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ABSTRACT Neurofeedback targets self-regularized brain activity to normalized brain function based
on brain-computer interface (BCI) technology. Although BCI software or platforms have continued to
mature in other fields, little effort has been expended on neurofeedback applications. Hence, we present
BrainKilter, a real-time electroencephalogram (EEG) analysis platform based on a ‘‘4-tier layered model’’.
The purposes of BrainKilter are to improve portability and accessibility, allowing different users to choose
various options to perform EEG processing, target stimulation-induction through a pipeline, and analyze
data online, essentially, to design a protocol paradigm and applicable BCI technology for neurofeedback
experiments. The data processing effectiveness and application value of BrainKilter were tested using
multiple-parameter neurofeedback training, in which BrainKilter regulated the amplitude of mismatch
negative (MMN) signals for healthy individuals. The proposed platform consists of a set of software modules
for online protocol design and signal decoding that can be conveniently and efficiently integrated for
neurofeedback design and training. The BrainKilter platform provides a truly easy-to-use environment for
customizing the experimental paradigm and for optimizing the parameters of neurofeedback experiments
for research and clinical neurofeedback applications using BCI technology.

INDEX TERMS BrainKilter, BCI, MMN, neurofeedback, platform, real-time.

I. INTRODUCTION
Bain-computer interfaces (BCI) based on electroencephalo-
gram (EEG) signals seek to transform the user’s brain activ-
ities into computer commands [1]. The basic neurofeedback
procedures have been established for quite a long time, in fact,
they and most likely represent even the earliest BCI applica-
tions, which targeted the self-normalizing brain function [2].
Although BCIs in other fields have continued to mature
and BCI software has expanded and gained strong support,
methodological and technical progress with neurofeedback
seems to be lagging [3]. From their inception, neurofeedback
procedures piqued researchers’ interests, who focused on its
application for clinical treatment and cognitive modulation.
In contrast to general BCI software, neurofeedback software
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requires a more deliberate experimental design scheme and
more precise time control to achieve an effective training
outcome [4]. Therefore, an advanced neurofeedback platform
will promote neural mechanism for research and clinical
applications.

BCI research has been ongoing for nearly 50 years, and the
number of BCI software platforms has increased significantly
over the past few years [5], [6]. Functional blocks, such as
data acquisition, feature extraction, classification, and feed-
back presentation modules, are some of the major demands
BCI researchers place on the software platform. As the com-
plexity of EEG signal analysis has increased, applications
for data visualization and processing have been developed.
One major problem in BCI neurofeedback software is that
all the data processing steps are subjected to a real-time con-
straint. In addition, BCI applications require portable EEG
devices that are suitable for public use and have advantages
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such as low cost and elevated user comfort [7]. The EEG
data stream might be transmitted wirelessly (e.g., through
Bluetooth communication) to enable for long-term monitor-
ing of daily activities [8]. Moreover, given the variety of
neurofeedback protocols that can be administered, being able
to autonomously set feedback signal parameters and allow
flexible feature selection are required features [9]. However,
most commercial neurofeedback training software cannot
provide such functions. Therefore, the need for an accessible
and portable neurofeedback platform suitable for multiple
data processing and experimental design tools, especially
for stimulation and feedback paradigms, is gradually gain-
ing importance in neurofeedback training, and the demand
for user-friendly systems usable even by nonprogrammers is
growing. Neurofeedback systems should help users experi-
ment while progressively controlling the regulatory task and
it should provide different sensory modalities corresponding
to the user’s perception capabilities. Our goal is to assist a
variety of users complete neurofeedback tasks based on EEG
features, with a particular focus easy and rapid ERP anal-
ysis, so that they can flexibly design individual neurofeed-
back training protocols and to test experimental parameters
independently.

In this paper, we first briefly review related works concern-
ing the development of neurofeedback software from the view
of the available BCI platforms and commercial software.
Next, we introduce the ‘‘4-tier layered model’’ architecture
of BrainKilter and focus on the Library layer to introduce the
neurofeedback experimental design and EEG data processing
capabilities. Then, to verify the functionality and usability of
our platform, the optimal parameters ofMMNas a neurofeed-
back training protocol were selected based on BrainKilter
and performed successfully in healthy individuals. Finally,
we discuss our experimental results and summarize the plat-
form features and future development directions.

The main contributions of this paper are summarized as
follows:

I. BrainKilter, a real-time EEG analysis platform, that
focuses on neurofeedback design and training is proposed.
BrainKilter is an easy-to-use tool for designing neurofeed-
back experiments and training for clinical applications and
laboratory research.

II. Parameters of the MMN neurofeedback protocol were
optimized based on BrainKilter were successfully used to
improve the auditory discrimination ability of healthy sub-
jects by regulating the MMN amplitude based on the opti-
mized scheme.

II. RELATED WORK
Although BCI platforms and frameworks that offer a great
number of functions have been available for many years and
each has unique features and benefits, they fail to be ideal
for neurofeedback applications in various ways. BCILAB,
an open-source MATLAB-based toolbox that provides a
wide variety of data processing methods, is less focused
on clinical or commercial development [10]. BCI2000,

a general-purpose software platform for BCI research, sup-
ports different data acquisition systems including all major
digital EEG amplifiers but provides no valid Bluetooth com-
munication protocol for connecting wearable devices [11].
OpenViBE, a free and open-source platform with a powerful
data processing function, has some flaws in its stimulation
and feedback paradigms [12]. Pyff is a framework for rapidly
developing experimental paradigms, but its outputs are small
and lack modification ability from feedback and stimulus
application viewpoints [13]. BF++ provides specific pro-
tocols such as P300, SSVEP and SMR BCIs [14], but does
not provide other important event-related potential (ERP)
components, such as mismatch negative (MMN), which is
an EEG marker in neurodegenerative disease.

Compared to the BCI platform, commercial neuro-
feedback software provides a friendlier user experience
(https://en.wikipedia.org/w/index.php?title=Comparison_of
_neurofeedback_software&oldid=928048377); for example,
BioEra can be applied via mobile phones and provides tools
to create various types of processing tasks for neurofeedback
training. BetterFly helps clinicians control treatment session
parameters at a clinic or at the patient’s home. BioExplorer
allows visualization signal processing and even collects a
variety of physiological signals for neurofeedback training in
BioTrance [15]. BioGraph Infiniti provides interesting games
for neurofeedback, but the collection of EEG data formultiple
channels (greater than 8 electrodes) is limited. And most soft-
ware such as BrainFeedback Pro, BrainMaster, BrainPaint,
BWView, Dual Drive Pro, MindReflector, NeuroOptimal,
SmartMind, Myndlift, Vilistus, etc. only support a few EEG
collection devices or they are limited to devices of the same
brand, and for other stimulation device access is restricted.
Theses portable and easy-to-use software implementations
are capable of meeting the needs of conventional neurofeed-
back training, such as regulating the EEG frequency band.
However, flexible experimental design not limited to the
feedback form and real-time ERP processing are not fully
available.

Here, we combine the flexibility of the data processing
capabilities of the BCI platform with the friendliness of
commercial software to develop a new platform suitable for
neurofeedback training. The proposed platform improves the
flexibility of data processing and facilitates the inclusion of
new algorithms through its architectural design and pipelined
data processing methods. Simultaneously, by adding multi-
element design tools that facilitate designing experimental
solutions, it also provides a variety of device communication
layers to collect signals and supports a variety of stimulations
to meet different neurofeedback training requirements.

III. BrainKilter
BrainKilter is an integrated software program based on BCI
technology with a ‘‘4-tier layered model’’ that offers exper-
imental design and real-time EEG or ERP data analysis.
It provides a set of convenient online debugging tools
and meets the demand for routine neurofeedback training.
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FIGURE 1. The ‘‘4-tier layered mode’’ architecture (a) and function (b) of BrainKilter. (a): QML: Qt Markup Language; mDNS: multicast DNS;
OPC UA: OPC Unified Architecture; LSL: Lab Streaming Layer; IIR: Infinite Impulse Response; FIR: Finite Impulse Response; ASR: Artifact Subspace
Reconstruction; FFT: Fast Fourier Transform; ERP: Event-Related Potential; JSON: JavaScript Object Notation.

Fig. 1 (a) shows the BrainKilter architecture, and the main
BrainKilter interfaces are shown in Fig. 2.

A. APPLICATION LAYER
The application layer contains three modules: Designer,
Task APP, and Scope. The neurofeedback protocol design is
implemented in Designer, which including training feature
selection, feedback modality confirmation and training time
setting up. The characteristics of different EEG frequency
bands and ERP signal can be chosen as target adjustment
feature. The modality of feedback signal is usually set as
visual, auditory, tactile or combinedmodalities. Training time
is subdivided into single training session time, interval time
and baseline time. The user can control any experimental
debugging parameters in Designer. Scope module addresses
data preprocessing, data processing, and online or offline
feature extraction. Task APP focuses on the operation of the
neurofeedback training protocol, where it provides the ability
to modify the experimental paradigm parameters and sup-
ports a single or double-blind control setup by choosing the
feedback signal style, such as one’s own neural activity signal
or fake signal. It also provides the necessary EEG signal data
processing andmonitoring features, which are especially suit-
able for tracking a user’s neural states during neurofeedback
training and can visualize neural signal features and feedback
signals for the user. Baseline and standardized signals can
be updated with the neural or cognitive state of the subject
each session. Moreover, the neural activity and reward rate of
the entire neurofeedback training session are saved, allowing
the neurofeedback effect to be evaluated and subsequently,
the task difficulty and training time to bemodified (Fig.1 (b)).

B. RUNTIME LAYER
All of the functions of BrainKilter run on the QtMarkup Lan-
guage (QML) engine. Benefiting from the just in time (JIT)

acceleration of the Chrome V8 engine, the user can develop
new functions using more accessible programming lan-
guages, and the owner can compile the code to improve the
execution speed.

C. LIBRARY LAYER
Five modules (Toolkit, Device, Analysis, Display, and
Archive) are included that offer functionality for experimen-
tal design, data reception, data processing, visualization, and
data storage, respectively. The Analysis, Toolkit, and Display
modules support the Scope, Designer, and Task APP func-
tions, respectively. The Device and Archive modules serve as
data stream inputs and outputs, respectively.

1) TOOLKIT
Toolkit focuses on providing a set of drag-and-drop devel-
opment environments for experimental design. Users can
freely create basic graphs, perform text editing, and attach
properties such as position, color, zoom, and rotation through
the Motion module. To support the entire experimental pro-
cess design and complete user interactions with the system
through mouse and keyboard operations, Toolkit provides
an autonomous script editing function, which can consist of
experimental logic revision through JavaScript, MATLAB
or Python in the Event subsystem. A high-precision timer
control function ensures that the time precision is accurate
to 1 ms. The waveform designer is primarily responsible for
the audible and tactile waveform design.

2) DEVICE
The Device module is used for external device search,
matching data protocols, and data signal conversion. The
module has been configured with different types of com-
munication protocols, such as multicast Domain Name
System (mDNS), Open Platform Communication Unified
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FIGURE 2. The main BrainKilter interfaces (Designer, Scope, and
Task APP).

Architecture (OPCUA), Asio, Bluetooth, and Lab Streaming
Layer (LSL). The module can maintain stable and reliable
connections to different device types, including stimulation
devices, multimedia, EEG acquisition, eye tracking, and other
sensors, to collect behavioral reactions, neural activity and
provide signals for different stimuli.

3) ANALYSIS
The Analysis module performs EEG data analyses with
matrix operations based on the Eigen library [16]. The target
data processing is completed by a combination of loosely
coupled components. Based on the discrete Fourier principle
for impedance detection, the high-frequency noise signals can
be removed from the EEG data by finite impulse response
(FIR) and infinite impulse response (IIR) filters. The IIR filter
can be applied to a choice of high pass, low pass, or notch fil-
tering steps, which are commonly utilized to remove muscle
and drift artifacts. The FIR filter provides substantial control
over filter shaping and linear phase performance (waveform
retention over the passband) [17].

TheArtifact Subspace Reconstruction (ASR)was designed
to detect and remove high-amplitude data components (for
example, artifacts stemming from eye blinks, muscle move-
ments, and sensor motion) relative to the artifact-free refer-
ence data while recovering the EEG background activity that
lies in the subspace spanned by the artifact components [18].
ASR relies on principal components analysis (PCA) and uses
a sliding-window, which statistically interpolates the high-
variance signal components that exceed a threshold relative to
the covariance of the calibration dataset. Each affected EEG
time point is then linearly reconstructed from the retained
signal subspace based on the correlation structure observed
in the calibration data, as shown in Equation (1):

Sclean = V × V TM × ((V TM )truncated )
†
× V T

× S, (1)

where S is the input signal and Sclean is the processed
signal, V is the eigenvector of the calibration data covari-
ance matrix, and M is the square root of the geometric
median of the covariance matrices. This process includes the
Moore–Penrose pseudoinverse, which is represented by the
symbol ‘‘†’’.

The EEG signal features in the neurofeedback experiment
by online short-time Fourier transform, such as the frequency
spectrum and time-frequency energy, can be extracted effec-
tively. Epoch data are EEG data segmented by time-locked
events or manually configured by the user for real-time ERP
processing.

4) DISPLAY
The Display module provides a rich set of visualization com-
ponents, including 2D Plot for spectrum and topographic
maps, and 3D Plot (mainly intended for time-frequency
images), Wave Marker for ERP, and the display of sound
or vibration frequency waveforms. Multimedia is used to
play dynamic images, such as the videos required during
neurofeedback experiments.

5) ARCHIVE
The Archive module supports various data structure forms
from analyzer output, such as raw data stream, block data
with labeled events or key-value data that form objects. It can
record, store, and analyze data in BrainKilter. Moreover,
it provides an efficient data recording format and can convert
data for MATLAB, JavaScript Object Notation (JSON), and
even for binary serialization format as Msgpack files.

D. DEPENDENCY LAYER
The dependency layer consists of Qt or C++, Eigen,
FFmpeg, and five open-source data frameworks, including
Matio, Liblsl, CPython, HDF5, and Zlib, which guarantee
proper data calculation and procedural operations.

IV. PLATFORM VALIDATION
To validate and demonstrate the functionality of
BrainKilter, an MMN neurofeedback protocol is optimized
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FIGURE 3. DLF test paradigm design (a) and MMN neurofeedback the training protocol design (b). (a): The subject was required to judge within
2.0 seconds whether the second frequency stimulus was more significant than the first frequency stimulus (key 1: Tone 1 > Tone 2,
key 2: Tone 2 > Tone 1).

and conducted. MMN is an ERP component that reflects
an automatic and pre-attentive form of sensory processing.
An MMN wave is automatically generated when a sequence
of ‘‘standard’’ repetitive stimuli (e.g., p = 0.90) is inter-
rupted by infrequent (e.g., p = 0.10), deviant, ‘‘oddball’’
stimuli. MMN neurofeedback experiments have been shown
to improve human auditory cortical plasticity and language
ability [19]. Previous studies have shown that the use of
MMN neurofeedback training can improve a subject’s ability
to discriminate between two defined frequencies; however,
the auditory discriminative abilities of healthy people have
not been discussed. MMN steady induction traditionally
requires more than 200 stimulation events (containing both
standard and deviant) [20]. In the previous neurofeedback
protocol, 20 stimulation events were adopted to calculate
real-time MMN. The number of events that optimally induce
MMN has not been discussed [21]. Here, we discussed
different MMN calculation parameters in neurofeedback pre-
training and chose the optimal MMN calculation parameters
for normal neurofeedback training according to the ERP
online data results. The best parameters were the ‘‘personal
MMN neurofeedback protocol’’ for a 5-day short-term neu-
rofeedback training and before and after a difference limen of
frequency (DLF) test, which assessed the effectiveness of the
protocol and validated the usability of our platform.

A. SUBJECTS
Twenty-seven healthy volunteers participated in our
neurofeedback study. Fifteen (ten males, five females, ages
23.20 ± 1.60 years) were used to optimize the parameters
of the neurofeedback protocol. The other twelve subjects
were divided into a neurofeedback (NF) group (four males,
two females, age 24.00 ± 0.57 years) and a Sham-NF
group (four males, two females, age 24.00 ± 1.53 years))
to verify the effectiveness of the protocol. All the subjects
were right-handed, with normal hearing ability. None of

the volunteers suffered from neurological or psychological
disorders or had used medication that could have adversely
affected the measurement. All the participants were naive to
neurofeedback training procedures and had never participated
in previous neurofeedback or auditory training studies. The
participants provided written informed consent, and the study
was approved by theMedical Research Ethics Committee and
Institutional Review Board of XuanWu Hospital.

B. DIFFERENCE LIMEN OF FREQUENCY TEST
The standard procedure for estimating DLF traditionally
tested uses a frequency increment detection paradigm in
which listeners are instructed to distinguish between a ref-
erence tone and a series of comparison tones of higher fre-
quency [22]. In the current paradigm, 1100 Hz was employed
as the standard tone, with one set of comparison stimuli that
varied from 1000 to 1200 Hz in 20 Hz steps. The detailed
experimental paradigm is shown in Fig. 3 (a). Each sub-
ject was seated in a shielded room where they listened to
the stimuli, which was transmitted by a GSI-61 audiometer
and presented binaurally through headphones (TDH 50) at
65-70 dB HL. The signal presentation and subject response
were under software control (E-Prime, Psychology Software
Tools Inc., Pittsburgh, PA). Each subject received ten sets of
trials to familiarize themselves with the sound stimulation
procedure before the test. The real test lasted approximately
30 minutes. Participants who participated in the optimization
of the parameter performed only the pretraining tests. For
those involved in the neurofeedback protocol verification,
both the pre- and post-training tests were required.

C. NEUROFEEDBACK TRAINING PROTOCOL
Subjects were seated in an antistatic chair in front of
a 23-inch computer screen. Stimuli were presented bin-
aurally via earphones. A Quick-20 dry-wireless headset
(Cognionics, San Diego, CA, USA) was used to acquire
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the EEG signals [23]; this headset has been used in several
previous applications for clinical basic research. Although
dry EEG comparedwith traditional wet EEG ismore sensitive
to artifacts and noise [24], the ASR algorithm is accurate
enough to remove activities from artifacts and eye-related
components and sufficiently discriminative to retain signals
from brain-related components [25], [26]. BrainKilter was
employed to achieve the previously described neurofeedback
training, including gathering real-time ERP responses and
provide visual feedback stimulus, effectively guaranteeing a
robust signal-to-noise ratio. A modification neurofeedback
protocol by Chang et al. was used in this study [21]. For
the auditory stimulus based on an oddball paradigm (stan-
dard stimulus: 80%), the standard stimulus is 1100 Hz, and
two times the individual’s auditory discriminant threshold is
used as the deviant stimulus [27]. The individual’s auditory
discriminant threshold was obtained by the DLF test. The
midline electrodes (Fz, Cz, and Pz) were used as training
sites. The neurofeedback consisted of 5 sessions; each session
contained a baseline period and a training period. To explore
the optimal number of ERP events (buffer depths) to cal-
culate the MMN, five types of buffer depths were set up
in sessions 1 to 5 during the entire neurofeedback training:
that is, the experiments used 20, 40, 60, 80, or 100 trials as
baseline and buffer depths, and the sliding window included
one trial to update MMN every 0.5 s. The specific parameters
are shown in TABLE 1. Overall, 400 trials were conducted,
including the baseline and training portion of each session.
The experimental design is shown in Fig. 3 (b). Before train-
ing, we collected 20-100 EEG signal trials to calculate the
baseline MMN.

TABLE 1. The parameters of each session of neurofeedback training.

The ERP signals from the midline electrodes (Fz, Cz,
and Pz) were filtered by an FIR filter of 0.5 Hz to 45 Hz
and segmented into 500-ms clean time windows, including a
100ms prestimulus time as the single-trial baseline forMMN.
The MMN component typically peaks approximately 100 ms
to 300 ms from the onset of a sudden change in stimulation.
The MMN amplitude of the training period was monitored
in real time, and we provided the normalization of the MMN
as a visual feedback signal to the user in real time. The size
of the disc (Rdisc) (radius: min 14.75 mm to max 177 mm)
was calculated according to the MMN amplitude, as shown
in Equation (2),

Rdisc = Rmin(ARM/ABM )σ (2)

where Rmin is the unit radius of each change of the disc.
ARM indicates the amplitude of the real-time MMN. ABM is
the amplitude of the baseline MMN, and σ is a parameter
of the conversion factor between the pixel value of the disc
on the screen and the actual size of the disc to be see. We set
the value of σ to 29.5.
During the training period, the subjects attempted to

increase the times that the red disc appeared using their own
strategies. To ensure that the subjects focused on the visual
stimuli, they were instructed to count the red discs during
training.

The short-term neurofeedback training experiment was
conducted according to the abovementioned protocol using
an optimized parameter MMN neurofeedback protocol.
However, the subjects in the Sham-NF group regulated the
amplitude of MMN based on fake signals, which from the
ERP activities of other subjects in the NF group. The training
sessions occurred over 5 consecutive days, 10 sessions per
day, with 400 trials (including baseline and training) per ses-
sion and a 30-second rest break between the training and
baseline sessions. Before each training session, the baseline
and standardizedMMN signal of the individual were updated.
The average MMN amplitudes of the 1st, 5th, and 10th
sessions of one day were used to evaluate the neurofeedback
training performances.

D. DATA PROCESSING AND STATISTICAL ANALYSIS
The data processing of the auditory discrimination threshold
was performed using the DLF test results based on E-prime.
The measured discrimination threshold indicates the sensi-
tivity of participants at perceiving differences between two
auditory frequencies. A weighted cumulative Gaussian dis-
tribution function f(p) was fitted to the data using maximum-
likelihood estimates as shown in Equation (3), where σ is a
parameter that describes how steep the curve is and can also
be considered as a qualitative measure of the 84% discrimina-
tion threshold and standard (1100 Hz). R2 was used to assess
whether each psychometric function could fit in a cumulative
Gaussian distribution. The solid curve shows the measured
data points using the curve-fitting method [28], [29]:

f (p) = 0.5
[
1+

(
P− PStd .

σ
√
2

)]
. (3)

The EEG data were processed online in both the MMN
parameter optimization experiment and during formal neu-
rofeedback training, and the results were evaluated by offline
analysis. The EEG data from all midlines (Fz, Cz, and Pz)
were processed online by BrainKilter; this included the raw
EEG signal preprocessing, which was subjected to 0.5-45 Hz
band-pass FIR filter, and an ASR filter to reject artifacts.
Then, the purified EEG signals were processed online by
ERP analysis. The EEG data were analyzed offline with
EEGLAB, an open source MATLAB toolbox for electro-
physiological signal processing [30]. During raw EEG signal
preprocessing, the signals underwent 0.5 Hz high-pass and
45 Hz low-pass FIR filters. To reject artifacts, independent
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component analysis (ICA) was applied to the EEG signals,
and the components responsible for the eye movements and
blinks were rejected. The time-frequency analysis, which is
based on the wavelet transform, can synchronously provide
variations of the EEG signals in both the time and frequency
domains [31]. The statistical analyses were conducted using
SPSS 19 (SPSS, Chicago, IL, USA). Data are expressed as
the mean ± standard error. A pointwise paired t-test was
conducted for standard and deviant ERP instances between
100 ms and 300 ms. The two-tailed significance level was
set at p < 0.05. A one-way ANOVA was combined with
post hoc comparisons, including the Bonferroni procedure,
was performed to analyze the amplitudes and latencies of the
MMN, the reward rates, and the motivation scores after neu-
rofeedback training. Pearson correlations were established
to analyze the relationships between the MMN waveforms.
A paired t-test was executed for each electrode of each buffer
depth to analyze the spectral power of different frequency
bands between standard and deviant stimuli. Themean ampli-
tudes of the MMN signals in the 1st to the 5th neurofeedback
training days and the auditory frequency threshold of the DLF
tests were analyzed by paired sample t-tests within groups
and independent sample t-tests across groups. The signifi-
cance level was set at p < 0.05, and the notable significance
level was set at p< 0.01. The previously describedmethods of
statistical analysis have been verified by other experimental
studies [32].

V. RESULTS
A. NEUROFEEDBACK PROTOCOL OPTIMIZATION
1) AUDITORY DISCRIMINATION THRESHOLD
Given the differences in individual auditory discriminative
abilities, we assessed each individual’s auditory discrimina-
tion threshold before training, which helped to customize the
neurofeedback protocol for each subject. The results of the
auditory discrimination threshold of 15 subjects are shown in
SUPPLEMENTAL TABLE 1, in which the mean accuracy
is 0.866 ± 0.021, the false alarm rate is 0.005 ± 0.002, and
the mean reaction time (ms) is 820.152 ± 45.688. In the
neurofeedback training, 1100 Hz was used as the standard
stimulus for all individuals, and the individual’s double audi-
tory frequency threshold was used as the deviant stimulus.

2) ERP ANALYSIS
We used ERP analysis to obtain a clear MMN response.
The real-time MMN waveforms of five buffer depths at the
midline electrodes (Fz, Cz, and Pz) of each training result
of 15 subjects are shown in Fig. 4. Pointwise paired t-tests
between responses to standards and deviants in a 100 ms
to 300 ms time window (p < 0.05) of each epoch were
conducted for the five sessions. From the results, a more pro-
nouncedMMNwas shown during the neurofeedback training
that adopted 20 trials, 60 trials, and 80 trials, respectively,
at all three midline electrodes.

FIGURE 4. Event-related potential (ERP) waveforms of the standard and
deviant stimuli of five buffer depths. Mismatch negativity (MMN)
waveforms were obtained by subtracting the ERPs in response to
standard stimuli from those in response to deviant stimuli. The gray
shaded areas show significant differences between the standard and
deviant stimuli from 100 ms to 300 ms (p < 0.05).

A one-way ANOVA was subsequently conducted for the
amplitudes and latencies of theMMNwaveform of five buffer
depths at the midline electrodes (Fz, Cz, and Pz), as shown
in Fig. 5. Bonferroni adjusted alpha levels of 0.005 per test
(0.05/10). The results showed that the effect of buffer depth
was not significant at Fz for amplitude F(4,70) = 0.457,
p > 0.05 and latency F(4,70) = 0.681, p > 0.05; at Cz for
amplitude F(4,70) = 1.616, p > 0.05 and latency, F(4,70) =
1.324, p > 0.05; and at Pz for amplitude F(4,70) = 0.386,
p > 0.05 and latency, F(4,70) = 0.640, p > 0.05.

FIGURE 5. Mean amplitudes (a) and latencies (b) of MMN with five buffer
depths at the midline electrodes.

As the averages of the amplitude and latency of MMN
during training were not affected by the different buffer
depths, we investigated whether the buffer depths affected

VOLUME 8, 2020 57667



G. Pei et al.: BrainKilter: Real-Time EEG Analysis Platform for Neurofeedback Design and Training

the stability of theMMN characteristics. Pearson correlations
were calculated to explore the correlation between each single
training trial MMN and the total MMN. There were strong
correlations in 60 trials, 80 trials and 100 trials at three
electrodes, with p values< 0.05 and R values> 0.4; however,
there were no significant correlations in 20 trials (p> 0.05 at
Fz, Cz, and Pz) or 40 trials (p > 0.05 at Fz, Cz, and Pz)
(Fig. 6). Therefore, a buffer depth of 60, 80 or 100 trials
may more stably reflect each MMN characteristic during the
training.

FIGURE 6. MMN correlation analysis between buffer depth (20 trials,
40 trials, 60 trials, 80 trials or 100 trials) and the total trial (400 trials) of
the training period at the Fz, Cz, and Pz electrodes. The R value is shown
in (a), and the P value is shown in (b).

A one-way ANOVA combined with a post hoc test was
executed to analyze the correlation differences in the 60-trial,
80-trial and 100-trial instances, given that the correlations
in the 20-trial and 40-trial instances were not significant
(p > 0.05). Bonferroni adjusted alpha levels of 0.0167 per
test (0.05/3). The effects of buffer depth on the R values at
three electrodes were significant at Fz: F(2,42) = 4.645, p
= 0.015, Cz: F(2,42) = 11.248, p < 0.01, and Pz: F(2,42)
= 3.467, p= 0.040. Post hoc significance analyses indicated
that 100-trial obtained higher correlations than did the 60-trial
at Fz: p= 0.012, Cz: p< 0.01, and Pz: p= 0.046 and 80-trial
at Cz: p < 0.01 (Fig. 7 (a)). However, no significant differ-
ence was found between the 80-trial and 60-trial instances
(p > 0.05). Moreover, there was no interaction effects of the
standard error (SE) of the R values in buffer depths at Fz:
F(2,42) = 1.487, p > 0.05, Cz: F(2,42) = 1.419, p > 0.05,
and Pz: F(2,42) = 1.115, p > 0.05 (Fig. 7 (b)). Therefore,
the stability of the MMN was consistent across those three
buffer depths. 100-trial was the most relevant and 60-trial
was not significantly different from 80-trial, although they all
showed significant correlations.

3) TIME FREQUENCY ANALYSIS
We can better understand MMN from the viewpoint of
the frequency domain. Fig. 8 shows the spectral activ-
ity of the deviant minus standard stimuli. The powers of
the frequency bands (0.5 Hz to 45 Hz) between 100 ms
and 300 ms were analyzed by paired t-tests from the
theta to the gamma frequencies, considering the inabil-
ity to obtain the full delta wavelength during this period.
A more significant powerful effect of the theta frequency
band occurred in 60 trials at Fz: t = 2.761, p = 0.015, and

FIGURE 7. Correlation coefficient R value (a) and SE value (b) under three
buffer depths at the midline electrodes. ∗, p < 0.05; ∗∗, p < 0.01.

FIGURE 8. Spectral power of different frequencies of the deviant minus
standard stimuli under the buffer depth-60, buffer depth-80 and buffer
depth-100 at the midline electrodes. Theta: 4 Hz to 8 Hz; alpha: 8 Hz to
13 Hz; beta: 13 Hz to 30 Hz; gamma: 30 Hz to 45 Hz; ∗, p < 0.05.

Pz: t = 3.009, p < 0.01; in 100 trials at Fz: t = 2.476,
p = 0.027 than in the other frequency bands. However, for
the 80 trials, no significant difference occurred between the
standard and deviant stimuli from the theta to the gamma
bands (p > 0.05).

4) OBJECTIVE AND SUBJECTIVE SCORES
Objective rewards and subjective motivation are central com-
ponents of neurofeedback mechanisms [33]. The reward rate
of an individual (Rindi) during training refers to the number
of red discs (NRed) that appear during training, as shown in
Equation (4),

Rindi = NRed (NTotal − NBase) (4)

where NTotal is the total number of trials (400) in each session
and NBase is the number of the baseline trials.

Fig. 9 (a) shows that during the different neurofeedback
training sessions, the reward rate ranked from high to low
was 100 trials, 60 trials, 80 trials, 40 trials, and 20 trials,
respectively; however, an ANOVA test showed that the effect
of buffer depth on reward rate (objective reward) was not sig-
nificant, F(4,70)= 1.858, p> 0.05. To evaluate the subjective
motivational perceptions of the participants, we instructed
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FIGURE 9. Objective reward rate (a) and subjective motivation score of
subjective perception (b) after five neurofeedback training sessions.

them to assign a score of 1 to 5 to describe their motivation
level (or enhancement level) and the comfort level of the
neurofeedback training after each training session (Fig. 9 (b)).
Bonferroni adjusted alpha levels of 0.005 per test (0.05/10).
Their answers indicated that they considered 60 trials to be
the most motivational training parameter; however, the effect
of buffer depth on motivation score (subjective perception)
was not significant, F(4,70) = 0.895, p > 0.05.

B. NEUROFEEDBACK TRAINING
Based on the results of the above optimization parameters,
here we use the buffer depth of 60 trials for the real-time cal-
culation of MMN parameters in neurofeedback training. The
effect of age and education years in the two groups of neu-
rofeedback training was nonsignificant, t = 0.000, p > 0.05.
After five days of neurofeedback training, the auditory
discrimination threshold before and after training and the
amplitude and latency of MMN on each training day were
evaluated.

1) AUDITORY DISCRIMINATION ABILITY
To evaluate the auditory frequency discrimination ability,
the individual auditory discrimination thresholds were tested
before and after neurofeedback training. After the 5-day train-
ing period, subjects in the NF group had a lower threshold
(M= 6.985, SD= 3.355) on the DLF test than they did prior
to the training (M= 13.424, SD= 6.985), t= 1.987, p> 0.05,
while the thresholds in the Sham-NF group remained sta-
ble (before: M = 16.680, SD = 8.24; after: M = 16.507,
SD = 6.328), t = 0.056, p > 0.05. Importantly, the across
group results indicated a significant decrease for subjects

in the NF group compared to those in the Sham-NF group,
t = 3.256, p < 0.01, and there was no significant differ-
ence between them before the training, t = 0.598, p > 0.05
(Fig. 10).

2) MMN CHARACTERISTIC ANALYSIS
The MMNs of the subjects in both the Sham-NF group and
the NF group were subjected to neurofeedback training by
regulating the personal MMN amplitude. A paired T-test was
subsequently conducted for the amplitudes and latencies of
the MMN at the midline electrodes (Fz, Cz, and Pz) within
each group, as shown in Fig. 11. A significant increase in
MMN amplitude after five days of NF training compared to
their first results at Fz: t = 4.165, p < 0.01; Cz: t = 6.741,
p < 0.01, and Pz: t = 4.767, p < 0.01, which occurred in the
NF group, while no significant MMN amplitude differences
were found in the Sham-NF group, whether at Fz: t = 1.750,
p > 0.05; Cz: t = −0.609, p > 0.05 or Pz: t = 0.421,
p> 0.05. Independent sample T-test results indicated that the
NF group improved the MMN amplitude at the fifth days of
training more than did the subjects in the Sham-NF group at
Fz: t = 3.398, p < 0.01, Cz: t = 3.237, p < 0.01, and Pz:
t = 2.669, p = 0.024. However, the effect of MMN latency
was not significant between the first day and the last day
within the NF group at Fz: t= 0.921, p> 0.05; Cz: t = 2.371,
p > 0.05; Pz: t = 2.204, p > 0.05 and the Sham-NF group
at Fz: t = 0.919, p > 0.05; Cz: t = −0.170, p > 0.05; Pz:
t = −1.090, p > 0.05 even across the groups on the 5th day
at Fz: t = 0.969, p > 0.05; Cz: t = 1.923, p > 0.05 and
Pz: t = 1.183, p > 0.05. Therefore, the MMN amplitude
significantly improved for the NF group after 5 days of
neurofeedback training.

VI. DISCUSSION
BrainKilter provides a new platform consisting of three soft-
ware modules that can be used for experimental design,
online EEG data processing, and neurofeedback training.
BrainKilter is intended to be a friendly tool for neurofeedback
research in both clinical and commercial environments.

BrainKilter has three primary objectives, one of which is
to be portable and accessible. BrainKilter runs on various
operating systems, including Windows, Mac, and Linux.

FIGURE 10. The performance of auditory frequency discrimination from frequency discrimination threshold value (a), and
threshold fitting curve in NF group (b) and Sham-NF group (c) respectively. Across group, ∗∗, p < 0.01.
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FIGURE 11. The amplitude of MMN at Fz (a), Cz (b), Pz (c) and latency of
MMN at Fz (d), Cz (e), Pz (f) during the five neurofeedback training days.
Within group, 5th day compared to 1st, ]], p < 0.01; Across group,
∗, p < 0.05; ∗∗, p < 0.01.

It also includes a Device module, which has built-in pro-
cessing methods for multiple connections, communication
protocols, and parsing rules. When the device is connected,
the platform will automatically load a configuration file
that matches the device by invoking the corresponding pro-
cessing method to implement data communication with the
device. In the future, BrainKilter is expected to support new
communication protocols and encapsulation rules directly
through configuration files and no processing method pre-
configuration will be necessary, which will further enhance
its flexibility. Moreover, BrainKilter is designed for different
types of users because it provides a platform with a vari-
ety of functional tools for data processing and experimental
design. For researchers, the functionality to optimize the pro-
tocol parameters can facilitate exploration of neurofeedback
mechanisms, depending on their neuroscience knowledge.
Developers can add new data decoding methods through
programming. For users without coding experience, drag and
drop capabilities help them to complete the pipeline diagram
designs adopted in Toolkit and Analysis to provide a friendly
and straightforward method of interaction.

BrainKilter’s second goal is to perform online processing
of EEG data, which researchers can use to monitor the
ongoing dynamics of brain activity as individuals perform
different cognitive or behavioral tasks. Using BrainKilter,
the combination of different filters and algorithms can satisfy
the time-frequency requirements for processing EEG data,
and the frequency ranges of different filters, the number
and position of the electrodes, the ASR coefficient, and the
combination of algorithms can be set autonomously. Further-
more, ASR was adopted in BrainKilter’s data preprocessing
as an online, real-time capable, component-basedmethod that
can effectively remove transient or large-amplitude artifacts.
ASR has been proven to be a powerful artifact removal
approach and can be applied to automatically clean data

for offline data analysis or online real-time EEG applica-
tions, such as clinical monitoring and brain-computer inter-
faces [34]. In previous studies, compared with two other
popular methods dedicated to correcting EEG artifacts (ICA
and PCA), the ASR method with a suitable coefficient has
a significantly better level of artifact correction [35], [36].
Moreover, BrainKilter provides tools for online ERP
processing, which solves the critical technical problem of
synchronizing stimulus generation and data acquisition.
An appropriate sensory stimulus is provided for complex
experiments by connecting different devices via the interface.
The command-sending process masks the operating system’s
data buffer, which reduces the delay of the stimulus down to
1 ms. Compared to most of BCI studies that focused on P300,
SSVEP, or SMR,MMNas a feedback signal lacks application
and clinical research data [37]. Here, we performed a feasible
‘‘oddball’’ paradigm based on standard and deviant stimuli,
althoughMMN is more complicated to monitor and calculate
compared to other ERP components. Moreover, although the
neuron response time ofMMN ranges from 100ms to 250ms,
we control the reward delay during neurofeedback training
within 350 ms under the entire pipeline, which includes a
low-order FIR filter, ASR and wireless transmission. Our
platform provides filter type selection and parameter setting
capabilities that meet the needs of both online neurofeedback
training or and offline data processing.

As stimulation and feedback paradigms become increas-
ingly complex and differences in users’ anatomical and
physiological features demand increasingly individualized
NF adjustments, our final goal shows the most impor-
tant application value: BrainKilter focuses on experimen-
tal design mainly through the flexible Toolkit and Display
modules, enabling users to design complete experiments
without programming, using only element drag-and-drop
operations to build experiments and present feedback signals,
without requiring scripting. The types and parameters of the
stimulus can be edited autonomously. The Display mod-
ule receives incoming signals from the analysis and trans-
lates and forwards them to the users based on the Toolkit
parameters. It is also responsible for performing real-time
updates and dynamic changes to the feedback signals. The
designed experimental protocol runs on the Task APP, and
the protocol can be selected, started, paused, and stopped
at any time. Users can even modify the parameters during
training. Motivation is probably the most crucial property
of efficient neurofeedback systems, and experimental tasks
should provide the best learning environment for users. For
the same neural signal characteristics, the lengths of the
different sensory feedback stimulus forms (visual, auditory
or tactile), feedback frequency, training cycles, and some
other factors will lead to different training results [38].
Because neurofeedback is based on the independent strategies
learned by individuals and neurofeedback experiments are
often lengthy, personal neurofeedback has gained increasing
attention. Hence, we optimized the parameters focused on
MMN calculations based on BrainKilter. The auditory MMN
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reflects the brain’s ability to automatically process auditory
information objectively. Considering the differences in indi-
vidual auditory perception processing ability, the uniform
standard and deviant stimuli that are used to induce MMN
during neurofeedback training are not sufficiently targeted.
Compared to the traditional use of more than 200 trials to
obtain a stable and accurate MMN value, being able to oper-
ate in real-time is a primary consideration in regulating the
dynamic changes of neural activity through neurofeedback.
Therefore, we hope to use the minimal number of trials that
can obtain a highly stable MMN and accuracy indicator level
for a subject. Moreover, we chose the midline electrodes at
as the training site because auditory MMN at the Fz and Cz
electrodes at the midline is stronger than at other electrodes
because the frontal lobe generator exhibits a specific acoustic
characteristic dependence and is associated with the frontal
lobe and sensory memory [39]. Our results indicated that the
MMN was more stable as the buffer depth number of trials
increased compared to correlations with the MMN obtained
from 400 trials and has a significant correlationwith 400 trials
from 60 trials and upward at Fz, Cz, and Pz. From the time-
frequency analysis, the power of MMN with 60 trials was
found to be related to the theta band, which is consistent
with previous studies [40]. From a psychological perspective,
neurofeedback aims to be a scaffolding system rather than
palliation for a missing internal signal; the feedback signal
should help subjects identify their own internal signals and
promote a sense of agency. If the sense of agency is too low,
the neurofeedback protocol will not trigger intrinsic motiva-
tion and could negatively affect learning [41]. Our results on
MMN neurofeedback pretraining showed that the objective
reward rate and subjective motivational experience after neu-
rofeedback training with a buffer depth of 60 was a better
choice than the other buffer depths. Moreover, a particular
reward rate, of approximately 50% and motivation can pro-
mote the activation of the dopamine reward system [9], [42].

Subsequently, we validated the effectiveness of the opti-
mized MMN neurofeedback protocol using a single-blind
experiment of healthy people. After 5 short-term training
days, the participants in the NF group had significantly
enhancedMMNamplitudes but no effect was found regarding
latency. A previous study demonstrated the advantages of
adjusting the MMN amplitude and latency of MMN based on
neurofeedback training by adopting two fixed frequencies as
standard and deviant stimuli [21], [43]. However, we adopted
an individual’s auditory discrimination frequency threshold
for the deviant stimuli; therefore, the latency showed a non-
significant decline, which may be due to the significant indi-
vidual differences in deviant stimuli and training that focus
only on regulating amplitude. Compared to the results of the
DLF test before training, the auditory discrimination thresh-
old of the NF group decreased after neurofeedback training,
although there was no significant difference. Considering
the short and tight training schedule, longer-term training
may have more influence in improving behavioral perfor-
mance [44]. Therefore, our preliminaryMMNneurofeedback

results demonstrate that the perception ability of healthy
people can be modified. Based on MMN as an important
EEG marker of neurological disease and MMN is considered
a correlate of pre-attentive processes, which are triggered
when the sensory input does not match the echoic memory
representation of a prevalent standard stimulus [45], using
MMN neurofeedback to improve cognitive ability and as a
potential treatment for clinical research is worth exploring.

Above all, the BrainKilter platform provides a truly easy-
to-use environment for computerized design and optimization
of parameters for neurofeedback experiments and training.

VII. CONCLUSION
In this paper, we presented BrainKilter, a platform for design-
ing neurofeedback experiments and training applications.
A personal MMN neurofeedback experiment was subse-
quently conducted to verify the data processing effectiveness
and application value of BrainKilter. Moreover, we discussed
parameter optimization for a neurofeedback protocol from
the viewpoint of MMN calculations based on BrainKilter that
was successfully conducted for healthy individuals. Our plat-
form is continuously updated and improved. Full-function
and data-decoding methodological improvements are cur-
rently under development. A dynamic statistical analysis
function for data features will be able to more effectively
screen and analyze quantitative indicators in the new version.
Moreover, it is necessary to be able to track the cognitive sta-
tus of participants in real time. Thus, BrainKilter will enhance
the overall user experience and is committed to the research
and clinical neurofeedback application of BCI technology.
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