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ABSTRACT Communication-Based Train Control System (CBTC) system is an automated system for train
control based on bidirectional train-ground communication. Safety-risk estimation is a vital approach that
strives to guide the CBTC system to guarantee the safe operation of vehicles. We propose a deep learning
method to predict safety-risk states that combined with formal methods. First, the impact factors are selected,
and the movement authorization (MA) failure rate is calculated by statistical model checking. Then, we use
a deep neural network to model the relationship between the safe-risk states and the train operation status.
Experimental results show that our method can achieve an accuracy of 97.4% on safety-risk prediction, and
exceeds the baseline methods.

INDEX TERMS Communication-based train control system, risk prediction, deep learning, statistic model
checking.

I. INTRODUCTION
Communication-Based Train Control (CBTC) system, is an
automated train control system that authorizes safe move-
ments of railway vehicles by bidirectional communications
between vehicles [1]. It enhances the safety level and the
transport efficiency of railway transportation. CBTC system
is a safety-critical system, whose safety guarantee is remark-
ably necessary due to the unacceptable consequences of fail-
ures, such as loss of life, significant property loss, or damages
to the running environment [2]. Safety-risk estimation is a
technique to determine whether the operation of system is
safe by the employing of quantitative or qualitative methods.
Safety-risk estimation is not only a requirement of the CBTC
system but also an efficient method for identifying the haz-
ardous operation states that may cause damages. Generally,
the process should consider multiple parameter factors of
exploring the nonlinear function relationship between the
factors and safety-risk states.

The safety-risk assessment, in many works, has
encountered various challenges in CBTC systems. However,
the main challenges are related to the uncertainty in sys-
tem operations and the complicated relationship between
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multiple safety-risk states of CBTC systems. The significant
deviation of predetermined running state would cause by
the unreliability of system components and the difference
of runtime environment, which is unavoidable and hard to
estimate in the system. The uncertainty of the system suffers
the traditional risk assessment methods. Fault Tree Analysis
(FTA) [3], Failure Mode and Effects Analysis (FMEA) [4],
Bayesian network analysis [5], and other static methods have
no satisfying result of the assessment, owing to the deficiency
of the consideration of how to eliminate the impact of the
uncertainty. The requirement of analysis the correlations
effectively between multiple safety-risk states of the CBTC
system presents another challenge. Analyzing safety-risk
states as independent of one another would lead to suboptimal
models because the different safety-risk states reflect param-
eter changes in system operation. It is necessary to capture
the correlation between various safety-risk states.

In this paper, we propose an intelligent-predictive method,
which allows implemented by Deep Neural Networks
(DNNs) for safety-risk estimation of the train control system
in an uncertain environment. The model takes into account
many factors related to risk for performing well. To be spe-
cific, a Deep Belief Network (DBN) is trained to predict the
kind of risk states that would cause by some safety-related
factors. The model is granted two critical abilities to solve
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FIGURE 1. Procedure for predicting CBTC hazard risk.

the uncertainty and analysis of the correlation between the
factors. It is capable of predicting the risk of the system and
guiding the controller to prevent hazards.Moreover, a method
to select and generate risk factors is proposed for processing
the data before training. We transfer the formal verifica-
tion result obtained by Statistical Model Checking (SMC)
to the risk factors about safety-critical function, Movement
Authority (MA). SMC samples behaviors (simulations) of the
system, and solves the risk problem efficiently from formal
methods perspective.

Fig. 1 explains the implementation process for building
a neural network of safety-risk prediction of CBTC sys-
tem based on deep learning. At first, essential works fac-
tor selction and MA calculation must be done. The quality
of relevant factors selection can affect the effectiveness of
learning algorithms in risk prediction to no small extent. We
choose eight factors that are the most correlated to risk states
to form a factor set base on previous researches [1], [6], [7].
At the same time, SMC is computing for the possibility ofMA
calculation failure. The quantitative verification can estimate
the probability of a system-safety requirement by simulating
and sampling themodel. Next, we generate and preprocessing
the data contained in the dataset, including missing value
processing, outlier processing, and data regularization, etc..
We divided the dataset after preprocessing into two parts:
train dataset and test dataset, used train the DNN and evaluate
the training result respectively. Afterward, we build DNN
and train the network with the dataset. Eventually, once the
training is finished, the test dataset was supplied to the trained
DNN to calculate the safety-risk status at the current condi-
tion and evaluate the performance of the trained DNN.

The remainder of this paper is as follows. In the next
section, we review related work about safety-risk assessment.
Subsequently, we describe the intelligent-predictive model
in detail in Section III. In Section IV, we conduct several
experiments and analyze the results. Finally, we conclude this
paper in Section V.

II. RELATED WORK
There is a rich history of research on assisting in
urban rail transit management and control for improving

transportation efficiency. In many research works, safety-risk
analysis and evaluation are not only be viewed as essential
functional components in urban rail transit operation but also
a pivotal guarantee mechanism to the safety of transportation.
Researchers propose a wide variety of models that applied to
analysis the safety of railway traffic.

H. Z. Huang et al. adopts FTA in safety analysis for railway
traffic safety guarantee. In the fuzzy fault-tree model pre-
sented, a fuzzy set defined in probability space is proposed
and applied to substitute the probability of failures. They
mainly focus on accidents caused by human errors and hard-
ware failures [8]. T.M. Zhu et al. proposed a state transition
prediction approach for traffic state prediction and conflict
detection based on proper State Transition Maps (STMaps)
and corresponding relation matrices [9].

Safe control through formal methods is an emerging
research idea of interest due to the reliability and provability
of formal methods that usually applied to safety-critical sys-
tems. M. Comptier et al. conducts a safe analysis of RATP’s
CBTC system Octys. They present rigorous mathematical
proof using Event-B and Atelier B tool to the safety of
the system [10]. However, Event-B and some other formal
methods require space and time discrete, and it may not
be satisfied in Cyber-Physical Systems (CPSs). For hybrid
systems, the Hybrid I/O Automaton (HIOA) framework is
helpful for hybrid system verification. For making the induc-
tive proof tractable, the HIOA model decomposes the proof
into independent discrete and continuous parts [11], [12].

Moreover, artificial intelligence is an popular method to
guarantee the safety of railway movement. S. Nefti and
M. Oussalah proposed that Artificial Neural Networks
(ANNs) may solve the problem of predicting system faults.
By taking irregularities in the locating of the rails as input and
using wavelet transformation to reduce the dimensionality
of the input, the ANN may predict the safety rate of the
rails [13].

Rencently, deep learning [14]–[16] is increasingly popular
for solving complex problems. DNN is an effective method
for learning features from data regardless of whether or not
prior knowledge exists. DNNs have achieved enormous
success in many fields, such as data representation learn-
ing, time-series data prediction, and pattern recognition,
etc. [17]–[19]. Besides, DNNs are also a well-established
approach in traffic flow prediction [20], [21], automatic driv-
ing fault prediction [22], and railway track circuit conflict
detection [9], [23].

W.H. Huang et al. proposed Deep Belief Networks (DBNs)
with multitask learning (MTL) that can predict traffic flow in
an unsupervised fashion. They build a network architecture
consists of MTL as the top layer and DBN as the lower layer.
ForMTL beingmore productive, a grouping method has been
proposed based on the weights in the top layer. The lower
layer and MTL layer are working together to improve the
performance of the deep architecture [20].

Another essential network architecture is Recurrent Neural
Network (RNN), which is also utilized in faults prediction
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TABLE 1. List of safety-risk prediction factors in impact hazard.

and reliability assessment. J.Y.Wang and C. Zhang use a deep
learning model based on the RNN encoder-decoder to predict
the fault amount and assess software reliability. Experimental
results show that the RNN performs better in prediction than
traditional neural networks and parameter models [24].

A method is proposed using Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN) for fault diagnosis
in railway track circuits. LSTM-RNN is applied to achieve
detection and identification of errors timely by extract-
ing temporal and spatial dependencies from the available
measurement signals [23].

However, the quantitative analysis estimates the event
based on the judgment of Boolean formulae. It relies on the
expert system so that the absence of objectivity and real-
time. Methods like ETA that employed in the system design
stage are short of the consideration to stochastic behaviors
of the CBTC system in actual running environment. Formal
methods are capable of verifying the safety, yet limited by
the incapability to predict accurately. Neural Networks (NNs)
may predicting system safety-risk efficiently, but NNs is hard
to express sophisticated data features. This paper combines
formal verification and deep learning to predict behaviors of
the CBTC system under uncertainty.

III. AN INTELLIGENT-PREDICTION MODEL FOR CBTC
SYSTEM SAFETY-RISK PREDICTION
The object of our research is to build an appropriate
intelligent-prediction model to predict the safety-risk state,
taking as input with several risk-influencing factors. In this
section, we demonstrate the prediction model in detail and a
deep neural network is built using DBN in this model.

A. RISK FACTORS SELECTION
As major elements that consist of the system and its envi-
ronment, prediction factors include four members: facilities,
equipment, human, and procedures [1]. For these four types
of factors, we picked eight factors that are the most closely
relevant to the real-world. Table 1 lists the factors with their
range value.
• Facilities Communication delay includes typical and
worst-case transmission times of MAmessages between
wayside and train. The maximum number of trains is
the maximum train numbers that the CBTC system can

process within a given area of control. Once there are
too many trains in the control area, the performance and
efficiency of system control would decrease, leading to
accidents possibly.

• Equipment Train speed means the driving velocity in
train operation during the whole running process. Train
location accuracy implies the precision of the train posi-
tion measurement and reflects the size of the error.

• Human Working time indicates to the duration a driver
has been working continuously. Passenger flow refers to
the number of humans that take the subway per hour.

• Procedures MA calculation failure means that result of
calculation is not right. MA calculation failure rate is
the proportion of MA calculation error, is the ratio of
calculation error and calculation number. MA calcula-
tion time is the time spent onMA computation per cycle.

B. SMC-BASED FAILURE RATE ESTIMATION
The correctness of MA plays a vital role in avoiding colli-
sions. Incorrect MA computation could provide unreliable
control commands for the train and trackside equipment.
EOA refers to an endpoint of the safety block that the track
area from the current position of the train to this endpoint is
safe to move, no other train can enter this region simultane-
ously. MA is the most crucial factor associated with collision
events, determines the end of authority (EOA).

The Zone Controller (ZC) is the heart subsystem of the
CBTC system, which is responsible for calculating the MA.
Generally, ZC figures out the MA based on the train position
and current state of related equipment on the track. The results
would be transmitted to the train to adjust its driving behavior.
In this paper, we used SMC to get the probability of the
MA computation failure. The module for computation of the
EOA is CAL_EOA, which is built using MATLAB/Simulink
in our preliminary work to grasp the computation scenario
simulation samples.

We sample the data in every short time for collect the data
about the information about train running. In each sampling
point, the wrong information about the end of the travel may
result in incorrect control command, which causes accidents.
However, it is not easy to determine whether the current MA
is wrong. A better method is to use MA calculation failure
rate at current system parameters.

1) FORMAL SPECIFICATION
We convert the MA failure probability computation problem
into a quantitative verification of safety requirements. We
obtained the probability by employing system simulation
on probabilistic and formal verification techniques. In this
paper, the SMC is applied. SMC is a simulation-based
approach to verify properties specified by temporal logic
[25]. The inputs of the SMC model checker are a sys-
tem model and a specification in temporal logic. Temporal
logic is the formal language for describing system proper-
ties, consists of a set of propositions and temporal oper-
ators. The commons are Linear Temporal Logic (LTL),
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Computational Tree LogicL (CTL), Probabilistic Computa-
tional Tree Logic (PCTL), and Bounder Linear Temporal
Logic (BLTL). Describing the requirements with temporal
logic can well verify the satisfaction of the constraint during
system operation. Model construction and sampling execu-
tions trace of the model is the first steps. After sampling,
the statistical inference would be applied.
Definition 1: Given a CAL_EOA model M, and a safety

requirement property φ, statistical model checking estimation
would verify whether the model M satisfies the specifica-
tion φ with higher or equal probability to the threshold θ ,
the verification target formally defined as:

M � P≥θ (φ) (1)

Five critical sensors are involved in the calculation of the
MA. As long as each sensor is guaranteed to receive and
transmit correct values at each moment, the MA calculation
would not fail. We described the requirement utilizing BLTL,
described as:

φ = F100G1(φ0(t) ∧ φ1(t) ∧ φ2(t) ∧ φ3(t) ∧ φ4(t)), (2)

where φ is the properties specification, φ(i), i = 1, 2, 3, 4
means invalid values and wrong MA that never gener-
ate by the sensors at the moment t , follows the Bernoulli
distribution, denote as:

φi(t) = InvalidValueDetected(t). (3)

where InvalidValueDetected(t) is the function that indicate
whether the value generated by sensor and MA is wrong.
Formula 2 states that within 100 cycles, at any moment, five
sensors would not produce invalid values and wrong MA
would not be generated.

Unlikely the classical statistical model checking, SMC
used in this paper method use random sampling of system
execution paths. The improved SMC cooperate with impor-
tance sampling and cross-entropy method to reduce sample
state space. Based on Monte Carlo method, which generate
N random simulations sequence χ1, . . . , χN , the probability
is compted as:

ρ̂ =
1
N

N∑
i=1

B (χi � ψ) , (4)

where ρ̂ is the proportion of χi � ψ , B is an indicator function
that returns 1 if ψ is satisfied in χi or 0. When the sample
size is sufficiently large, the Bernoulli distribution would be
closed to a normal distribution, whose the variance is:

D(χi) = N ρ̂(1− ρ̂). (5)

However, when ρ̂ keeps variance as low as possible, larger
samples space is required.

2) IMPORTANCE SAMPLING
Importance sampling is a useful technique to reduce sample
space in the employment of SMC [26]. By using weighted

system simulations, it is possible to realize rare proper-
ties. Importance sampling works by introducing a weighting
function W (χi) on the observed random variables without
expectancy E(χi) change and variance diminishing. There-
fore, finding a proper weighting function distribution is a
crucial problem.Suppose the weighting function and ran-
dom variables χi with optimal density f∗ exist, expectancy
E(χi)can be written as:

E(χi) =
1
N

N∑
i=1

B(χi � ψ)W (χi),

W (χi) =
f (χi)
f∗ (χi)

,

f∗ (χi) =
Nf (χi)∑N

i=1 B(χi � ψ)E (χi)
.

(6)

Zero-Variance is hard to achieve, but proximal dis-
tributions can be obtained by checking members of a
parameterized family of distributions. The cross-entropy
method may select the appropriate members that minimize
Kullback-Leibler divergence from the optimally biasing,
through sampling from the original and unbiased distribution.
Once appropriate density distributions computed using the
cross-entropy method, and then the probability is calculated
base on the distribution. MATLAB/Simulink is applied for
the model implementation platform.

C. NETWORK ARCHITECTURE
We use DBN to construct our proposed model. More specif-
ically, stacking Restricted Boltzmann Machines (RBMs) to
form a DBN and using a softmax regression layer at the
output layer, and we can perform supervised fine-tuning on
the whole network.

1) RBM AND DBN
Deep learning succeeds in many fields, is a combination of
several RBMs. An RBM consists of two layers, and one layer
is binary stochastic hidden units and another visible units,
where the hidden layer of each sub-network serves as the vis-
ible layer for the next layer. The hidden variables have binary
values, either 0 or 1. The values of all units are stochastic vari-
ables. Generally, they obey Bernoulli distribution or Gaussian
distribution. All visible layer units are fully-connected to all
hidden layer units, and no connection in visible layers. The
visible layer unit describes an aspect or feature of observed
data, and the meaning of the hidden layer unit can be view as
a feature extraction layer.

RBM is an Energy-Based model, which associate scalar
energy to each configuration of variables. Its energy function
defines the probability distribution over variables. The energy
function of the configuration (v,h) is a linear function and
defined as:

E(v,h; θ ) = −
|V |∑
i=1

|H |∑
j=1

wijvihj −
|V |∑
i=1

bivi −
|H |∑
j=1

ajhj, (7)
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where v is visible vector units, h is hidden vector units, θ =
(w,b, a) is the parameter tuple, wij is the symmetric weight
between visible unit j with bi and aj as their bias. |V | is the
number of visible layer units and |H | is the hidden. It is easy
to compute the conditional probability distributions with this
the probability of a visible vector v:

p(v; θ ) =
∑

h e
−E(v,h;θ )∑

u
∑

h e
−E(v,h;θ ) . (8)

Through training a sequence of RBMs iteratively, DBN
may learns the feature of the input data. The parameters
θ is the heart of training algorithm, which can learned by
p(v|h; θ ) and prior distribution over hidden vectors p(h|θ )
[20]. Therefore, the probability of visible variables generation
as follows:

p(v) =
∑
h

p(h|θ )p(v|h; θ ). (9)

Once the data is not binary and cannot be modeled with
the original RBM, the DBN would be modeled with real
value that follows a normal distribution instead of the binary
RBM, which is called real-time RBM. Corresponding energy
function and the conditional probability distributions are as
follow:

E(v,h; θ )=
|V |∑
i=1

(vi−bi)2

2σ 2
i

−

|H |∑
j=1

ajhj−
|V |∑
i=1

|H |∑
j=1

vi
σi
wijhj (10)

p(hj|v; θ ) = sigm

 |V |∑
i=1

wijvi + aj

 (11)

p (vi|h; θ) = N

σi |H |∑
j=1

wijhj + bi, σ 2
i

 (12)

where σ is the standard deviation vector of normal distribu-
tion visible units, and N

(
µ, σ 2

)
is the normal distribution

with mean µ and variance σ .
The neuaral network built consist of three hidden layers

that every layer contains 256 units. There is an RBM between
adjacent layers, RBMs stacked to form a DBN. Through the
many experiments and result analysis, the best configura-
tion of the RBM number is determined to 3. The structural
relationship between layers is shown in Fig. 2. Furthermore,
the value of hyper-parameters influences the learning effect
of neural networks, such as the hidden layers amount and the
number of units per layer. Proper network structure and its
parameter can improve the training to be optimal.

2) INPUT AND OUTPUT
Table 1 indicates safety-risk factors selected, the dimension
of the date for input is eight. Suppose I is the input vector of
the network:

I = (A,B,C,D,E,F,G,H ) (13)

where A,B, . . . ,H represent the input dimension of each
portion separately.

FIGURE 2. The network structure of the intelligent-prediction model for
safety-risk estimation.

We use the softmax regression layer in the output layer,
which layer contains 4 units, one for the normal state and
three for each hazard. Suppose vector O is the output vector,
composed of the possibility ok (k = 0, 1, 2, 3) of safety risk
occurring. The probability of the risk occurring increaseswith
the increasing of the value of ok .

O = {o0, o1, o2, o3} (14)

where o0 represents the safe state which no any risk occurs, o1
means to the train-to-train collisions, o2 depicts derailment of
train and o3 is train-to-structure collisions. The softmax layer
takes the output of the last layer as its input. The probability
of each risk ok can be computed by:

P(Y = ok ) =
esigm(wkv+ak )∑3
i=0 e

sigm(wiv+ai)
(15)

where Y (t) is the prediction result at time t , sigm (·) is the
sigmod fuction.

D. TRAINING ALGORITHM
In our method, during the training process, each layer is
training separate from other layers. The first visible layer as
input and the first hidden layer as output, while the weights
are optimal. The output of this layer would serve as the input
for the next hidden layer. Repeatedly, the method repeat in a
next new network, first hidden layer as the input layer, and
the current second hidden layer as the output. This proce-
dure is iterated until training finished, that except the output
layer, every layer learns their weights. The loss function is
crucial for learning the optimal weight of the network. The
optimize purpose of training is to minimize the objective
function, which accumulated by the loss function of all lay-
ers. We choose the cross-entropy loss function as our loss
function:

loss(t) = − log (P (Y (t) = ok)) (16)
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FIGURE 3. Risk-state class distribution of unbalanced dataset.

where P (Y (t) = ok) is the probability of correct prediction
described in Equation 15. Cross-entropy describes the dis-
tance between two probability distributions. The smaller the
cross entropy, the closer the two are. The object function is
the function to minimize the loss function:

min J (θ ) = min
∑
t

loss(t) (17)

IV. EXPERIMENT
In this section, we implement our intelligent-prediction
model after training to estimate the safety-risk state of the
CBTC system, and evaluate the performance of the model.
Besides, the experiment result would be compared with other
classical models.

A. EXPERIMENT SETUP
1) DATASETS
We gathered data from a company in which we cooperate,
CASCO Ltd. The company dedicated to the train signal con-
trol system and has much data about the train control system.
We split the dataset into training and test dataset. The total
dataset has 15000 samples. We use the hold-out method to
split our dataset into test dataset and training dataset. We
randomly select 2500 samples from the dataset as the test
dataset, and 12500 samples as the train dataset.

We use a combination of collection and simulation to
generate a dataset. The Data Storage Unit (DSU) subsystem
stores the used line information and configuration file infor-
mation of each subsystem in the CBTC system. The DSU is
composed of static track database, train database system, con-
figurable parameter database, and dynamic track database.
It includes trains’ parameters such as length, speed, train
time responses and track information like track, grade, curva-
ture, maximum speed. For equipment, facilities, and human,
we collected data from historical data in DSU of related
companies. MA calculation failure probability, the non-DSU
data, is not stored in the database.

Fig. 3 shows the sample class distribution in the dataset.
The dataset is unbalanced obviously, 86.4% of samples
are in the safe state, while only 13.6% are in the risk
states.

2) PRE-PROCESING
The datasets need some extra preparation steps for suitable
to the problem and compatible with the network. In this
paper, before the training process, we preprocess the datasets,
including missing-value processing, outlier processing, and
data normalization. In the dataset, some value of the sample
is missing, the value-missing presents its randomness, and
the number of missing values is small. Therefore, we delete
the samples whose feature value is not complete. Because of
some unknown error, sensors may gather outliers, so attribute
specification is used for removing the outlier. Besides,
the datasets are normalized by min-max normalization:

x =
xi − xmin

xmax − xmin
(18)

Data normalization may make the data have a mean of
zero or to be centered, with a standard deviation of one, which
assures that total data obey normal distribution.

3) HAZARD PREDICTION
IEEE standard 1474.1-2004 [1] indicates that for identify
hazards and prevent accidents, establishing a system safety
assessment program is necessary for CBTC systems. Seven
common critical/catastrophic system hazards of CBTC sys-
tems are listed in the IEEE standard 1474.1-2004. For sim-
plifying the complexity of the problem and highlighting our
method, we select the three most essential and severe hazards
and a safe condition as follows.

• Safe Condition (H0)
• Train-to-Train Collision (H1)
• Train-to-Structure Collisions (H2)
• Train Derailment (H3)

Safe Condition (H0) is a status without any hazards.
The implication of train-to-train collision (H1) the impact
of two trains at different angles include head-on, rear-end
and sideswipe. For H1 accidents, the main related fac-
tors are train separation, route interlock status, and traf-
fic direction reversal interlocks. Train-to-structure collisions
(H2) include collisions between trains and original equip-
ment, temporary equipment, or other buildings on the track.
H2 collisions can be addressed through restricted route pro-
tection and end-of-track protection. Train derailment (H3)
means that the vehicle departure from the correct orbit into
other or non-orbital areas and may lead to other unfore-
seen disasters. H3 failures can be prevented by overspeed
protection, interlocking protection, and broken rail detection.

4) EVALUATION METRICS
In the experiments, we adopt four evaluation metrics for
measuring the performance of the model: Accuracy, Preci-
sion, Recall, and confusion matrix. Accuracy indicates the
proportion of the correct prediction in total samples. Preci-
sion presents the portion of a risk state among the retrieved
risk states. Recall means the proportion of specific risk
states which is retrieved over the total amount of individual
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TABLE 2. Confusion matrix for the safety-risk prediction task on a group
of test dataset with 500 samples.

risk states. Confusionmatrix is an evaluationmetric that sum-
marizes the records in the dataset in a matrix form according
to the real category and the classification criteria predicted by
the model.

Accuracy =
1
n

m∑
k=1

I (f (xk) = yk) (19)

Precision =
TP

TP+ FP
(20)

Recall =
TP

TP+ FN
(21)

where I(·) is Indicator function that return 1 if the formula
is true, else it would return 0. yk is the real value and y′k is
a prediction value. TP is the true positive, FP is the false
positive, TN is the true negative, and FN is the false negative.
Confusion matrix records the full prediction result.

B. EXPERIMENT RESULT AND ANALYSIS
In experiments, we split the test dataset into 5 groups ran-
domly. We use the 5 groups of 500 samples to estimate
the performance of the intelligent-prediction model after the
training process. Table 2 shows the confusion matrix of the
safety-risk prediction task on a group of the test dataset, and
Table 3 shows evaluation metrics results on five groups. For
express conveniently, we use H0, H1, H2 and H3 denote the
different risks.

There are four kinds of the state contained in the test
dataset, in which 485 samples were identified correctly.
Table 2 presents the confusion matrix. The row means the
correct category, and the columns delegate the prediction
category.

In the evaluation, most of the predictions are correct.
However, concerning the prediction of collisions between
train-to-train and train-to-structure collision, a few mistakes
are taken. The reason for misclassification that predicts H1 as
H3 and H3 as H1may be the judgment of the endpoint type in
the EOA calculation is different. In EOA calculation, the end-
point has two types: the one is the end of the train, and another
is the turnout, which is the end of the railway or buffers. The
communication delay may be the cause of the misclassifica-
tion of H2 as H1.In the two cases, the interlocking system
cannot receive or execute control commands timely, so that
cannot be interlocked.

Table 3 shows the evaluation matrix in five groups of
test datasets. The average accuracy of the test in five
groups reaches 97.2%, and it is stable in the experiments.

TABLE 3. Model evaluation metrix in 5 groups.

FIGURE 4. Probability of each risk of some sample points in the test
dataset.

The recall of the test is 93.0%, which implies that the
intelligent-prediction model may still perform well on unbal-
anced datasets. We consider multiple influential factors and
employ a multilayer neural network that makes the pre-
diction model more precise. The result confirms that the
risk-prediction model we proposed is capable of the decline
of occurrence of hazards, and the deep learning so beneficial
for train collision prediction.

Fig. 4 indicates the probability of each risk of some sample
points in the test dataset. The values represent the probability
that the current sample encounter such hazards. At the sample
point 119, there is a very high probability in H1, which
implies that the sample may occur H1 risk. By analyzing
the sample data, we found that the MA calculation failure
rate is 0.0003 at the sampling point, which is much larger
than 10−8 means that it is hazardous for the system that may
be the main reason for this collision. Accordingly, there is a
very high probability for H2 at 82 and 130. At 71 and 127,
sample points are classified as H3 wrongly, which means
when the occurrence probability of a specific hazard at the
sample point increase, the probability of the safe state would
decrease correspondingly.

Through these analyses, we can infer that the prediction
model has reached a stable learning rate; the trained DNN
has fully learned characteristics of hazards or safe state.

C. MODEL COMPARISON
To evaluate the performance difference between our model
and the other method, we compare the performance of our
model with others in the CBTC system. Several models are
used for comparative research as baselines as follows:
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TABLE 4. Comparison of accuracy, precision and recall for different
model.

• Deep Convolutional Neural Network (DCNN).
• Multi-layer Perceptron Neural Network (MLP).
• Bayesian network.
We compare our model with others concerning accuracy,

precision, and recall on all test datasets, shown in Table 4.
Among the results in Table 4, the DBN which implement
for our intelligent-prediction model achieves the best perfor-
mance in accuracy and recall compared with all baselines.
Bias range is lower than DCNN, even if it is not the highest in
precision. The precision of DCNN is the highest in all models,
while the gap between DCNN and DBN in precision is not
huge. However, the recall metric of DBN is much higher than
DCNN. The one reason may be that DCNNwould miss some
risk-state samples in the classification.

Moreover, the performance ranking is DBN > DCNN >

MLP > Bayesian. In this experiment, the neural network
model is superior to static methods like Bayesian network.
These static methods do not consider the uncertainty caused
by various complicated factors in the system. Furthermore,
our method gets the best performance in the experiment.

Summarily, the results suggest that our
intelligent-prediction model is effective in the CBTC system
for hazard risk prediction by the combination of formal
verification and deep learning.

V. CONCLUSION
We present an algorithm to predict the safety-risk state for
guaranteeing the safety of the railway vehicles that control
by CBTC systems. The method combines formal verifica-
tion and deep learning as a means to predict the safety-risk
condition of the uncertain system without relevant prior
knowledge. The main contributions include establishing the
safety-risk estimation model, takes advantages of both deep
learning and formal methods. Through experiments, we val-
idate the availability and effectiveness of the method. The
model is capable of predicting the hazard of the CBTC system
accurately, and the accuracy of our approach reaches 0.974,
which precedes other existing methods.

In future work, more prediction factors and types of
hazards would be taken into account, which can poten-
tially improve prediction performance and safety of systems.
We are also interested in exploring the relationship between
hazards and spatial-temporal data, and other deep learning
algorithms may be implemented for solving it.
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