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ABSTRACT Among the existing biometrics methods, finger-vein recognition is beneficial because
finger-veins patterns are locate under the skin and thus difficult to forge. Moreover, user convenience
is high because non-invasive image capturing devices are used for recognition. In real environments,
however, optical blur can occur while capturing finger-vein images du to both skin scattering blur caused
by light scattering in the skin layer and lens focus mismatch caused by finger movement. The blurred
images generated in this manner can cause severe performance degradation for finger-vein recognition.
The majority of the previous studies addressed the restoration method o skin scattering blurred images;
however, only limited studies have addressed the restoration of optically blurred images. Even the previous
studies on the restoration of optical blur restoration have performed restoration based on the estimation
of the accurate point spread function (PSF) for a specific image-capturing device. Thus, it is difficult to
apply these methods to finger-vein images acquired by different devices. To address this problem, this
paperproposes a new method for restoring optically blurred finger-vei images using a modified conditional
generative adversarial network (conditional GAN) and recognizing the restored finger-vein images using
a deep convolutional neural network (CNN). The results of the experiment performed using two open
databases, the Shandong University homologous multimodal traits (SDUMLA-HMT) finger-vein database
and Hong Kong Polytechnic University finger-image database (version 1) confirmed that the proposed
method outperforms the existing methods.

INDEX TERMS Finger-vein recognition, optical blur image restoration, modified conditional GAN, CNN.

I. INTRODUCTION
Among biometric technologies such as face, iris, fingerprint,
and finger-vein recognition, finger-vein recognition has the
following benefits [1]. (1) As a finger-vein is hidden inside
the body and is typically invisible to the human eye, it is
difficult to be forged or stolen. (2) The non-invasive image
capturing ensures both convenience and cleanliness and is
more acceptable for the user. (3) Because a person has ten fin-
gers, if something unexpected happens in one finger, the other
fingers can be used for authentication. In real environments,
however, blurred images can be generated while capturing
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finger-vein images due to the focus mismatch of the
finger-vein acquisition camera lens and light scattering in the
skin layer. That is, because of the nature of the near-infrared
(NIR) light used to acquire the images of the finger-veins
present under the skin, skin scattering blur that reduces the
sharpness of the acquired finger-vein images caused by light
scattering in the tissues and moisture in the skin frequently
occurs. Numerous studies have been conducted to improve
recognition accuracy by solving skin scattering blur [2]–[8].
Conversely, motion blurring rarely occurs in the input images
because the images are captured while the fingers are fixed,
to a certain extent, on the finger-vein image capturing devices.
Differences in finger thickness among individuals, infants,
and adults, and the depth difference from the surface of the
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finger skin to the finger-vein, however, can cause differences
in the distance from the camera lens to the finger-vein. This
can result in optical blurring and reduces the sharpness of
the finger-vein images. Consequently, these skin-scattering or
optically blurred images can cause considerable performance
degradation for finger-vein recognition. To address this prob-
lem, the restoration of blurred finger-vein images is essential.

The majority of the previous studies on finger-vein restora-
tion, however, have focused on skin scattering restoratio;
only limited studies have been conducted on optical blur
restoration. Moreover, the previous studies on the restoration
of optical blur [9] have performed restoration based on the
estimation of the accurate point spread function (PSF) for a
specific image-capturing device. Thus, it is difficult to apply
the results of the study to finger-vein images acquired by
different devices. The problems of the previous studies can
be solved using a deep convolutional neural network (CNN).
This is because it is not necessary for users to estimate
PSF, as CNN determines the optimal filters from the weights
learned from the training data.Moreover, CNN can be applied
to finger-vein images acquired from different environments.

Considering these reasons, in this study, we propose
a method of performing optical-blurred finger-vein image
restoration using a conditional generative adversarial network
(conditional GAN) [10]. Unlike the early generative adversar-
ial network (GAN) [11] that generates images from random
vector inputs, the input and target images are defined as
paired cases in conditional GAN, and training is performed
such that the input image is generated similar to the target
image. Difference images are generated using the restored
finger-vein images, and finger-vein recognition is performed
with these images using deep CNN. The contents of this
study are as follows. In Section II, previous studies and their
differences from this study are described. In Section III, the
contributions of this study are explained. In Section IV, the
modified conditional GAN-based blurred-image restoration
and finger-vein recognition method proposed in this study are
described. In Sections V and VI, experimental results with
analysis and conclusions are provided, respectively.

II. RELATED WORKS
Existing finger-vein recognition can be divided into two
methods: finger-vein recognition without blur restoration
and finger-vein recognition with blur restoration. These two
methods can be further divided into the subcategories of non-
training-based finger-vein recognition and training-based
finger-vein recognition.

A. FINGER-VEIN RECOGNITION WITHOUT BLUR
RESTORATION
For the non-training-based finger-vein recognition without
blur restoration method, Lee et al. proposed a method
of extracting and recognizing finger-vein features using a
local binary pattern (LBP)-based method [12]. They first
performed the alignment of images through affine trans-
form using minutia points extracted from the finger-vein

region, and then extracted finger-vein features using LBP.
Peng et al. used an 8-way Gabor filter created by selecting
the optimal parameters [13]. They extracted the finger-vein
pattern through the fusion of images where the veins were
emphasized among the Gabor filter-applied images; they then
evaluated its performance using scale-invariant feature trans-
form (SIFT) matching robust for rotation and shift. These
studies [12], [13] have the advantage that the recognition per-
formance is improved when the appropriate filter is applied
to the image features; however, performance degradation can
occur when the designed filters are applied to finger-vein
images with different features.Moreover, when image quality
is reduced due to factors such as positional variation of the
finger, misalignment, uneven illumination, and shading that
can occur during image acquisition, relying on pre-processing
to address such problems is required.

To complement the drawbacks of this non-training-based
methods, i.e., handcrafted feature-based methods, research
on training-based methods were conducted. Wu et al. per-
formed dimension reduction and feature extraction through
principal component analysis (PCA) and linear discriminant
analysis (LDA), and proposed a method of classifying finger-
vein images using a support vector machine (SVM) [14].
This method learns various features of the images and is
robust for various elements and environmental changes dur-
ing finger-vein recognition; however, feature extraction and
dimension reduction must be preceded for classification.
In [15], [16], the performance of finger-vein verification by
genuine matching (matching when input and enrolled images
are in the same class) and imposter matching (matching
when input and enrolled images are in different classes)
was evaluated using the difference image of the enrolled
and input images as the input to CNN. This method has
the advantage of easiness to classify new finger-vein images
that have not been trained. Qin et al. created vein-pattern
maps that distinguished the finger-vein pattern area from
the background using seven baseline algorithms [17]. They
performed the labeling of the vein and background by cal-
culating the finger-vein feature probability of each pixel on
the created vein-pattern maps. After labeling, training was
performed using a divided N × N size of the original image
as the input to CNN, and the probability of the input image
being a vein pattern was finally calculated. In this method,
however, the seven baseline methods were likely to increase
the labeling error if the image quality was not acceptable
due to factors of illumination change, low resolution, and
optical blur, which could lead to recognition performance
degradation. In [18], a finger-vein recognition method based
on densely connected network (DenseNet) and shift match-
ing, was proposed; however, blurring that occurs during the
image acquisition was not considered.

B. FINGER-VEIN RECOGNITION WITH BLUR
RESTORATION
The methods explained in Section II.A did not consider blur
that could occur during the acquisition of the finger-vein
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images. In general, finger-vein image blur can be largely
divided into skin scattering blur, optical blur and motion
blur. These blurred images cause performance degradation
for finger-vein recognition. To address this problem, stud-
ies on blur restoration-based finger-vein recognition have
been conducted. As explained in Section I, the majority o
the blur that occurs during the acquisition of finger-vein
images is skin scattering blur and optical blur. Therefore,
in this study, the previous studies were divided into skin
scattering blur and optical blur, and analyzed. Among the
studies on non-training-based skin scattering blur restoration,
Lee et al. [2] measured the PSF of the skin scattering blur and
then restored the skin scattering blur using the constrained
least squares (CLS) filter based on fast Fourier transform.
However, it is difficult to apply this method if the finger-vein
image is optically blurred because this method considers
only skin scattering blur. Yang et al. [3], [4] designed a
biological optical model (BOM) considering light scattering
components and proposed a scattering removal algorithm
based on the designed model. This method, however, did not
consider background tissue, and could degrade performance
if the scattering components were not properly measured.
Yang et al. [5] proposed an algorithm for removing the
scattering effect from finger-vein images using the weighted
biological optical model (WBOM), anisotropic diffusion
and gamma correction (ADAGC), non-scattered transmission
map (NSTM), Gabor wavelets, and inter-scale multiplica-
tion operation. This method, however, is not invariant for
image rotation, scaling, or translation that can occur when
it is applied to real environments. Shi et al. [6] proposed a
scattering removal method for finger-vein images using haze
removal techniques. In the study, the anisotropic diffusion
methodwas applied to the original finger-vein image; an aver-
aging filter mask was additionally applied to the generated
diffused image to measure the scattering illumination. After
the smoothed image generated in this manner, was defined
as scattering illumination, finger-vein image restoration was
performed based on Koschmieder’s law. However, there is
a drawback that the scattering factor was only measured
approximately. Yang and Bai [7] proposed a blur restoration
method by combining depth PSF and BOM. Moreover, [8]
proposed a method of effectively removing the scattering
effects bymeasuring the scattering components and transmis-
sion maps based on an optical model-based scattering algo-
rithm. The scattering radiation and scattering components,
however, were measured approximately, and the simplified
optical model could reduce the performance of the finger-vein
recognition.

Lee and Park [9] restored finger-vein images using PSF and
the CLS filter that considered both optical blur and scattering
blur. They effectively restored finger-vein images by measur-
ing both the optical blur and scattering blur components and
improved recognition performance. This method, however,
requires the accurate prediction of parameters for measuring
the two PSFs, and long processing time. To address these
drawbacks of previous studies, this study proposes a new

method for restoring optically blurred finger-vein images
using modified conditional GAN and for recognizing the
restored finger-vein images using deepCNN. Table 1 presents
a comparison between the proposed method and previous
methods.

III. CONTRIBUTIONS
This research is novel compared to the previous studies for
the following five reasons.

- Whereas the majority of the previous studies on
finger-vein image blur restoration used non-training-
based image blur restoration methods, this study pro-
poses finger-vein image blur restoration by applying
modified conditional GAN, which is a training-based
generative network.

- The previous studies on finger-vein image blur restora-
tion were conducted with a focus on skin scat-
tering blur restoration; optical blur restoration was
rarely addressed. This study proposes an optical blur
restoration method based on modified conditional
GAN.

- The training complexity and time have been reduced and
training convergence is improved by training modified
conditional GAN for image blur restoration and deep
CNN for finger-vein recognition separately.

- Conditional GAN applies random noise to the generator
in a form of dropout to prevent deterministic output. The
generation of various outputs due to dropout, however,
can change the vein pattern of the finger-vein image to
be restored, which leads to degradation of recognition
performance. Therefore, dropout was removed in this
study because the deterministic output is required rather
than the various outputs.

- The trained modified conditional GAN and deep CNN
developed in this study, and blurred image database
according to blur intensity are published in [19] to
allow other researchers to perform fair performance
evaluations.

IV. PROPOSED METHOD
A. OVERVIEW OF PROPOSED METHOD
Figure 1 is the flowchart of the proposed method. A finger
image is captured in Step (1). In Step (2), the captured image
is binarized, the broken finger boundaries are restored, and
in-plane rotation compensation is conducted. In Step (3),
the upper and lower boundaries of the binarized image are
detected using a 4 × 20 mask and noise is removed. After
restoring the collapsed area, the final region of interest (ROI)
image for CNN input is obtained. In Step (4), the optically
blurred image is resized to 256 × 256 pixels and used as the
input to the modified conditional GAN to obtain a restored
image as output. In Step (5), the difference image to be the
input to CNN is generated using the restored finger-vein
image and enrolled image. Then, the output score is obtained
by inputting the difference image to deep CNN. Finally,
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TABLE 1. Summarized comparisons of previous and proposed methods.

in Step (6), finger-vein verification is performed based on the
output score.

B. PREPROCESSING, IN-PLANE ROTATION
COMPENSATION, AND DETECTION OF FINGER ROI
To remove the background area of the captured image,
the image is binarized and obtained as indicated in
Figure 2(b). As the background adjacent to the finger region
is not completely removed, the background is removed using
the Sobel edge detector and area threshold method [20].
A difference image is generated using the edge map created
by the Sobel edge detector and the binarized image; then,
an image with the background removed is obtained by apply-
ing the area threshold method as indicated in Figure 2(c).

To compensate for misalignment that degrades the recogni-
tion performance, the second-order moments for the bina-
rized maskM (Figure 2(c)) are calculated using Equation (1).

s11 =

∑
(x,y)∈M (y− my)2 � f (x, y)∑

(x,y)∈M I (x, y)

s12 =

∑
(x,y)∈M (x − mx)

(
y− my

)
� f (x, y)∑

(x,y)∈M I (x, y)

s22 =

∑
(x,y)∈M (x − mx)2 � f (x, y)∑

(x,y)∈M I (x, y)
, (1)

f (x, y) and (mx ,my) represent the image pixel value and
center coordinates, respectively. Based on these, the rota-
tion angle θ of Equation (2) is calculated to compensate

16284 VOLUME 8, 2020



J. Choi et al.: Modified Conditional GAN-Based Optical Blur Restoration for Finger-Vein Recognition

FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Example of the input image and in-plane rotation
compensation: (a) original image, (b) binarized image, (c) image by
background removal, and (d) image after in-plane rotation compensation.

for the in-plane rotation [21]. That is, a compensated image
is obtained through image rotation based on θ and bilinear
interpolation as indicated in Figure 2(d).

θ =



tan−1

 s11 − s22 +
√
(s11 − s22)

2
+ 4s212

−2s12


ifs11 > s22

tan−1

 −2s12

s22 − s11 +
√
(s22 − s11)2 + 4s212


ifs11 ≤ s22

(2)

The left and right ends of Figure 3(a) are thick regions of
the finger or regions with a nail that are not well illumi-
nated. These regions are not suitable to be used for recog-
nition because the accurate vein pattern cannot be captured.
Therefore, in this study, the left and right sections of an
image are removed based on the predetermined size. The

FIGURE 3. Procedure for detecting finger ROI for recognition: (a) original
image, (b) image of rotated mask, (c) image after removal of left and right
areas of (b), (d) resulting image by component labeling with (c), (e) ROI
mask by filling black region inside finger area of (d), and (f) detected ROI
image.

noise that has not been removed as shown in Figure 3(c)
is then removed using the component labeling method, and
an image is obtained as indicated in Figure 3(d). The black
area in the finger region is not necessary for recognition
because the vein pattern is not captured due to bright lighting.
Hence, the black area is filled with the average value of the
surrounding pixel positions using a 4 × 20 mask to create
an ROI mask (Figure 3 (e)). The created ROI mask is used to
obtain the ROI image as shown in Figure 3(f).

C. MODIFIED CONDITIONAL GAN-BASED BLUR
RESTORATION OF FINGER-VEIN IMAGE
GAN is a generative model where training is performed to
allow two different networks to create fake images similar to
real images for their own purposes [11]. GAN consists of two
networks, i.e., a generator and a discriminator. The generator
is trained to create fake images similar to the real images
when random noise variables are received as input, and the
discriminator discriminates fake images from the real images.
The generator is trained to allow it to create fake images that
are more similar to the real images, and the discriminator is
trained to allow it to discriminate fake images from the real
images more accurately. It is called a generative adversarial
network because it employs a structure where the generator
and discriminator gradually improve their performances as
adversaries to each other.

1) CONDITIONAL GAN ARCHITECTURE
The existing GAN models that use random noise variables as
input [11], [2]–[24] do not have sufficient control elements
to allow the input to be produced as the desired output within
a reasonable period of time, and thus convergence to the
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optimal point is difficult. To address this problem, conditional
GAN sets a condition that an image with a similar form to the
target image is given as input. Conditional GANwas designed
to allow the network to create an image similar to the target
image when the input image was received. That is, it was
designed to produce the desired output from the beginning of
training. As the vein-pattern information is extremely impor-
tant in finger-vein recognition, this study uses the original
vein-pattern image as a target and aims to restore blurred
finger-vein images similar to the original finger-vein images.
Considering these points, we decided that conditional GAN
was suitable for image restoration, and the restoration of
blurred finger-vein images proceeded using the pix2pix net-
work [10], which applies the concept of conditional GAN.

The generator of the network is designed to have a struc-
ture similar to that of U-Net [25]. U-Net was designed to
allow the features extracted from the encoder part to be
shared with the decoder part by adding skip connections
based on the encoder-decoder network [26]. If there is only
encoder-decoder without skip connections, an image with
different input and output identities could be generated when
a blurred finger-vein image is restored. The generator can
compensate for the loss of information that occurs during
down-sampling by adding skip connections and can produce
output with features similar to those of the input. For the
generator, leaky rectified linear unit (ReLU) and batch nor-
malization (BN) are used in the encoder par; ReLU, BN, and
the hyperbolic tangent (tanh) function are used in the decoder
part for structure optimization. Table 2 and Figure 4 show the
structure of the generator of the conditional GAN.

FIGURE 4. Architecture of generator with skip connections.

L1 loss, which is the difference in absolute value between
the target image and output image, is used as the generator’s
loss. This is because the L1 loss can capture low-frequency
information in many cases, even though it cannot capture
the high-frequency information of an image. L1 loss alone,
however, is not suitable to be used for restoration because it is
extremely important to capture the vein pattern, which is the

high-frequency information of the finger-vein. Conditional
GAN allows the discriminator to concentrate on the local
patch region to capture the high-frequency information [10],
which is defined as patchGAN. The patch of this patchGAN
moves within the entire image and determines whether the
local region is real or fake. This discriminator is applied to
restore the vein pattern in the local region of a finger-vein
image more similar to the original image. In this study, this
patch scale was set to 70× 70. For structure optimization,
leaky ReLU, BN, and the sigmoid function are used in the
discriminator. Table 3 and Figure 5 show the structure of the
discriminator.

FIGURE 5. Architecture of discriminator.

2) OBJECTIVE FUNCTION AND MODIFIED CONDITIONAL
GAN
The ultimate purpose of this study is to train the generating
function G that estimates the corresponding deblurred orig-
inal finger-vein image Fori from the given optically blurred
finger-vein image Fblur. The objective function of the pro-
posed method can be expressed as follows.

LcGAN (G,D)=EFblur,Fori
[
logD

(
Fblur,Fori

)]
+EFblur

[
log(1− D(Fblur,G

(
Fblur

)
)
]

(3)

LL1 (G)=EFblur,Fori
[
‖ Fori − G

(
Fblur

)
‖1

]
(4)

The final objective function is as follows.

G∗ = argmin
G
max
D

LcGAN (G,D)+ λLL1 (G) (5)

Conditional GAN applies random noise to the generator in a
dropout form to prevent deterministic output. The generation
of various outputs due to dropout, however, can transform
the vein patterns of the image to be restored, which can
cause degradation of the recognition performance. Therefore,
modified conditional GAN without dropout is proposed in
this study because the deterministic output is required rather
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TABLE 2. Discriminator of conditional GAN used for our research.

than the various outputs. Finally, the restored image Fres

from Fblur is generated based on the objective function of
Equation (5).

D. CNN-BASED FINGER-VEIN RECOGNITION
In this study, the difference image of the restored finger-
vein image is used for CNN-based finger-vein recognition.
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TABLE 3. Discriminator of conditional GAN used for our research.

The difference image is obtained from the absolute differ-
ence between the pixels of the enrolled and input images.
As image differencing sensitively responds to changes in
two different images, a typically dark image is produced for
the same classes due to the small difference between the
pixels of the two images and a bright image for different
classes due to the relatively large difference between the
pixels of the two images. The difference image can express
the characteristics of genuine and imposter matching with
a single generated image. Here, genuine matching refers
to matching when the enrolled image and input image are
data of the same class, whereas imposter matching refers
to matching when the images are data of different classes.
In the case of a finger-vein, it is possible to significantly
improve the finger-vein recognition performance through the
difference image because the vein patterns between images of
the same class has a high similarity whereas the vein patterns
between images of a different class has a low similarity.
Figures 6 (c) and (f) show examples of generated difference
images.

The generated difference image is used as the input to
the deep CNN. In this study, the performances of visual
geometry group (VGG) Net-16 [27], deep residual network
(ResNet)-101 [28], and DenseNet-161 [29] are compared for
the recognition of finger-vein images. Each pre-trainedmodel
is fine-tuned with the training data of this study. The data used
in the training and testing are difference images obtained after
resizing the images restored bymodified conditional GAN
into 224 × 224, and the output classes of each model are set
to two classes: genuine matching and imposter matching.

VGGNet-16 consists of 13 convolutional layers, 5 pooling
layers, and 3 fully connected layers (FCL). In the 1st con-
volutional layer, 64 filters of size 3 × 3 are used. Based on
this, the size of the feature map is 224 × 224 × 64 in the
1st convolutional layer, where 224 and 224 are the height and
width of the feature map, respectively. They are calculated

FIGURE 6. Examples of difference images for enrolled and input images:
(a) enrolled image and (b) input image from same class, (c) difference
image of (a) and (b), (d) enrolled image and (e) input image from
different class, and (f) difference image of (d) and (e).

based on (output height (or width)= (input height (or width)
– filter height (or width) + 2 × the number of padding) / the
number of strides + 1) [30].
The ResNet model is characterized by applying the identity

mapping using shortcut connections. This is effective in pre-
venting the accuracy-saturated and degradation problems that
occur as the depth of the network increases. It is also possible
to reduce information loss by placing a shortcut connection
with the previous layer for vein-pattern feature information
that can disappear through convolution and pooling opera-
tions. In this study, it is important to reduce the loss of the vein
pattern for reasons similar to those for removing the dropout
of conditional GAN. Therefore, the shortcut connections of
ResNet are important for this study.

In the case of ResNet-101, the depth of the network
is high because there are as many as 101 layers. As the
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depth increases, the dimension increases, and the subsequent
parameters increase. To address this problem, ResNet added
a bottleneck layer that includes 1× 1 convolution operations.
The bottleneck layer was designed to reduce the feature map
dimension using 1 × 1 size convolution operations, apply-
ing 3 × 3 convolution operations. for the feature extraction
and increasing the dimension again by applying 1 × 1 con-
volution operations. This can effectively reduce the feature
map dimension, and consequently reduce the computational
cost compared to a structure where two 3 × 3 convolution
operations are directly connected.

DenseNet uses dense connectivity, which improves the
skip-connection structure of ResNet. Dense connectivity is
a method for concatenating the feature map of the l th layer
and those of previous layers in a dense block while adding
a channel. Therefore, the input of the l th layer consists of
the feature maps (x0, x1, . . . , xl−1) of previous layers. Equa-
tion (6) indicates how nonlinear transformation is performed
in the l th layer of DenseNet [29].

xl = Hl([x0, x1, . . . , xl−1]) (6)

In Equation (6), [x0, x1, . . . , xl−1] is the concatenation of
the feature maps from Layer 0 to Layer l. The dense block
delivers the features of the previous layer to the subsequent
layer through the concatenation of the previous and subse-
quent layers. This can improve performance while preventing
signal attenuation that occurs as the depth of layers increases.
As the depth of the network increases, however, the size of
the network becomes extremely large because there is an
excessive number of channels for the concatenated feature
maps. To prevent this, DenseNet added a bottleneck layer
between the layers in the dense block. Consequently, the use
of the bottleneck structure reduces the computational cost
while preventing an increase in the size of the feature map.
Nevertheless, the output of the dense block concatenates all
the layers in the block. Thus, the size of the feature map
becomes extremely large as the depth of layers increases or
the number of layers increases in the dense block. To address
this problem, the size of the feature map was reduced by
adding a transition layer between the dense blocks. The tran-
sition layer reduces the number of channels in the feature
map by half through a 1 × 1 convolution operation, and
decreases the width and height by half through 2× 2 average
pooling. Moreover, DenseNet adjusts the output feature map
size by specifying a growth rate. Each layer in the dense block
produces a feature map in the size of the growth rate. The
growth rate of DenseNet-161 used in this study was 48. The
dense block is an advantage in that it can reduce the loss of
vein pattern information that can disappear as the depth of the
network increases.

Based on the output score obtained after inputting the dif-
ference image into CNN, the matching, genuine or imposter,
is determined. The followingmethod is used. Genuinematch-
ing is concluded if the output score is less than the thresh-
old determined based on the equal error rate (EER) of the
genuine matching and imposter matching distribution, which

was obtained in advance from the training data. Otherwise,
imposter matching is determined. EER is the error rate at the
point where the false acceptance rate (FAR), which is the
error rate of incorrectly accepting imposter data as genuine
data, becomes equal to the false rejection rate (FRR), which is
the error rate of incorrectly rejecting genuine data as imposter
data. The recognition error rate is measured by the receiver
operating characteristic (ROC) curve for FAR and the genuine
acceptance rate (GAR). In this case, GAR is calculated as
(100 − FRR) (%).

V. EXPERIMENTAL RESULTS
A. TWO OPEN DATABASES FOR EXPERIMENTS
In this study, two types of finger-vein databases were used.
The first database was the Hong Kong olytechnic University
finger-image database (Version 1), which consisted of two
sessions [20]. In Session 1, index and middle-finger images
(six images per finger) were acquired from 156 people,
amounting to 1,872 images (156 people × 2 fingers ×
6 images). In Session 2, index and middle-finger images
(six images per finger) were obtained from 105 people from
the 156 people of Session 1, amounting to 1,260 images
(105 people × 2 fingers × 6 images). In this study,
only the images of Session 1 were used. The second
database was the Shandong University homologous mul-
timodal traits (SDUMLA-HMT) finger-vein database [31].
The SDUMLA-HMT finger-vein database acquired the
index, middle, and ring-finger images (six images per finger)
of both hands from 106 people, which produced 3,816 images
(106 people × 2 hands × 3 fingers × 6 images). In this
study, the Hong Kong olytechnic University finger-image
database (Version 1) is referred to as PolyU-DB and the
SDUMLA-HMT finger-vein database as SDU-DB.

In the experiment, two-fold cross-validation was
performed. The PolyU-DB and SDU-DB databases were
composed of 312 and 636 classes, respectively. In the 1st fold
validation, the images of 156 classes were used for training
and the remaining images of 156 classes were used for
testing in the case of PolyU-DB. In the case of SDU-DB,
the images of 318 classes were used for training and the
remaining images of 318 classes were used for testing. For
blurred images, a database was constructed in this study by
applying Gaussian blur to PolyU-DB and SDU-DB because
there was no open database for optically blurred finger-
vein images. Gaussian blur was generated with filter sizes
of 11× 11 (standard deviation of 11), 15 × 15 (standard
deviation of 15), and 19 × 19 (standard deviation of 19).
As mentioned, the experiment was performed using two-
fold cross-validation. Therefore, in the 2nd fold validation,
training and testing were performed again by switching the
training and testing data used in the 1st fold validation. This
prevented the data of the same classes from being used again
in training and testing (open-world setting). The average of
the accuracy measured from these two experiments was used
as the final recognition accuracy.
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TABLE 4. Descriptions of experimental databases with augmented data.

B. DATA AUGMENTATION AND EXPERIMENTAL SETUP
The two databases (PolyU-DB and SDU-DB) used in this
study had a small number of images, which were not suf-
ficient for training a large number of weights in the deep
CNN structure. Therefore, an overfitting problem could
occur. To address this problem, a data augmentation method
was performed to increase the amount of training data.
By using the data augmentation method, the number of
images increased by a factor of 14 times, including the origi-
nal images, through a 1-3 pixel translation of the images in the
up, down, left, right, and overall directions. Table 4 describes
the original and training images of PolyU-DB and SDU-DB.
As explained in Section V.A, half of the total classes of each
database were used as training data and the other half as test-
ing data. The data augmentationmethod generated 78 images,
which was 13 times as many as the original 6 images per
class. One of these 78 images was selected to be the enrolled
image; the remainder became input images. Using the data
obtained from these, training based on genuine and imposter
matching was performed. As the number of imposter matches
is typically greater than the number of genuine matches,
there is a problem in that the finger-vein recognition CNN
is biased to imposter matching data. Therefore, in this study,
imposter matching images were randomly selected to match
the number of genuine matching images and were used as the
training data. This augmentation method was applied to both
databases in the same manner. The method was applied only
to the training data; the original images without augmentation

were used for testing data. To restore optical blur for the
finger-vein images, optically blurred finger-vein images were
required in this study. As there was no optically blurred
data acquired from the real environments, it was necessary
to generate blurred images. In this study, optically blurred
images were generated by applying Gaussian blur, which is
similar to the optical-blur effect, to the original finger-vein
images.

Gaussian filtering is commonly used for the removal of
noise in images and it generates smoothing and blurry out-
put [32]. As the blur intensity does not occur constantly
when images are acquired in real environments, images were
generated by applying differing blur intensities.

The generated optically blurred image Fblur and origi-
nal image Fori were used as the input and target of the
conditional GAN, respectively, as indicated in equations (3)
and (4).

In this study, training and testing were performed on a
desktop computer environment including an Intel R©CoreTM

i7-3770K CPU @ 3.5 GHz (4 cores) with 16 GB RAM and
NVIDIA GeForce GTX 1070 (1920 compute unified device
architecture (CUDA) cores) graphic processing unit (GPU)
card with graphics memory of 8 GB [33]. An algorithm was
implemented using the Caffe framework [34], TensorFlow
framework (version 1.9.0) [35], Python 3.6.8 Version [36],
and compute unified device architecture (CUDA) (Ver-
sion 9.0) [37] with CUDA deep neural network library
(CUDNN) (version 7.1.4) [38].
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FIGURE 7. Example images of different trials from the same finger of one
individual from each database: (a) PolyU-DB and (b) SDU-DB.

C. TRAINING OF MODIFIED CONDITIONAL GAN MODEL
FOR BLUR RESTORATION
The number of maximum epochs, mini-batch size, and
learning rate, which were used as the training parameters
of themodified conditional GAN, were set to 40, 4, and
0.002, respectively. During training, random jittering was
applied to the scale [10]. That is, the input image of the
size of 256× 256 pixels was resized to 286× 286 pixels and
then randomly cropped to 256× 256 pixels to be used as the
input to the network. Moreover, in this study, the adaptive
moment estimation (Adam) optimization [39] method was
used for the training of the modified conditional GANmodel.
Figure 8 shows the discriminator loss and generator L1 loss,
which are the training loss of the modified conditional GAN
based on the epoch. As indicated in Figure 8, the loss values
converged as the number of epochs increased. This indicates
that the modified conditional GAN used in this study was
fully trained.

D. TRAINING OF CNN MODEL FOR FINGER-VEIN
RECOGNITION
For the training of the CNN model for finger-vein recogni-
tion, the stochastic gradient descent (SGD) method [40] was
used. The SGDmethod reduces the learning rate by multiply-
ing the learning rate by the gamma value for each step size in
mini-batch units and achieves the rapid convergence of the
training accuracy and loss. The value obtained by dividing
the number of total training data by the mini-batch size is
referred to as the number of iterations, and the moment when
the training has completed the number of iterations is referred
to as 1 epoch.

Therefore, the number of maximum iterations is identical
to the number obtained by multiplying the number of
iterations by the epoch. As explained in Section IV.D, the per-
formances of VGG Net-16, ResNet-101, and DenseNet-
161 were compared in this study for the CNN model for
finger-vein recognition. For the training parameters of VGG
Net-16, the number of output classes was 2 (authentic,
imposter), number of maximum epochs was 25, mini-batch
size was 24, learning rate was 0.001, step size was 16 epochs,
momentum was 0.9, and gamma value was 0.1. For the

FIGURE 8. Examples of loss curves of modified conditional GAN with
training data of SDU-DB: (a) discriminator loss and (b) generator L1 loss.

training parameters of ResNet-101, the number of output
classes was 2 (authentic, imposter), number of maximum
epochs was 25, mini-batch size was 4, learning rate was
0.001, step size was 16 epochs, momentum was 0.9, and
gamma value was 0.1. Lastly, for the training parame-
ters of DenseNet-161, the number of output classes was 2
(authentic, imposter), number of maximum epochs was 25,
mini-batch size was 4, learning rate was 0.001, step size was
16 epochs, momentum was 0.9, and gamma value was 0.1.
Figures 9 and 10 show the graphs of the training loss and
accuracy in the VGG Net-16, ResNet-101, and DenseNet-
161 models, which used the difference images of the images
restored by the modified conditional GANs obtained from
PolyU-DB and SDU-DB as input. As can be observed from
these training graphs, the training loss virtually converged to
zero and the accuracy essentially converged to 100.

E. TESTING RESULT WITH POLYU-DB
Figure 11 shows examples of finger-vein images restored
through modified conditional GA. As indicated in Figure 11,
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FIGURE 9. Examples of loss and accuracy curves of (a) VGG Net-16,
(b) ResNet-101, and (c) DenseNet-161 with training data of PolyU-DB
restored by modified conditional GAN.

the finger-vein images optically blurred by different blurring
kernels were well restored by the modified conditional GAN
proposed in this study, and clearer finger-vein patterns closer
to the original images were observed.

FIGURE 10. Example of loss and accuracy curves of ResNet-101 with
training data of SDU-DB restored by modified conditional GAN.

FIGURE 11. Results of image blur restoration by modified conditional
GAN: (a), (d), and (g) original images. (b), (e), and (h) blurred images by
Gaussian filter size 11 × 11 (standard deviation of 11), 15 × 15 (standard
deviation of 15), and 19 × 19 (standard deviation of 19), respectively.
(c), (f), and (i) restored images of (b), (e), and (h), respectively.

In the next experiment, the EERs of the finger-vein recog-
nition based on without blurring and with different blur inten-
sities were measured as indicated in Table 5. The experiments
were performed using four methods. In scheme 1, the training
was performed using the original training data without blur-
ring and the EER of the finger-vein recognition wasmeasured
using the remaining testing data. In scheme 2, the EER of
finger-vein recognition was measured with blurred testing
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data using CNN classifier trained with the original training
data without blurring. In scheme 3, training was performed
using blurred training data and the EER of the finger-vein
recognition wasmeasured using the remaining blurred testing
data. In scheme 4, training was performed using the training
data restored by the proposed modified conditional GAN
and the EER of the finger-vein recognition was measured
using the remaining testing data restored by the modified
conditional GAN. As indicated in Table 5, when the input
image was blurred, the EER of the finger-vein recognition
increased compared to no blurring. As the blur intensity
increased (as the Gaussian filter size and standard deviation
increased), the EER of the finger-vein recognition increased.
It would appear that blurring reduced the distinctiveness
between the vein pattern and other regions, and thus reduced
the recognition accuracy as indicated in Figure 11. More-
over, in all cases, when the training was performed using
the training data restored by the proposed modified condi-
tional GAN and recognition was performed using the remain-
ing testing data restored by the modified conditional GAN
(scheme 4), the recognition accuracy was greater compared
to schemes 2 and 3.

Figure 12 shows the recognition performances of
schemes 2, 3, and 4 based on the blur intensities for
PolyU-DB with receiver operating characteristics (ROC)
curves. As indicated in Figures 12 (a), (b), and (c), when
training and recognition were performed with the training
data and testing data that were restored using the modified
conditional GAN, scheme 4 is greater recognition accuracy
than schemes 2 and 3 in all cases.

In Table 6, the performance of the proposed modified
conditional GAN-based restoration was compared with the
existing state-of-the-art restoration methods using different
CNN recognition models. The state-of-the-art restoration
methods included DeblurGAN [41], cycle-consistent adver-
sarial networks (CycleGAN) [42], and original conditional
GAN [10]. For fair performance evaluation, the same CNN
models for finger-vein recognition were used in all cases,
and the recognition accuracy was measured using the afore-
mentioned scheme 4 method. As indicated in Table 6, when
the proposed modified conditional GAN-based restoration,
proposed in this study, was performed, the finger-vein recog-
nition accuracy was greater compared to the existing state-of-
the-art restoration methods.

In Table 7, the recognition accuracy was compared for
the aforementioned schemes 1 through 4 using differ-
ent CNN models for finger-vein recognition. The com-
pared CNN models for finger-vein recognition included
VGG Net-16 [27], ResNet-101 [28], andDenseNet-161 [29].
As indicated in Table 7, in all cases and all CNN models,
the proposed cheme 4 method is greater recognition accuracy
than chemes 2 and 3.

F. TESTING RESULT WITH SDU-DB
To verify the performance of the proposedmethod in different
finger-vein database environments, the testing performance

FIGURE 12. ROC curves of finger-vein recognition of schemes 2–4 based
on different blur intensities in PolyU-DB for Gaussian filter size: (a) 11×

11 (standard deviation of 11), (b) 15 × 15 (standard deviation of 15), and
(c) 19 × 19 (standard deviation of 19).

was measured using SDU-DB, the second open database.
As shown in Table 8, the EERs of the finger-vein recog-
nition based on without blurring and with different blur
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TABLE 5. Comparisons of finger-vein recognition error (EER) with PolyU-DB based on no blurring and different blur intensities (unit: %).

TABLE 6. Comparisons of finger-vein recognition error (EER) in the case of training and testing with restored images (scheme 4) by four different
restoration methods using different CNNs with PolyU-DB blurred images by Gaussian blurring of 19 × 19 (standard deviation of 19) (unit: %).

TABLE 7. Comparisons of finger-vein recognition error (EER) for three different CNNs for finger-vein recognition with PolyU-DB blurred images by
Gaussian blurring of 19 × 19 (standard deviation of 19) (unit: %).

TABLE 8. Comparisons of finger-vein recognition error (EER) with SDU-DB based on no blurring and different blur intensities (unit: %).

intensities were measured. The experiments were performed
in schemes 1 through 4 as mentioned above. As indicated
in Table 8, when the input image was blurred, the EER of the
finger-vein recognition increased compared without blurring.

Moreover, as the blur intensity increased (as the Gaussian
filter size and standard deviation increased), the EER of
the finger-vein recognition increased. It would appear that
blurring reduced the distinctiveness between the vein pattern
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FIGURE 13. ROC curves of finger-vein recognition of schemes 2 4 according to various blur intensities in SDU-DB. In the case of Gaussian filter size
(a) 11×11 (standard deviation of 11), (b) 15×15 (standard deviation of 15), and (c) 19×19 (standard deviation of 19).

TABLE 9. Comparisons of finger-vein recognition error (EER) in the case of training and testing with restored images (scheme 4) by four different
restoration methods with SDU-DB blurred images by Gaussian blurring of19 × 19 (standard deviation of 19) (unit: %).

TABLE 10. Comparisons of finger-vein recognition error (EER) for finger-vein recognition with SDU-DB blurred images by Gaussian blurring of 19 × 19
(standard deviation of 19) (unit: %).

and other regions, and thus reduced the recognition accuracy.
Moreover, in all cases, when training was performed using
the training data restored by the proposed modified condi-
tional GAN and recognition was performed using the remain-
ing testing data restored by the modified conditional GAN
(scheme 4), the recognition accuracy was greater compared
to schemes 2 and 3.

Figure 13 shows the recognition performances of
schemes 2, 3, and 4 based on the blur intensities for SDU-DB
with ROC curves. As indicated in Figures 13 (a), (b), and (c),
when training and recognition were performed with the
training data and testing data that were restored as modified
conditional GAN, scheme 4is greater recognition accuracy
than schemes 2 and 3 in all cases.

In Table 9, the performance of the proposed modified
conditional GAN-based restoration was compared with the
existing state-of-the-art restoration methods [10], [41], [42].
For fair performance evaluation, the same CNN for finger-
vein recognition was used in all cases, and the recognition
accuracy was measured using the scheme 4 method men-
tioned above. As indicated in Table 9, when the proposed
modified conditional GAN-based restoration was performed,

the finger-vein recognition accuracy was greater compared to
the existing state-of-the-art restoration methods.

In Table 10, the recognition accuracy is compared for
the aforementioned schemes 1 through 4 for the finger-vein
recognition [28]. As indicated in Table 10, in all cases and
all CNN models, the proposed cheme 4 method is greater
recognition accuracy compared to chemes 2 and 3.

Figures 14 (a) and (c) show authentic and imposter match-
ing before restoration, respectively, and the vein pattern is
hardly distinguishable due to optical blurring. These repre-
sent the case of incorrect recognition. Figures 14 (b) and (d)
show authentic and imposter matching after restoration,
respectively, and represent the case of correct recognition
by solving the incorrect recognition problem that occurred
in Figures 14 (a) and (c) with the proposed method.

Figure 15 shows an example of false rejection cases
and false acceptance cases despite the optical blur restora-
tion method. In the case of false rejection such as
Figure 15 (a) and (b), the vein pattern is not clear because of
the darkness of the vein region of the input image, and the
degree of misalignment is extremely large. In this case, the
problems could not be solved by the modified conditional
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FIGURE 14. Examples of the correct recognition cases before optical blur restoration and correct recognition cases after optical blur
restoration. (a) Incorrect authentic matching before restoration, (b) correct authentic matching after restoration, (c) incorrect imposter
matching before restoration and (d) correct imposter matching after restoration. Upper and lower images in (a), (b), (c) and (d) show the
enrolled and input images, respectively. Images are original and ROI images from the left.

GAN-based restoration proposed in this study. In the case
of false acceptance such as Figure 15 (c) and (d), the vein
patterns were not clear because of the extreme darkness of
the vein region of the input image. Moreover, the shades
of the enrolled and input images were similar. Therefore,
it would appear that the incorrectly recognized results were
a consequence of similar shades.

G. PROCESSING TIME OF PROPOSED METHOD
In the next experiment, the processing speed of the modified
conditional GAN + CNN for the finger-vein recognition
method proposed in this study was measured. The measure-
ment was performed on the desktop computer described in
SectionV.B and the Jetson TX2 embedded system [43] shown
in Figure 16. The reason that the processing speed was also
measured in an embedded system was to verify whether
on-board computing was possible for the proposed system.
The majority of access-control finger-vein recognition sys-
tems are used in on-board computing (edge computing) envi-
ronments, which operate in an embedded system attached to

an entrance, rather than in a desktop computer-based server-
client computing (cloud computing) environment. The Jetson
TX2 includes NVIDIA PascalTM-family GPU (256 CUDA
cores) with 8 GB of memory shared between the central
processing unit (CPU) and GPU, and 59.7 GB/s of memory
bandwidth; it requires less than 7.5 watts of power. As indi-
cated in Table 11, for the proposed method, the recognition
of one image required 24 ms in the desktop computer and
397 ms in the Jetson TX2 embedded system. The Jetson
TX2 embedded system required longer processing time than
the desktop computer because the computing resources were
significantly limited; however, it was confirmed that the pro-
posed method could be applied to embedded systems with
limited computing resources.

H. ANALYSIS OF FEATURE MAP
In this section, the feature map in DenseNet-161, which
uses the images restored by the modified conditional GAN
used in this study as input, was analyzed based on the
depth of layers; output was produced for each channel of
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FIGURE 15. Examples of incorrect recognition cases: (a) and (b) show false rejection cases before restoration and after restoration,
respectively. (c) and (d) show false acceptance cases before restoration and after restoration, respectively. Upper and lower images in (a),
(b), (c) and (d) show the enrolled and input images, respectively. Images are original and ROI images from the left.

FIGURE 16. Jetson TX2 embedded system.

the feature map because the dimension of the feature map
was overly large. Figure 17 shows examples of the feature
maps extracted as authentic matching images and imposter

TABLE 11. Comparisons of processing speed by proposed method on the
desktop computer and embedded system (unit: ms).

matching images from each layer of DenseNet. Figure 17 (a)
shows the feature maps extracted from the 1st convolutional
layer; Figure 17 (b) shows the output feature maps of the
1st transition layer. Figure 17 (c) shows the output feature
maps of the 2nd transition layer. Figure 17 (d) shows the
output feature maps of the 3rd transition layer. Figure 17 (e)
shows the output feature maps of the last dense block. More-
over, Figure 17 (f) shows the three-dimensional (3D) feature
map images drawn by calculating the averages of the feature
map values in Figure 17 (e).
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FIGURE 17. Examples of feature maps extracted from an authentic matching image and an imposter matching image from each layer
of the DenseNet. Upper and lower images in (a), (b), (c), (d), (e) and (f) show authentic matching and imposter matching, respectively.
(a) Feature map extracted from the 1st convolutional layer, (b) output feature map of the 1st transition layer, (c) output feature map
of the 2nd transition layer, (d) output feature map of the 3rd transition layer, (e) output feature map of the last dense block, (f) 3D
feature map image based on the average feature map values of (e).
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FIGURE 17. (Continued.) Examples of feature maps extracted from an authentic matching image and an imposter matching
image from each layer of the DenseNet. Upper and lower images in (a), (b), (c), (d), (e) and (f) show authentic matching and
imposter matching, respectively. (a) Feature map extracted from the 1st convolutional layer, (b) output feature map of the 1st
transition layer, (c) output feature map of the 2nd transition layer, (d) output feature map of the 3rd transition layer,
(e) output feature map of the last dense block, (f) 3D feature map image based on the average feature map values of (e).

As indicated in Figure 17, abstract features were extracted
as the depth of layers increased. For example, the vein-lines
and high-frequency edge components of the original images
were maintained in Figure 17 (a); however, the shapes of the
vein-lines disappeared, and only abstracted low-frequency
features were left in Figure 17 (e). Figure 17 (a) through (e),
it appears that authentic matching and imposter matching did
not have a significant difference in the feature map. Although
the change in the 3D feature map values drawn by calculating
the average of the feature map values was not significant in
upper images of Figure 17 (f), which was the result of authen-
tic matching in the step immediately before the classification
layer, the change in the feature map value was found to be rel-
atively larger in lower images of Figure 17 (f), which was the
result of imposter matching, compared to authentic matching
images of Figure 17 (f). This confirms that the difference
in the CNN feature maps between authentic and imposter
matching can be represented by the proposed method.

VI. CONCLUSION
To address the problem of finger-vein recognition perfor-
mance degradation due to optical blur, this study pro-
posed a method for restoring optically blurred finger-vein

images using modified conditional GAN and recognizing the
restored images using deep CNN. Existing conditional GAN
applies random noise to the generator in a dropout form
to prevent deterministic output. The generation of different
outputs due to the dropout, however, can transform the vein
pattern of the finger-vein image to be restored, which leads
to the degradation of the recognition performance. Therefore,
modified conditional GAN without dropout was proposed in
this study because the deterministic output is required, rather
than different outputs. When recognition was performed for
two open databases using the proposed restoration method,
the recognition error rate was found to be less compared
to the rate in the case where no restoration was performed.
Moreover, when experiments were performed using differ-
ent state-of-the-art restoration methods and CNN models
for finger-vein recognition, it was confirmed that effective
optical blur restoration was achieved in all CNNmodels upon
the application of the proposed method. Moreover, it was
confirmed that the proposed modified conditional GAN +
CNN for the finger-vein recognition method can be applied
to embedded systems as well as typical desktop computers.

In future research, the possibility of using the proposed
blur restoration method with different biometric modalities
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such as face, iris, and palmprint recognition, will be exam-
ined. Furthermore, research will be conducted into methods
to improve the restoration and recognition performances by
training the modified conditional GAN model and CNN
model for finger-vein recognition through reinforcement
learning.
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