response, the low or
medium energy users can not take monetary benefits accord-
ing to what have they contributed in DR. So, keeping in view
the aforementioned limitation, the proposed work directly
addresses the cost minimization problem to benefits potential
users. In this regards, this work has direct applicability to the
regions where smart grid infrastructure is being implemented
(i.e., NYISO, PJM, [43], [70]).

IV. SYSTEM MODEL
We consider a smart grid model in which the energy from
power grid is distributed among several units/homes to fulfil
load demand. Each home is equipped with different type of
loads and a smart meter to communicate with the energy
management controller (EMC) to collect energy consumption
information of all users. In addition, U3 is equipped with
a RES to further analyze the impact of RES on the price
calculation of other users. The rest of the units are assumed
to get energy from main grid. In day-ahead DR programs,
generally the aggregator is responsible for the calculation of
electricity price signals which are transmitted to consumers
using AMI [17]. Then utility sets the electricity price on
the basis of total load demand received from smart meter.
Regarding EMC, it can be considered as a standalone entity
or embedded in retailer/aggregator side, where individualized
electricity prices are calculated on the basis of load demands.
Then these prices are transmitted to the respective units via
smart meters. In order to best describe the proposed mecha-
nism, we first categorized the loads in each unit. The Fig. 1
gives the conceptual diagram of the proposed model.

A. LOAD TYPES
Based on energy demand and power rating, the loads are cat-
egorized into the following categories: (i) discrete load (dl),
(ii) continuous load (cl), and (iii) must run load (mrl),
(table 1), such that [` ∈ dl, cl,mrl]. The EMC is responsible
to control the working cycles of dl and cl , respectively. While
the mrl does not take part in scheduling process, so as to
increase the user comfort. Because, these loads are consid-
ered to be turned ONwhenever users require. The duty cycles
of dl can be altered during operation time due to their flexible
nature. In other words, users can bear delay due to variations
in appliance starting time. Whereas, cl cannot be turned OFF
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FIGURE 1. Conceptual diagram for energy cost calculation: (A) traditional scheme, (B) proposed scheme.

TABLE 1. Appliance energy consumption and duty cycle requirements.

FIGURE 2. Energy demand profile over 24 h period.

during operation time. Because, these loads complete their
duty cycles once they are turned ON. The load demand of
each load is shown in Fig. 2. While the detailed working of
these loads are discussed below.

1) MRL
Weassume thatmrl does not take part inDR program, hence it
is not scheduled over the given time. Although, this load has

specified scheduling intervals, which is 24 hours, as shown
in Fig. 2, load 2. So, it is observed that this load needs
continuous supply of power in order to fulfil the required task
during given time interval. The energy demand and power
rating of mrl can be denoted by Emrl and ℘mr , respectively.
The total energy consumption of mrl is calculated by using
the following equation:

Emrl (t) =
∑
mrl

∑
t∈T

(
℘mrl (t)× βmrl (t)

)
, (1)

where, βmrl denotes the ON/OFF state ofmrl in the given time
slot t .

βmrl (t) =

{
1 If load is ON
0 If load is OFF .

(2)

2) DL
We assume that power demand of dl can be scheduled from
given time slots to any other time slots such as to reduce
overall cost. In other words, this load has deferrable nature
and its normal working can be shifted or changed regardless
to user specified time intervals. This ensures minimum power
consumption cost, however, user comfort in terms of schedul-
ing delay has to be compromised. The power consumption of
dl is represented by Edl . Let, ℘dl denotes power rating of dl ,
then total power demand is calculated as:

Edl (t) =
∑
dl

∑
t∈T

(
℘dl (t)× βdl (t)

)
, (3)

where, βdl is the state of dl in a particular time slot t and is
given as follows:

βdl (t) =

{
1 If load is ON
0 If load is OFF

(4)
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3) CL
We assume that, unlike dl , the power demand of cl can be
scheduled, however, the normal working can not be inter-
rupted once scheduled. For example, if a load has 5kW
power demand, then scheduling algorithm fulfils the required
demand by rescheduling the load in different time slots, based
on minimum priced intervals (Fig. 2, loads 3&4). However,
the customers have to bear more scheduling delay. Eventu-
ally, this load would contribute in achieving better optimized
results, as compared to other types of load. Because, their
normal working can not be disturbed once they turned ON,
i.e., they must complete their scheduled duty cycles. The total
energy consumption and power rating of cl are denoted by Ecl
and ℘cl , respectively. The total energy consumption of cl is
calculated by using following equation:

Ecl (t) =
∑
cl

∑
t∈T

(
℘cl (t)× βcl (t)

)
, (5)

where, βcl denotes the state of cl and can be written as
follows:

βcl (t) =

{
1 If load is ON
0 If load is OFF .

(6)

The total energy consumption Eu(t) of all users is equal to
the sum of aggregated energy consumption of individualized
users which is given as:

Eu(t) =
∑
u∈U

∑
t∈T

(
Emrl ,u(t)+ Edl ,u(t)+ Ecl ,u(t)

)
, (7)

B. ELECTRICITY PRICE MODEL
This section provides brief information about the day-ahead
electricity market. As it is understood that electricity price
signal is dynamic in nature, due to variations in end user
energy demand. Consequently, it is very difficult rather
impractical for regulatory authorities to fix the electricity
prices for certain time period. So, it can be expected that
electricity price signal varies as demand varies. However,
in day-aheadmarket, the price can be fixed for certain interval
of time if the load remains within acceptable limits. But,
irrespective of all the information, there is a probability that
loads can be varied which can eventually disturb the stability
of power grid. To avoid all these problems and risks, the flex-
ible DR programs are being widely used by encouraging the
consumers to take part in these programme. Users can take
part in DR programs by modifying their energy consump-
tion schedules in regards to the day-ahead price signal. This
mechanism also allows the end users to increase or decrease
their energy consumption in different time slots. In this way,
users can get monetary benefits and utilities avoid the risk
of grid instability during high peak hours. This approach,
however, is quite efficient and being widely used now a days.
But there are certain problems associated with these types of
techniques. For example, if electricity pricing signal is totally
based on aggregate energy consumption, then it might not be
feasible for all types of consumers. Because, low, medium

FIGURE 3. A conceptual diagram of proposed system model for the
calculation of individualized price profiles.

and high energy consumers are getting the same prices, irre-
spective to their individualized energy consumption patterns.
Moreover, utilities are getting the bill in response to what
they are selling. But, the low and medium energy consumers
affects due to this strategy. This is the underlying problem
in DR programs focussing user benefits which is highlighted
and solved in this research work. In the following sections,
the traditional method used to calculate energy cost is given.
Then based on this, the individualized prices in response to
energy demand of associated users are calculated (Fig. 3).

C. TRADITIONAL METHOD
In recent DR programs, used in wholesale electricity market,
day-ahead electricity prices (hourly prices) are calculated
on the basis of aggregated energy consumption of any spe-
cific region. Whereas the electricity unit price for next hour
depends on the current energy consumption level, which can
be calculated using the following expression:

Cu(t) =
∑
u∈U

∑
t∈T

(
Eu(t)× ψ(t)

)
≡ C total

uti (8)

Eq. (8) shows that the energy consumption cost of [u ∈ U ]
must be equal to utility revenue calculated on the basis of
load consumed. In case of TOU or day-ahead RTP, the ψ(t)
is assumed to be fixed for the time duration t. This expression
Eq. 8 is generic and used for electricity cost calculation.
However, the drawback associatedwith this method is that the
energy prices set by utilities apply to any specific region are
not based on individualized energy consumption patterns. But
these are rather on the basis of aggregate energy consumption
of that particular region [6]–[10], [61]. Due to this strategy,
the low, medium and high energy consumers are charged
equally which penalizes the low and medium energy users.
To overcome this problem, there must be a mechanism which
charged electricity prices to the associated consumers on the
basis of their consumption level rather than on aggregate
basis. To further highlight the problem and its effect on
electricity bill, the section VIII provides the details.

D. PROPOSED METHOD
The details given in section IV-C reveal the possible draw-
backs and limitations regarding electricity cost saving per-
spective. It is also discussed that aggregated price policies
are feasible for market retailers, reducing user benefits.
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FIGURE 4. The dynamic variation in the values of k against different load
and RES integrated load profiles, Eq. (9).

To overcome such types of problems, we have proposed a
novel mechanism to calculate electricity sub-prices in accor-
dance to: (i) the individualized energy consumption patterns,
and (ii) aggregated electricity price signal. Because, it is
very difficult for utility to design/calculate a separate elec-
tricity price signal for each user. Consequently, it can further
increase the communication overhead based on which the DR
programs work. In order to calculate individualized prices for
potential users, we develop a mathematical expression which
calculates these prices for each user/unit according to their
consumption levels. For this purpose, we need; a day-ahead
electricity price signal obtained from retailer/utility, and indi-
vidualized energy consumption of U obtained from smart
meters. Then based on these parameters, the price factor k for
each user/unit is calculated by using the following equation:

ku(t) =

∑
t∈T

∑
u∈U (Eu(t)× ψ(t)∑

t∈T
∑

u∈U (Eu(t))2
. (9)

In Eq. (8), Cu(t) denotes the total energy consumption
cost of n users in response to day-ahead electricity price
signal ψ . In contrast, Eq. (9) shows that k depends on the
energy consumption of each unit. In other words, if any unit
consumes more energy, then the values of k will be higher
and vice versa. The value of k in accordance with the load
profiles of individualized users is shown in Fig. 4. While the
behaviour of k with respect to electricity cost and energy
consumption is shown in Fig. 5. The figure also shows the
variation in k when RES is utilized. The variations in value of
k shows the individualized energy consumption trends and its
possible impact on electricity price signal (Fig. 11). Because
the proposed mechanism has the objective to distribute the
electricity prices in accordancewith per slot energy consump-
tion of the users, while preserving the retailers objective.

1) NON-DISCRIMINATORY PRICES
Intuitively, in order to have consumers agreeing on pay-
ing electricity bills on the basis of individualized prices,

FIGURE 5. The behaviour of k as a function of E and C .

it is mandatory that these prices must be non-discriminatory.
These are also important for retailers and/or DSO, as discrim-
inatory prices may reduce the potential users accepting these
prices. In the proposed work, the individualized prices cal-
culated on the basis of load profiles are non-discriminatory.
Where, the individualized prices depend on the respective
load profiles as discussed in section IV-D. In contrast, the tra-
ditional method (section IV-C) uses market based prices irre-
spective of individualized load profiles. We define a pricing
tariff Spt = (ecu1, ecu2, ecu3, ψu, k), the individualized prices
ϕ(t) on the basis of k , for each user:
ϕ
t1
u1
ϕ
t2
u2
ϕ
t3
u3
...

ϕTU

 =

k t11
k t22
k3t3
...

kTU

×

E t1u1 E t2u1 E t3u1 · · · ETu1
E t2u2 E t2u2 E t3u2 · · · ETu2
E t1u3 E t2u3 E t3u3 · · · ETu3
...

...
...

. . .
...

E t1U E t2U E t3U · · · ETU

 (10)

where, ϕ1(t), ϕ2(t), ϕU (t) are respective prices for buying
electricity form retailers. The total electricity cost Cu of U
users is calculated as follows:

CU (t) =
∑
t∈T

∑
u∈U

(
Eu(t)× ϕu(t)

)
. (11)

The steps involved to calculate individualized DR signals
for user U are given as:
1) a set of u users u ∈ U directly connected to retailers via

AMI. In traditional DR program, u (i.e., unit-1 and unit-
2 in Fig. 1) are directly connected to retailers. While
in the proposed method, u (i.e., unit-3 and unit-4) are
connected to the AC entity which is responsible for the
calculation of DR signals for individual users. Then
the aggregated cost on the basis of net load is sent to
utility vis retailer. Here, the accumulator AC (Fig. 1,
i.e., centralized EMC) is considered as a separate entity.
However, it can also be embedded in retailer unit.

2) a time slot t ∈ T , typically with a horizon of 24 equal
length time slots.
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3) the desired energy demand profile (kW) of u obtained
from AC.

4) the per-unit electricity tariff ψt (i.e., TOU, RTP) com-
ing from electricity retailers.

5) then on the basis of ψt and load profiles of u (these
profiles may be computed on the basis of historical data
of [u ∈ U ] in T ), AC calculates the DR signals in
regards to individualized energy consumption profiles.

6) then consumers reschedule their loads on the basis of
updated DR signals. Please note that maximum energy
consumption limit is also implemented in optimization
algorithm to reduce the chances of high peaks on grid
side. Otherwise, the grid stability could be affected.

7) in each time slot [t ∈ T ], AC updates the price
signal for each u on the basis of individualized load
profiles.

2) DISCUSSION ABOUT K
As discussed in section IV-D, the proposed scheduling mech-
anism for residential DR depends on factor k (Eq. 9). Where,
the k further depends on two factors; Eu and ψ . We provide
numerical results (Fig. 4 to show the dependence of Eu and
ψ on k , which is a key factor for the calculation of individ-
ualized prices. The left side of Fig. 5 shows the relationship
between energy consumption and k , while the Fig. 4 shows
the variation in k using: (i) energy demand pattern without
RES, and (ii) energy demand pattern with RES. The con-
sidered load and respective categories have been given in
table 1. Fig. 4 shows that when energy consumption increases,
the value of k decreases. Because, the energy consumption
factor E2

u is in denumerator in Eq. (9). In contrast, the right
side of Fig. 5 shows the relationship between C and k . It is
clear from the figure that cost increases as we increase the
value of k , which depends on E . In conclusion, it is obvious
from Fig. 5 that individualized prices depend on k which is
the base of proposed work.

E. USER COMFORT
From detailed literature review [21]–[23], [25]–[37], it can
be concluded that most of the energy management schemes
have cost reduction as a major objective. Whereas, other
schemes have considered both the cost reduction and comfort
maximization as primary objectives [4], [5], [44]. Although,
cost reduction objective satisfies the end-users which can
bear extra delay due to load scheduling process. In contrast,
comfort maximization may reduce electricity cost and vice
versa. According to the literature, user comfort can be defined
as follows [44], [76]:

f (t) =
∑
t∈T

∑
u∈U

(τn(t)), (12)

where, f (t) is function of time shift of all scheduled loads
under user preferences and lifestyle constraints. In Eq. (12),
the variable τn is equal to |sn − αn|, defines the time shift
of appliance n. In other words, the discomfort level is equal
to the total number of hours shifted from specified time slot.

FIGURE 6. Renewable energy profile over the period of 24 h used in U-3.

So, the objective function is to reduce this time in order to
provide maximum comfort alongwith minimum cost. Here,
one important point is that user comfort maximization and
electricity cost reduction are contradictory objectives and
difficult to achieve [44].

F. RENEWABLE ENERGY INTEGRATION
To further analyze the performance of proposed mechanism,
we assume that U3 is equipped with photovoltaic RES. The
proposed mechanism utilizes the renewable energy as a pri-
mary source to reduce the electricity prices (i.e., individual-
ized prices). The remaining units use the utility energy as a
primary source and receive the prices on the basis of energy
consumption. The solar PV energy used in the proposed work
is obtained from themodel demonstrated in [71], [72], Eq. 13.
The output power is shown in Fig. 6:

EPV = ηPV × APV × Ir (1− 0.005(T a − 25)). (13)

Keeping in view the aforementioned points, the proposed
work not only considers the delay based comfort, but also
provides end user comfort with extra cost savings to low and
middle class users. For this purpose, sections IV-A and IV-B
discus different types of loads alongwith preferences and
energy price model used in the proposed work, respectively.
Then, section VIII discusses the real time benefits in terms of
cost reduction and comfort maximization.

V. PROBLEM FORMULATION
In this work, multiple knapsack (MK) problem formulation
technique has been used to formulate load scheduling prob-
lem [77]. In general, knapsack is a formulation technique
in which the ‘‘knapsack’’ is filled with multiple ‘‘objects’’
considering its ‘‘values’’ to take maximum benefits. The
MK technique has been used to formulate the proposed
load scheduling problem using individualized pricing. How-
ever, prior to the formulation, following assumption are
considered:
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1) Multiple time slots t are considered as a ‘‘MK’’.
2) Number of loads have been considered as ‘‘objects’’.
3) Energy consumed by each user is taken as

‘‘weight’’.
4) Energy consumption cost of each user is considered as

‘‘value’’.
5) Energy consumption limit in each time slot t is consid-

ered as ‘‘capacity’’.

By taking into consideration the aforementioned assump-
tions, we formulate the objective function with the aim at
reducing electricity cost in association with different con-
straints. On the other hand, for reliable and un-interruptible
energy supply, the power grid must not overburdened due to
heavy load. To achieve this objective, a limit on total energy
consumption in each time slot t and RES are also considered.
So the total power consumption of each user does not exceed
the maximum power capacity in each t . This mechanism
is being widely used in different DSM programs [4], [5]
and has provided efficient results. Although, it increases the
stability of power grid, however, it can disturb end user
comfort to some extent. But, the major focus of this work is
towards facilitating end users with significant amount of bill
reductions.

The objective function is divided into two parts:

1) in the first part, the load scheduling problem is formu-
lated and cost reduction objective is achieved by using
day-ahead pricing signal.

2) in second part, the load scheduling problem is formu-
lated and cost reduction objective is achieved using
individualized prices.

A. DISTRIBUTED ENERGY MANAGEMENT
PROBLEM FORMULATION
In distributed energy management mechanism, the load has
been controlled on the basis of RTP signal obtained from
utility as shown in Fig. 7. In first phase, energy consumption
limit is not imposed, because the EMC works in a distributed
way and is independent to the other units. The optimization
problem is then formulated as follows:

min
∑
t∈T

∑
u∈U

(
Eu(t)× ψu(t)

)
(14)

s.t : τs,` ≤ τa,` ≤ τe,`, (14a)

τsch,` = τon,`, ∀ mrl, (14b)

τsch,` = τon,` ≤ τe,` − τlot,`, ∀ del, (14c)

τsch,` = τon,` ≤ τsch,` ≤ τon,`+τlot,`, ∀ cel, (14d)

β(t) = τlot . (14e)

where, Eq. (14) is cost minimization objective function,
Eq. (14a) denotes upper and lower limits on load start and
end times, Eqs. (14b, 14c, 14d) give scheduling horizons for
mrl , del and cel , respectively. Eq. (14e) demonstrates that
total working hours of any load, that must be equal to its duty
cycles.

FIGURE 7. RTP signal used in the proposed work which is obtained from
day-ahead electricity market [43].

B. CENTRALIZED ENERGY MANAGEMENT
PROBLEM FORMULATION
In this mechanism, all users share their energy consump-
tion profiles in neighbourhood area network. In first step,
the electricity cost in t is calculated using electricity prices
ψ obtained directly form utility. In second step, the energy
consumption of each user and their respective cost have been
calculated. In third step, the individualized electricity prices
on the basis of energy consumption data in previous hours
are calculated as shown in Fig. 11. It is worth noting here
that for the calculation of individualized prices ϕ, electricity
price signal obtained form utility and energy demand patterns
are used as input parameters. In response, ϕ for each unit
u are calculated. In this way, electricity prices are fairly
distributed among all units while preserving utility revenue.
Furthermore, the total energy consumption limit is imposed
in optimization problem to lower high peaks on grid side.
The centralized problem is now formulated as multiobjective
optimization as written below:

min
∑
t∈T

∑
u∈U

(
[Eu(t)× ϕu(t)− EPV (t)]+ f (t)

)
(15)

s.t : β(t) = τlot,`, (15a)∑
u∈U

∑
t∈T

(
(Eu(t)×β(t))≤γu(t)

)
, ∀, [` ∈ mr, ce, de]

(15b)∑
u∈U

∑
t∈T

(
Cu(t)− U total

uti (t)
)
= 0. (15c)∑

u∈U

∑
t∈T

(
Eu3(t) = Eg(t)+EPV (t)

)
∀[` ∈ mr, ce, de].

(15d)

where, Eq. (15) is cost minimization objective function,
Eq. (15a) shows that operating hours of any load must satisfy
its duty cycle requirements, Eq. (15b) denotes maximum
energy consumption limit considered to minimize high peak
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during overload conditions. Eq. (14c) provides the cost bal-
ance expression (i.e., utility revenue must be equal to total
power dispatch). The Eq. (15d) shows that (U3) utilizes RES
as a primary energy source along with grid energy. While the
rest of the users fulfil their energy demand from electric grid
only. Initially, the energy consumption limit can be calculated
using the expression:

γ 1(t) = max
(∑
t∈T

(β(t)× Eus(t))
)
. (16)

For u, the above equation would become:

γu(t) = γ 1(t)−
∑
t∈T

β(t)× Eu(t). (17)

where, Eq. 17 gives power consumption capacity limit for u,
which depends on Eq. 16.

VI. PROPOSED ALGORITHMS
The DR strategy is applied to both distributed and centralized
schemes. For each unit, there is a distributed EMC to control
load in response to the traditional RTP. On the other hand
the AC (Fig. 1) calculates ψ on the basis of aggregate energy
consumption of each user u ∈ U , which results in final
energy consumption pattern of the user. Each user is equipped
with several types of loads with different control parameters.
To deal with all these parameters, i.e., duty cycle, energy
consumption, priorities of interruption according to load type,
is a challenging task. The evolutionary algorithm such as
genetic algorithm (GA) [36], [73]–[75] has the ability to solve
load scheduling problem in association with all constraints.
GA has good computational ability and high convergence
rate as compared to other mathematical approaches [62].
Because, to find global optimum solution in the search space
when many local optimum solutions are present is a classi-
cal problem. In this regard, the GA has the ability to find
global optimum with high accuracy through parallelizable
search. It is evident from the Fig. 8 that proposed algorithm
is designed in such a way that it always converged within
certain bounds and limits. For example, in each time slot,
the algorithm searches global optimum solution from the
entire search space, where other local optimum solutions
exist. In order to avoid GA being trapped in a local optimum
solution, we have expanded the search space (i.e., 400 pop-
ulation size). It is then ensured that the optimal solution is
always feasible. Because, if we consider minz∈S f (z) as a
standard minimization problem, where, S ⊂ IR denotes the
feasible set. Any z ∈ S is considered to be feasible point and
conversely, any z ∈ IR \ S := {z ∈ IR : z /∈ S} is infeasible.
In another sense, a solution minz1∈S f (z) is known as Pareto
optimal solution if and only if there does not exist another
solution in the same search space which dominates it. In our
case, all solutions are Pareto optimal (Fig. 8).

A. DISTRIBUTED ALGORITHM FOR EMC
In a distributed manner, we assume a user u ∈U has a variety
of loads with different parameters. The EMC communicates

FIGURE 8. Behaviour of GA w.r.t., cost and total number of iterations in
achieving global optimal solution.

with different types of loads, and take energy consumption,
duty cycle and priorities of interruption as input parameters
the algorithm. After that, the EMC performs scheduling for
respective user in order to reduce electricity bill. In EMC the
traditional price signal is used, in which each user has equal
price independent to their energy consumption.

The working steps of proposed distributed EMC algorithm
are given as follows (algorithm 1):

B. CENTRALIZED ALGORITHM FOR C-EMC
In a centralized manner, the EMC manages the load on the
basis of energy consumption patterns and assigns different
prices for each user u ∈ U . The EMC communicates with
utility and local EMC to achieve cost minimization and PAR
reduction goals. For this purpose, each user shares its sched-
uled energy consumption pattern provided by the distributed
EMC to AC. Then on the basis of these patterns, AC assigns
different prices to each user. Here, it is assumed that the price
is distributed among all users in such a way that the aggregate
energy consumption cost of all users is same as in the case
of distributed DSM strategy discussed earlier. In contrast,
the individual energy consumption cost may differ in this
case, and is depends on their energy consumption. High
energy consumers always pay their bills according to the
load consumed and vice versa. The factor by which the price
among the users’ is distributed is calculated by using Eq. (9).
This mechanism assures grid stability in terms of reduced
peaks by restricting consumers to limit their consumption.
The working steps of proposed centralized EMC algorithm
are given as follows (algorithm 2):

VII. SIMULATION METHODOLOGY
The optimization models discussed in the section IV-D are
tested and evaluated on a hypothetical test case where dif-
ferent homes/units are considered. It is assumed that each
home has different types of loads having different duty cycles,
and power ratings as given in (table 1). To further check the
validity of the proposed mechanism, U3 is equipped with
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Algorithm 1 Distributed EMC Algorithm
1: Required Unscheduled pattern, population size, max.

generations, N, ψ .
2: Initialize random population which represents the pat-

terns of appliances.
3: for t = 1:24 do
4: EMC checks for available RES source of user 3.
5: if g(t) ≥ esu3(t) then
6: Turn ON the appliance i of user 3.
7: else
8: for i = 1:popsize do
9: Evaluate fitness function eq. (14)
10: ζ = fitness
11: if (ζ (i) < ζ (i− 1)) then
12: ζ (i) = ζ (i)
13: if cei(t − 1) == 1 then
14: if (τi ≤ τlot ) then
15: c(t) = 1
16: end if
17: end if
18: if dei(t) == 1 then
19: if (τi ≤ τlot ) then
20: de(t) = 1
21: end if
22: end if
23: else
24: ζ (i) = ζ (i− 1)
25: end if
26: end for
27: scheduled-load(1,:) = popnew(1,i)
28: if scheduled − loadi == 1 then
29: τlot = τi − 1
30: end if
31:

32: end if
33: Generate new population. Select crossover pair a, b
34: if Pc > rand then
35: crossover(a, b)
36: end if
37: if Pm > rand then
38: mutate(a, b)
39: end if
40: popnew(popsize,N)
41: end for

on-site RESwhich can be utilized during peak hours to reduce
electrify cost. Each home is equipped with various types of
loads having different power ratings and variable duty cycles
(table 1). The optimization program runs for a complete day
where [t ∈ T ] time slots are further divided into sub-time
slots having equal length of one hour. The simulations are
performed for two different cases: (i) load scheduling using
market based clearing prices (i.e., TOU, RTP), and (ii) using
individualized prices as discussed in section IV-D.

Algorithm 2 Centralized EMC Algorithms
1: Required Scheduled pattern from distributed EMC, pop-

ulation size, max. generations, N, ψ .
2: Initialize random population which represents the pat-

terns of appliances and t = 1.
3: Calculates k on the basis of distributed EMC energy

consumption data using Eq. (9).
4: Evaluate ϕ for each user u ∈ U using Eq. (10).
5: Communicates this new ϕ to its respective user u ∈ U .
6: Evaluate fitness function using Eq. (15).
7: From step 6, select optimal pattern which satisfies

Eq. (14a-14e) and (15b-15d) .
8: Turn ON the loads according to optimal pattern and

calculates τ and � for the next evaluation.
9: Generates new population to calculate fitness until con-

vergence criteria is met.
10: t = t + 1, go to step 3, till t = 24.

The former one uses traditional RTP signal taken from [43]
and is shown in Fig. 7. Then on the basis of RTP signal,
algorithms solve load management problem [6], [7], [44],
[61], [62], [78] to minimize electricity cost and high peaks on
grid side. Although the traditional energy management mech-
anisms work on the basis of price based DR programs and are
efficient for cost, comfort and grid stability. But, the discrim-
inatory price policies do not ensure the consumers’ savings.
In contrast, the proposed work uses non-discriminatory prices
which are calculated as described in section IV-D. These
cases clearly depict the impact of individualized prices on
electricity cost of end users. Then the final optimization
program is solved by using GA providing the optimal results
given in table 2. As the load optimization problem is well
behaved. So the existing optimization engine is sufficient for
the numerical solution. The MATLAB (Matrix Laboratory)
language is used to solve the problem with the objective
of cost minimization. The code was executed on Macbook
Laptop, 1.7GHz Intel Core i7 processor.

VIII. RESULTS AND DISCUSSIONS
Fig. 9 shows the energy consumption profile of all users over
the period of 24 h. The optimization program successfully
solves the load scheduling problem in response to respective
constraints fulfilling the energy demand. In case of U1&U2,
the energy source provided by retailers acts as ‘‘first choice’’
coming into operation to fulfil the energy demand. How-
ever in case of U3, the RES acts as first choice to fulfil
energy demand. If the energy demand during particular hours
exceeds, the main energy source is then utilized. In unsched-
uled case, optimization algorithm schedules the loads without
considering associated constraints. In response, the load is
even turnedONduring peak hours (i.e., 10:00-12:00h, Fig. 9).
It is worth noting here that the energy consumption of U3
is comparatively less due to RES integration. In scheduled
case, optimization program turns ON the load in various time
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FIGURE 9. Energy consumption profile of all users over 24 h period.

FIGURE 10. Cost incurred by different users over the period of 24 h using
OP.

slots and avoids the peak hours. The total cost of U1&U2
seems lower during 1:00-06:00h (Fig. 10). The average cost
during 07:00-15:00h is comparatively high then the cost
during 1:00-06:00h. From 16:00-24:00h, again the average
cost of U1&U3 is almost same. While the electricity cost
of U3 during all hours is less. The reason behind reduced
cost is the integration of on-site RES. These typical results
originate form the fact that optimization algorithm follows
the maximum energy consumption limit Eq. (14b) leading
to significant reductions in hourly cost. In doing so, it is
obvious that scheduled cost is always less than unscheduled
cost alongwith utility objective i.e., reduced PAR.

Figs. 11 and 12 elucidate another case where energy prices
are calculated on the basis of proposed mechanism discussed
in section IV-D. For validation purpose, the energy consump-
tion patterns given in (Fig. 9) remain same. However, the cost
incurred by different users is different. This is because the
individualized electricity prices are calculated on the basis
of energy consumed by each user. t is also discussed in
section IV-D that the individualized prices of all users depend
on factor k . While the other energy management mechanisms

FIGURE 11. Individualized prices for all users over the period of 24 h
(Eq. 9).

FIGURE 12. Cost incurred by different users over the period of 24 h using
NP.

use market based pricing signal irrespective to the energy
consumption patters. So, prior to the calculation of electricity
in case of traditional and proposedmechanisms, first we com-
pute DR signals for all users on the basis of load consumed in
[t − 1] h. Fig. 11 shows the individualized prices for all users
over the period of 24 h. As a first observation, the electricity
prices seem different/fluctuating, which show their depen-
dency on individualized demand. In other words, these prices
are calculated on the basis of individualized demand patterns
in associated units. As the energy consumption patterns ofU3
seems lower (Fig. 9). Consequently, the individualized price
signal is comparatively low.

Fig. 12 further demonstrates the cost of residential units
in terms of individualized energy consumption patterns
over the period of 24 h. In early morning 01:00-6:00h,
it is observed that the average cost using proposed method
(Cs(U1),Cs(U2),Cs(U3)) with RES is comparatively lower.
This is due to the fact that individualized prices depend on
the energy consumption pattern of each home, rather than
aggregated energy demand.While during 07:00-14:00h, elec-
tricity cost of all users except U3 is much higher due to
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TABLE 2. A comparison of electricity cost using OP and NP.

TABLE 3. A comparison of proposed results with some relevant works.

high individualized electricity prices (Fig. 11). It can also be
seen that electricity cost of U3 is comparatively less due to
incorporation of RES. In traditional case (Fig. 10), U3 incurs
more cost during 7:00-10:00h. While, the cost in proposed
scheme is comparatively lower. Therefore, the cost reductions
can be attained if the value of the k is lower, which is demand
dependant. Finally, table 2 shows the net revenue obtained
by utility in centralized and distributed algorithms. It is evi-
dent from the table that using proposed scheme, the utility
objective remains same. However, the individualized users
may take benefits if they are consuming less energy. Another
important aspect of the proposed scheme is that the prices are
calculated on hourly basis. In other words, if any user is con-
suming more energy e1 in h1 hour, that user will be charged
the price according to the proposed mechanism. The role of
OP and NP schemes is further demonstrated in table 2 which
gives the comparison of energy consumption and electricity
cost. In case when RES is not utilized, the electricity cost

of U1&U3 using NP is reduced. While the electricity cost
of U2 is 2.22% increased. This is due to high value of k .
While the rest of the users U1&U3 consumed 1.34% and
1.03% less energy and consequently, they receive less bill.
In contrast when RES is incorporated in U3, then the energy
demand is primarily fulfilled by using RES. If the energy
demand exceeds from RES capacity, the grid energy is then
utilized as a secondary choice. It is worth noting here that
the value of k (Eq. 9) depends on energy consumption factor
which ultimately changes the electricity cost. So the variation
in k gives 5.12% more electricity cost in case of U1&U2.
Furthermore, the total amount of energy obtained form grid
is also reduced by 11.52% when RES is used contributing
towards grid stability. Hence it is demonstrated that the indi-
vidualized prices depend on the energy consumption patterns
of all users/homes.

Finally, the table 3 provides a comparison of proposed
work with counterpart techniques regarding cost and peak
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load minimization. Work reported in [46]–[48] used dif-
ferent pricing policies for peak load minimization, through
optimized load scheduling. Similarly, the work presented
in [1], [61] significantly minimized end user cost when load
is scheduled in accordance with other than market clearing
prices such as TOU and CP. However, the proposed work
focusses on devising price profiles for all users such that
each user must be provided a separate price signal based
on demand consumption and RTP obtained directly from
electricity market. Unlike other works, the proposed work
focusses to provide a mathematical model to construct load
dependant cost profiles rather than minimize the end user
cost through optimized load patterns. However, in order to
provide the justification of obtained achievement, we used a
GA to obtained optimal load patterns, so as to compare the
cost against unscheduled case as shown in Table 2.

IX. CONCLUSION
In this paper, we have proposed a novel pricing mechanism
for demand management using individualized price policies
in conjunction with energy demand, electricity price and RES
to incentivise low energy users. The major contribution of
this work is to facilitate low energy consumers by providing
incentives in the form for reduced electricity bill. In addition,
electricity cost is reduced in such a way that high peaks
are also reduced while maintaining the utility revenue, even
though the individualized prices are non-discriminatory. For
true analysis, the results of the proposed scheme are com-
pared to the traditional scheme where price based DR signal
is used by the consumers operated under same DSO. The
analysis conducted in this paper illustrates the advantages
of the individualized prices thorough extensive simulations
considering the data given in table 1. It was also demonstrated
in sectionVIII that the proposed scheme distributes electricity
prices among all users/units on the basis of load consumed
while keeping utility objectives high. The further cost reduc-
tions can be obtained if the coordination among all the users
are incorporated. This objective can easily be achieved using
multiagent technology. So, in future, we will use multiagent
technology for real time coordination and control to further
reduce the energy consumption costs of individualized users.
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