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ABSTRACT A current popular feature extraction method of classifying cognitive states and task engage-
ments from electroencephalographs (EEG) is common spatial patterns (CSP). However, the classical CSP
only focuses on the correlation between the signals and ignores all characteristics of the signals in the time
domain and the frequency domain. In this paper we propose Common cross-spectral patterns (CCSP) a
novel EEG feature extraction method for combining spectral and spatial patterns based on cross-spectral
density (CSD) to overcome the disadvantages of classical CSP. In CCSP method. the cross-power matri-
ces (CPMs) are extracted to measure the spatial correlation of each task in the band of interest. Then,
an orthogonal linear transformation is constructed by simultaneously diagonalizing the CPMs of two tasks.
Finally, each band’s logarithmic power of the transformed signals is extracted for the support vector
machine (SVM) classifier. The experiment results on multiple datasets showed that the CCSP algorithm
is fully applicable to multi-channel EEG for reliable multi-cognitive-task identification.

INDEX TERMS Brain-computer interfaces, biomedical signal processing, common spatial patterns, cogni-
tive task identification, reliability, electroencephalography.

I. INTRODUCTION
The human brain is always at a particular cognitive state or
in transition from one state into another one, and any changes
in brain activities will be reflected in scalp electroencephalo-
graph (EEG). It is of great significance to properly mea-
sure and analyze brain activities for the research of human
cognition, brain computer interfaces (BCIs) and the clinical
diagnosis of various nervous and mental diseases.

This study centers on the analysis of EEG recorded during
cognitive tasks, which traces back to the lateralization of brain
function and covert mental activity research in the 1970s
[1], [2]. Motor imagery activities that modulate sensorimotor
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oscillations in EEG [3] can be detected by the BCI to infer a
user’s intent [4]–[8]. Therefore, motor imagery was a cogni-
tive task research focus on the BCI Competition II, III and IV
[9]–[11] from the start of the 21st century.

The feature extraction algorithm plays a vital role in
cognitive task recognition. Since the training process is
time-consuming and demanding for the subject, the training
sets are relatively small compared to the data collected in
real applications. Thus, it is essential for the feature extrac-
tion algorithm to make the most of the limited training
data. Due to the spectral properties of EEG, various power
spectrum analyses are the most popular feature extraction
methods, including the Fourier transform [12], the wavelet
transform [13], [14], and others. Because different band activ-
ities have certain physiological and pathological significance,
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how to divide different bands is a key problem. Keirn and
Aunon [12] created a feature set consisting of the asymme-
try ratios and the power values for each electrode at four
frequency bands: δ (0z3 Hz), θ (4z7 Hz), α (8z13 Hz),
and β (14z20 Hz). His results indicate that it is possi-
ble to accurately distinguish between any two tasks being
investigated. The high-frequency band power has attracted
increasing attention. Palaniappan [15] and Zhang et al. [16]
respectively used spectral power and asymmetric ratios from
the γ (24z37Hz) band, the high-frequency band (40z100Hz)
and lower-frequency bands, and mental task classification
performance was improved.

However, there is a strong correlation between different
channels of EEG in mental tasks. Apparently, spectral power
approaches that assume that all the electrodes are mutu-
ally independent have significant limitations [17]. A more
practical solution is principal component analysis (PCA)
of the spatial correlation between signals [18], [19]. In a
binary classification scenario, a more appropriate spatial fil-
tering method is common spatial patterns (CSP) [20], [21].
CSP uses the simultaneous diagonalization of covariance
matrices of two populations to convert two observation sets
of possibly correlated variables into two sets of values of
linearly uncorrelated variables and can ensure the maximum
difference of two populations in the variance of the converted
variables.

CSP is commonly used for signal analysis in the time
domain. It was first introduced by Zoltan J. Koles to extract
the features of variance from multi-channel CSP to dis-
criminate normal subjects from the patients with excellent
results in feature selection and classification performance
[17], [22]. The source localization method of CSP decom-
position is significantly better than that of PCA-based source
localization for the background CSP from patient [23], [24].
Another application of CSP in EEG analysis is the clas-
sification of movement tasks [25], [26] and movement
imagination [27], [28]. EEG from movement imagination
tasks were generally filtered from 8z30 Hz before the CSP
transformation since this broad frequency range contains all
µ and β frequency components related to movement.

However, CSP is sensitive only to the spatial covariance
matrices of the two classes of tasks engagement from EEG,
and all time and frequency information is lost. A simple
solution is to filter EEG in the frequency bands of interest in
the time domain for the CSP transformation. Muller divided
α (8z12 Hz), lower α (8z10 Hz), upper α (10z12 Hz),
β (19z26 Hz), γ (38z42 Hz), and a broad band of 8z30 Hz
[25]. Novi et al. [29] andAng et al. [30] selected an equivalent
bandwidth filter bank. Zhang et al. constructed a filter bank
with center frequencies at a constant interval in the logarithm
frequency domain and a uniform Q-factor (bandwidth-to-
center frequency) [31]. These methods were proven to have
superior performance than the conventional CSP for motor
imagery classification.

Besides motor imagery, recent studies showed that spectral
domain features of EEG can also be utilized for mental

tasks classification [32], mental states monitoring [33] and
cognitive decision prediction [34], [35]. Previous study has
also shown that spatial dynamic was also part of EEG spectral
features in cognitive tasks analysis [36]. As a result, a feature
extraction method that combine spatial features and spectral
features would be a better choice for EEG based cognitive
tasks classification.

In this paper, we propose common cross spectral pat-
terns (CCSP), which is a spatial-spectral transformation
method as a feature extraction method for EEG signals.
The method first uses the cross-power spectrum[38], [39]
to measure the spectral dependence of the signals. Then,
the CSP transformation is constructed by using the cross-
power matrices of the band of interest. Finally, it extracts
the band-power features. This method reduces redundant
information by using the CSP transformation. Comparedwith
the CSP in the temporal domain, the CCSP replace time
temporal filtering with fast Fourier transformation (FFT),
which can effectively reduce the calculation complexity and
time delay, and has a more flexible band implementation
strategy.

The main goal of this paper is to employ CSP to
extract more effective band-power features from EEG sig-
nals in order to classify signals according to cognitive
task engagement. The rest of this paper is organized as
follows. Section 2 describes the proposed method and
algorithm optimization. Section 3 describes the experi-
ments and results and is followed by the conclusions in
Section 4.

II. METHOD
The architecture of the cognitive task recognition system
based on CCSP with support vector machine (SVM) is shown
in Figure 1.

FIGURE 1. Cognitive task recognition system based on CCSP, where � is
the class of task.

A. OPTIMIZING SPATIAL DISTRIBUTION OF VARIANCES
BASED ON SIMULTANEOUS DIAGONALIZATION
The CSP method is a linear orthogonal transformation
method that maximizes the variance difference of the trans-
formed random variable between two populations. The trans-
formation is constructed by the simultaneous diagonalization
of the covariance matrices of two populations.
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1) COVARIANCE MATRIX
The covariance matrix is a measure of how much each pair of
variables of a random vector change together. The covariance
matrix (6) of the random vector X is defined as

6 = V (X) = E
[
(X− µ) (X− µ)∗

]
= E

(
XX∗

)
− µµ

∗ (1)

where µ is the mean of X, and X∗ denotes the complex
conjugate transpose of the matrix. Every covariance matrix
is Hermitian symmetric and positive semidefinite. Evidently,
the diagonal elements contain the variances of individual
variables and the off-diagonal elements contain the covari-
ance between two variables. According to the linear com-
bination property theorem, the covariance σ 2of the random
variable y = ω∗X can be obtained by (2).

σ
2
= V(y) = V(ω∗X) = ω∗6ω (2)

2) COVARIANCE MATRIX PROPERTIES
Suppose that the observation vectors are X|�1 v N (0, 61)

and X|�2 v N (0, 62)where�1and�2 are two populations.
Let us find a vector ω that maximizes the difference between
the covariance V(ω∗X|�2) and the covariance V(ω∗X|�1)
and is subject to the condition V(ω∗X|�2) = 1 (constant).
This optimization problem can be expressed as (3).{

argmaxω
∣∣ω∗62ω−1

∣∣
ω∗61ω = 1

(3)

We introduce a Lagrange multiplier λ, and the Lagrange
function is defined by (4):

L(ω, λ) = ω∗62ω − 1+ λ
(
ω∗61ω − 1

)
(4)

The partial derivatives of L (ω, λ) are described in (5):
∂L
∂ω
= 262ω − 2λ61ω = 0

∂L
∂λ
= ω∗61ω − 1 = 0

(5)

Let62 and61be positive definite Hermitian matrices. Then,
the result is (6). {

6−11 62ω = λω

ω∗61ω = 1
(6)

Evidently, the solution to the problem is the eigenvector of
the quotientmatrix (6−11 62) of two covariancematrices after
normalization with respect to 61, and λ is the eigenvalue of
6−11 62.

Because 6
−

1
2

1 and 6
1
2
1 are positive definite Hermitian

matrices, note that 6
1
2
16
−1
1 626

−
1
2

1 = 6
−

1
2

1 626
−

1
2

1 =

(
6
−

1
2

1 626
−

1
2

1

)∗
. Therefore, 6−11 62 is similar to a posi-

tive definite Hermitian matrix (616
−1
2 z 6

−
1
2

1 626
−

1
2

1 ).
According to the spectral theorem for Hermitian matrices,

6
−

1
2

1 626
−

1
2

1 is unitarily diagonalizable, and hence,6−11 62
must also be diagonalizable by similarity.

6−11 62W = W3 (7)

where 3 is the eigenvalue matrix of 6−11 62. Each column
(ω) ofW is its eigenvector corresponding to λ.

3) THE CLASSIFICATION SIGNIFICANCE OF EIGENVALUE
From (6), we have the following

62 ω = 61ω λ

ω
∗62 ω = ω

∗61ω λ

ω
∗62 ω = λ (8)

Hence, after the linear transformation y = ω∗X, �1 is sub-
ject to the standard normal distribution(.y|�1 v N(0,61)),
and�2 is subject to normal distribution (.y|�1 v N(0,61)).

We can further use the probability of a correct Bayes deci-
sion to measure the separability between two populations.
The classification boundary point (y) of an equal probability
density can be calculated as follows.

p
(
y|�1

)
P (�1)

= p
(
y|�2

)
P (�2)

lnp
(
y|�1

)
P (�1) + lnP (�1)

= lnp
(
y|�2

)
+ lnP (�2)

lnP (�1) −
y2

2

= lnP (�2) −
1

2
lnλ −

y2

2λ
y

= ±
√
λ (2lnP (�2) − 2lnP (�1)− lnλ )

1− λ
(9)

p
(
y|�1

)
and p

(
y|�2

)
are conditional probability density

functions of�1 and�2, respectively. P (�1) and P (�2) are
the prior probability of �1 and �2, respectively. Therefore,
the correct probability of Bayesian decision is as (10), as
shown at the bottom of this page, where8 (y) is the standard
normal distribution function, and y≥0.
Evidently, when the prior probabilities of two classes are

equal, P (λ) is an even function in logarithmic coordinates
(lnλ ). The variation of P (λ) is illustrated in Figure 2 in the
case of λ > 1. The figure shows that the eigenvectors of

P (λ) =

P (�1) (28 (y)− 1)+ 2P (�2) (1−8
(

y
√
λ

)
) (λ > 1)

P (�2)
(
28

(
y
√
λ

)
− 1

)
+ 2P (�1) (1−8 (y) ) (λ ≤ 1)

(10)
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FIGURE 2. Probability of being correct (P) as a function of the eigenvalue
(λ) when P (�1) = P (�2).

larger eigenvalues should be selected when λ > 1. Instead,
those of smaller eigenvalues should be selected when λ ≤ 1.

B. COMMON CROSS SPECTRAL PATTERNS
Obviously, the above simultaneous diagonalization method
only depends on the covariance matrices of two popula-
tions, while it loses all the time-frequency information. To
more effectively measure the spectral and spatial correlations
of signals, the power spectral density matrix is introduced
to CSP.

1) CROSS-SPECTRAL DENSITY
In the spectral analysis of the time series, the cross-spectral
density (CSD, or the cross-power spectrum) is used as part
of the frequency-domain analysis of the cross-correlation
between two time series. The cross-spectral density describes
how the covariance of two data sets is distributed over the
frequency domain. The cross-spectral density between the
time series x [n] and y [n] is defined by

Pxy
(
eiω
)
=

∫
∞

m=−∞
τxy [m] e−iωm (11)

where τxy [m] =
∫
∞

n=−∞ x[n+ m]y[n] is the cross-correlation
function of x [n]and y [n]. Pxy is a complex number. The
cross-spectral density can be directly expressed as the product
of the discrete Fourier transformations of those time series
according to the time domain correlation theorem.

Pxy
(
eiω
)
= X (eiω)Y (eiω) (12)

2) THE BAND CROSS-POWER MATRIX OF MULTIVARIATE
TIME SERIES
The frequency domain characteristics of a multivariate time
series x [n] may be summarized by the power spectral density
matrix (PSDM) in (11) [37].

P
(
eiω
)

=


P11

(
eiω
)

P12
(
eiω
)

· · · P1M
(
eiω
)

P21
(
eiω
)

P22
(
eiω
)

· · · P2M
(
eiω
)

...
...

. . .
...

PM1
(
eiω
)

PM2
(
eiω
)

· · · PMM
(
eiω
)

(13)

where the diagonal elements contain the spectra of individual
channels and the off-diagonal elements contain the cross-
spectra. The matrix is a Gramian matrix.

However, we are more interested in the correlation
of a particular frequency band. The band cross-power
matrix (BCPM) is defined as follows.

P =
∫ ω2

ω1

(
P
(
eiω
)
+ P

(
e−iω

))
dω (14)

Since x [n] is real-valued, its discrete time Fourier transfor-
mation is conjugate symmetric as P ij

(
e−iω

)
= P ij

(
eiω
)
.

Therefore, (12) can be rewritten by only using the positive
frequency spectrum (or negative frequency spectrum) as fol-
lows.

P = 2Re(
∫ ω2

ω1

P
(
eiω
)
dω) (15)

where Re denotes the real part of a complex number.
However, we suggest the following equation to calculate the
cross-power matrix of the frequency band of interest.

P =
∫ ω2

ω1

P
(
eiω
)
dω (16)

The matrix is complex-valued, which comprehensively con-
siders the effect of real and imaginary parts.

3) ESTIMATION OF THE BAND CROSS-POWER MATRIX
In a real-world application, how to estimate the spectral den-
sity is one of the key issues for calculating the cross-power
matrix. It is well-known that CSP varies across time. There-
fore, a feasible scheme is the periodogram method. The
cross-spectral density is estimated by the single measurement
FFT series. Then, it computes the band cross-power matrix
of the single measurement. Finally, it averages the multiple
repeat measurements as the band cross-power matrix of the
population, as shown in Figure 3.

FIGURE 3. Calculative flow for the linear transformation vector (ω) of
CCSP.

According to (12), the ω1 z ω2 band cross-power
matrix (P) of each frame is estimated using the FFT series

VOLUME 8, 2020 17655



H. Li et al.: CCSPs of Electroencephalography for Reliable Cognitive Task Identification

as follows.

P̂ ij =
1
N

∫ Nf 2/fs

n=Nf 1/fs

(
X i [n]X j [n]+ X i [−n]X j [−n]

)
(17)

where Xi [n] and Xj [n] are respectively the FFT series of the
ith and jth channel signal, fs is sampling rate, f1 z f2 are
the bandpass Hertz frequencies corresponding to ω1 z ω2
and P̂ij is the estimation of the i, j entry of P̂. When the signal
is real-valued, the band cross-power matrix of each frame can
be estimated according to (15) and (16).

To eliminate magnitude variations between samples,
the band cross-power matrix is calculated by averaging the
normalized band cross-power matrix over all the frames of
each population.

P = E

(
P̂

Trace(P̂)

)
(18)

where Trace(P̂) is the sum of the diagonal elements of P̂.

4) THE EXTRACTION OF LOGARITHMIC BAND POWER OF
CCSP COMPONENTS
After the transformationY [n] = ω∗X [n], we use the loga-
rithmic band power of each frame (CCSP component) as a
feature for recognition in the band of interest because the
feature exhibits an approximately normal distribution.

The feature can be directly computed by averaging the FFT
series.

f = ln
(
1
N

∫ Nf2/fs

n=Nf1/fs
|Y [n]|2

)
(19)

When the estimation of the band cross-power matrix of each
frame is known (i.e., training phase), a simple and effective
method is to use the linear transformation property of the
covariance matrix (see (2)). It can be calculated as follows:

f = ln(ω∗6̂ω) (20)

Its complex multiplication times is BC (C + 1), and the
direct calculation times is N(C+ 1) (B is the filter band num-
ber, C is the channel number, andN is the signal length of each
frame). Usually, BC << N (the indirect calculation) is more
efficient. When the band cross-power matrix of each frame is
unknown, its needs the NC (C+ 1)= 2 times complex multi-
plication. Therefore, the direct calculation method should be
proposed. The direct and indirect calculation processes for
the features are shown in Figure 4.

III. EXPERIMENT AND RESULTS
We designed several experiments to validate the proposed
CCSP feature extraction method and analyze the effect
of CCSP component selection on spatial features.

FIGURE 4. Linear transformation effects of PFCCSP. Two extraction flows
of the CCSP features. Direct indicates the direct calculation of the
logarithmic band power of CCSP (Green lines), while Indirect indicates the
indirect calculation (Red lines).

A. CCSP PERFORMANCE COMPARED WITH OTHER
METHODS
To evaluate the performance of CCSP, we used the 1989Keirn
and Aunon data set of the Brain-Computer Interfaces Labora-
tory in Colorado State University [38]. The data set contains
5 kinds of mental tasks performed by different age groups
with eyes open and closed. In that study, a total of ten different
experimental conditions were applied to verify the universal-
ity of the method.

1) 1989 KEIRN AND AUNON SET
Seven healthy volunteers participated in that study. Subject 1
and Subject 2 were employees of a university, and Subject 3
through Subject 7 were college students. Table 3-A1 lists
the subjects’ information (age, gender and handedness) and
completed sessions. The subjects were seated in an Industrial

Acoustics Company sound-controlled booth with dim light-
ing and noiseless fans for ventilation. Electrodes were
placed at C3, C4, P3, P4, O1, and O2 as defined by the
10-20 placement. Recordings were made with reference to
electrically linked mastoids A1 and A2. The EOG was
recorded between the forehead above the left brow line and
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another on the left cheekbone. The electrodes were connected
through a bank of Grass 7P511 amplifiers and bandpass fil-
tered from 0.1-100 Hz. Data were recorded at a sampling rate
of 250 Hz with a Lab Master 12-bit A/D converter mounted
in an IBM-AT computer.

Data from all of the electrodes were recorded for 10 s
during each task, and each task was repeated five times
per session. The EEG signals for the subjects performing five
different mental tasks were analyzed. Subjects performed five
trials of each task in one day. They returned to do a second set
of five trials on another day. There were a total of five distinct
tasks, and each task was performed under both eyes open
and eyes closed conditions. Therefore, a total of ten different
experimental conditions were investigated. The following is
a description of the tasks performed by each subject.
Baseline Measurements (B). There was no mental task to

be performed here. The subject was told to simply relax and
to think of nothing in particular. This was done with both eyes
opened and eyes closed. This task was used as a control and
as a baseline measure of the EEG.
Multiplication Solving (M). The subject was given nontriv-

ial multiplication problem to solve and, as in all of the tasks,
was instructed to not vocalize ormake overt movements while
solving the problems. The problems were non-repeated and
were designed so that an immediate answer was not apparent.
The subject can verify at the end of the task whether or not
he had arrived at a solution, The task would last for 10s.
Geometric Figure Rotation (R) The subject was given 30s

to study a drawing of a complex three-dimensional block
figure, after which the drawing was removed, and the subject
was instructed to visualize the object being rotated on an axis.
The EEG was recorded during the mental rotation period.
Mental Letter Composing (L) The subject was instructed to

mentally compose a letter to a friend or relative without vocal-
izing. Since the task was repeated several times, the subject
was told to try to pick up where he left off in the previous
task.
Visual Counting (C) The subject was asked to imagine

a blackboard and to visualize numbers being sequentially
written on the board, with the previous number being erased
before the next number was written. The subjects were further
instructed to not verbally read the numbers but just to visual-
ize them and to pick up counting from the previous task rather
than starting over each time.

2) BINARY CLASSIFICATION OF TASKS
Because the CSP method is only suitable for a binary clas-
sification problem, we selected all the combinations of any
two tasks under each condition for classification. Because
each kind of mental task only contains 5 samples, the Leave-
One-Out methodwas applied to obtain the unique recognition
rate. To compare the performance of every feature extraction
method, all the feature extraction methods adopted the loga-
rithmic band power, and the effectiveness of various features
is evaluated by the recognition rate of the SVM classifier.

FIGURE 5. Average accuracy of each subject based on the FBP features
across all task pairs in different kinds of frame shifts.

3) THE CONTRIBUTING FACTORS TO THE RECOGNITION
PERFORMANCE
There are many factors affecting the recognition rate besides
the feature extraction method itself. To objectively evaluate
the quality of each feature extraction method, the following
factors are considered in the paper.
Subject: The trials that were oversampled and empty

trials were removed. Each subject’s recognition rates of the
frequency domain band power (FBP) cross-task pairs for
the SVM are shown in Figure 5 under 32 kinds of frame
shifts (8, 16,. . . , 256 point). Apparently, s3a represented an
extreme subject sample, and it was therefore excluded from
subsequent analyses in order to avoid the illusion of total
recognition performance only because of the great recogni-
tion rate decrease of s3a.
Frequency Band Division: Frequency division is one of the

key problems of feature extraction. To expediently compare
the results with previous results, we adopted the following
6 frequency bands that are widely accepted in clinical prac-
tice: δ (2-4 Hz), θ (4-7 Hz), α (8-15 Hz), β (16-31 Hz),
γ1 (32-55 Hz) and γ2 (65-100 Hz). The γ band is divided
into γ1 and γ2 to eliminate the artifact of 60 Hz commercial
power.
Frame and Vote: EEG data are usually split into a num-

ber of fixed-length frames. Long frames cause long delays
in results, while short frames affect the spectral resolution
of the low-frequency band. The frame length was set to
256 points with the time delay of approximately 0.5 s.
Therefore, the low-frequency band of δ, θ contained at least
3z4 frequency points under the sampling rate of 250 Hz.
Frame shift is the main factor affecting the recognition rate.
Too large of a frame shift causes too irregular recognition
results and seriously affects the recognition performance,
while too short of a frame shift leads to long processing and
training time because of excessive redundant samples. The
recognition rate of the SVMclassifier on the logarithmic band
power (FBP) with the increase in the frame shift is shown
in Figure.6.

4) COMPARISON BETWEEN CSP, FBCSP, CCSP, AND FBP
In the FBP (Logarithmic band power in the frequency
domain), each channel of the EEG was short-time Fourier
transformed, and then the logarithmic power of each frame
was extracted in the band of interest. In CSP (Common spatial
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FIGURE 6. Average accuracy based on the features of FBPs, CSP, FBCSP,
CCSP and PFCCSP in different kinds of frame shifts.

FIGURE 7. Linear transformation effects of PFCCSP. The distribution of
the logarithmic band power (16-31 Hz) of the CSP recorded for subject
7 during complex problem multiplication and solving and geometric
figure rotation. Blue * represents a sample of complex problem
multiplication task and red circle represents a sample of geometric
figure rotation. C3, C4, P3, P4, O1 and O2 are electrode positions. c1, c2,
c3, c4, c5, and c6 are the components after the transformation sorted by
eigenvalues. Among them, c1 corresponds to the minimum eigenvalue,
and c6 corresponds to the maximum eigenvalue. The first column on the
left shows the sample distribution of the components after the
transformation, and the rest shows the sample distribution of any two
electrodes.

patterns), the EEG was notched filtered from 55-65 Hz in
order to eliminate the artifact of commercial power. Then,
it was transformed using CSP, and it finally extracted the
logarithmic power of all components of each frame. In the
FBCSPs (Common spatial patterns in filter-bank), the EEG
was filtered into bands of interest and transformed using CSP.
Finally, it extracted the logarithmic power of all components
of each frame. In CCSP (Common cross spectral patterns),
each channel of the EEGwas short-time Fourier transformed.
Then, the frequency spectrum was transformed using CCSP
in the band of interest. Finally, it extracted the logarithmic
power of all components of each frame. In PFCCSP (Posi-
tive frequency common cross-spectral patterns), its algorithm
is the same as the CCSP, except it only accounts for the
positive frequency spectrum of each EEG frame according
to 14. The effect of PFCCSP’s linear transformation is shown
in Figure 7. Obviously, the two components corresponding to
the maximum and minimum eigenvalues have the strongest
separability, which are respectively distributed along their
own coordinate axis.

We used paired t-test to validate that the CCSP
method and PFCCSP method had an influence on recog-
nition rates. the degrees of freedom were corrected

by the Greenhouse-Geisser method. The result is listed
in Table 3-A4. There is a significant main effect of Method
on recognition rates. And a significant interaction between
Method and Frame shift on the recognition rates. Because of a
significant correlation in the data determined by the Mauchly
sphericity test, the application of CCSP can indeed improve
the recognition performance. The significant interaction is
mainly caused by the improvement of FBP recognition
rates of CSP, considering that the frequency information has
4.615z5.202% increases and are significantly higher than
that of FBPs. The average recognition rate of PFCCSP is
indeed higher than that of CCSP and FBCSP, and the p-value
0.074 for FPCCSP-FBCSP is close to the significant level.

Figure 6 shows the recognition rate comparison among five
different methods. A three-way repeated measures ANOVA
was used to evaluate the effects of Method (5 methods),
Frame shift (32 different frame shifts), and Task pair (10 task
pairs) on each subject’s recognition rate. The results are listed
in Table 1.

TABLE 1. Three-way repeated-measures ANOVA.

TABLE 2. Two-way repeated-measures ANOVA.

5) BETTER RESPONSE TIME AND UNIVERSALITY OF CCSP
The recognition rate of PFCCSP fluctuates very little with
the frame shift from Figure 6. Thus, the recognition rates of
frame shifts between 8 and 256 were selected for the two-way
repeated measures ANOVA (Frame shift (32 different frame
shifts), Task pair (10 task pairs)). The result is in Table 2.
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FIGURE 8. Average accuracy of the PFCCSP features in different task pairs.

Similarly, the Mauchly sphericity test shows that there is a
significant correlation in the data, and the degrees of freedom
need to be corrected by the Greenhouse-Geisser method.
There only exists a tending to be a significant main effect
of Frame shift from the statistical analysis results in Table 2.
The recognition rates of each kind of frame shift are between
94.813% to 96.239%. Obviously, the logarithmic band power
of the PFCCSP component is not sensitive to frame shifts.
Therefore, we can use larger frame shifts to reduce unnec-
essary processing time, which brings better response time.
The recognition rate of each task pair is between 95.156%
and 97.639%, as shown in Figure 8. Because the significance
of Task pair (p = 0.912) is greater than 0.9, we can assume
that the PFCCSP method has the same recognition perfor-
mance on all the tasks. Therefore, the method has a certain
universality. Table 3 shows the average recognition rates in
each subject across all task pairs under the 200 (points) frame
shift. Compared with the results of Z.A. Keirn’s method,
the average recognition rates of the majority of the subjects
were improved.

TABLE 3. Average accuracy across tasks of each subject.

B. EXPERIMENT ON COMPONENT SELECTION IN CCSP
According to Equation 10, the separability of the CCSP
component is closely related to the corresponding eigenvalue.
We chose the dataset IVa of the BCI Competition III [10] to
verify the effect of CCSP component selection on the spatial
features and show the time-invariant spatial filtering pattern
of CCSP.

1) DATASET DESCRIPTION
The dataset we used to test Component selection capability
is Dataset IVa from BCI COMPETITION III. This dataset

FIGURE 9. Recognition performance of selecting CCSP components.

was recorded from five healthy subjects. Subjects sat in a
comfortable chair with their arms resting on armrests. This
dataset contains only data from the 4 initial sessions without
feedback. Visual cues at 3.5 s indicated which of the fol-
lowing 3 motor imagery tasks the subject should perform:
(L) left hand, (R) right hand, or (F) right foot. The presen-
tation of target cues was intermitted by periods of random
length from 1.75 to 2.25 s during which the subject could
relax. There were two types of visual stimuli: (A) targets
were indicated by letters appearing behind a fixation cross
(which might nevertheless induce little target-correlated eye
movements), and (B) a randomly moving object indicated
targets (inducing target-uncorrelated eye movements). For
subjects al and aw, 2 sessions of both types were recorded,
while 3 sessions of stimulus type (1) and 1 session of stim-
ulus type (A) were recorded for each of the other subjects.
The recordings were made using BrainAmp amplifiers and
a 128 channel Ag/AgCl electrode cap from ECI. Moreover,
118 EEG channels weremeasured at positions of the extended
international 10/20-system. Signals were bandpass-filtered
between 0.05 and 200 Hz and then digitized at 1000 Hz with
16-bit (0.1 µV) accuracy.

2) DATASET PREPROCESSING AND RECOGNITION RESULTS
Subjects al (training data 80%) and aw (training data 20%)
were selected to test the effect of selecting PFCCSP com-
ponents on different ratios of training data to testing data.
The data were down-sampled to 100 Hz, and the data after
visual cues 0.5-3.5 s (300 points) were analyzed. The length
of the frame was set as 100 (points), and the frame shift was
50 (points). The logarithmic power of each component on the
band associated with motor imagery [39] was extracted by
the PFCCSP method for an SVM classifier. The recognition
results of the right hand and foot motor imagery on its test set
are shown in Figure 9. From the figure, PFCCSP can indeed
map the main difference between two classes of data to a
few components (especially in the case of high-density EEG)
and choose more discrinative features. However, compared
with al, the accuracy of awwith small training data fluctuates
along with the increase of components. This phenomenon
is mainly due to the variability of EEG signals across time,
and the test samples are selected from the final samples. It
is difficult to estimate the band cross-power matrix of each
kind of task when the training set is small. Compared with
the two top winners (Yanjun Wang: al, 100%; aw, 100%
Yuangqing Li: al, 98.2%, aw, 92.4%), the single feature of
CCSP can reach a better recognition performance.
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FIGURE 10. Spatial pattern of W−1 from subject aw, during the left-foot
and right-hand motor imagery task. RR represents the real part of the
maximum variance column of W−1W−1 for left-foot motor imagery and IF
represents the imagery part respectively.δ, θ,α, β, γ represent
corresponding EEG frequency bands.

C. SPATIAL PATTERN OF W−1

Each column of W−1 can be seen as a time-invariant EEG
source distribution vector and reflects the mapping weights
of each CCSP source on all scalp electrodes. Figure 10 shows
the spatial patterns of PFCCSP on the band when al was
performing the right hand and foot motor imagery tasks.
RR and IR are respectively the real part and the imaginary
part of the column W−1 that corresponds to the maximum
variance component for right-hand motor imagery. RF and
IF are respectively the real and imaginary part of column
W−1that corresponds to the maximum variance component
for the right-foot motor imaginary. For the right-foot motor
imagery task, the pattern is most obvious at α band, mainly
the left, middle and rear electrodes (RF and IF), which may
be attributed to the sensorimotor cortex activation. At the
high-frequency γband, the pattern is distinguishable as the
lower-frequency bands. In addition, the real and imaginary
parts of the transformation matrix are not completely inde-
pendent and have a certain degree of similarity, which deter-
mines the similar recognition results of CCSP and PFCCSP
in Figure 6. There is more difference between two distri-
butions in complex space than in real space. Meanwhile,
the real space is only a projection of the complex domain
space, which reduces the distinction between the two classes.
Therefore, by removing the real part, the recognition effect of
PFCCSP must be better than that of CCSP.

IV. CONCLUSION
This paper proposes a CCSP-based feature extraction method
for cognitive task classification. This method has several
strengths. First, the method uses the cross-power matrix to
measure the band correlation of signals. Then, the orthogo-
nal transformation is constructed according to the simulta-
neous congruence diagonalization of the matrices. Finally,
the logarithmic band power of the transformed components
is extracted. In this paper we also described A variation
of proposed CCSP method, Positive Frequency Common

Cross-Spectral Patterns(PFCCSP). The PFCCSP method fur-
ther improves the performance when the spectrum variability
is more significant in EEG of mental tasks.

In the frequency domain, the filter banks can be flexibly
chosen for extracting the cross-power. The features extracted
with the method are more distinguishable. Its spatial pat-
tern clearly reflects the difference of active brain regions in
different mental tasks. The CCSP-based method avoids the
calculation of the correlation function by using short time
Fourier transformation, which effectively reduces the compu-
tation complexity. Experiments on public datasets show that
considering various effect factors, this CCSP-based feature
extraction method has better performance compared with
method based on the channel band-power. The CCSP-based
method performed well across frame shifts and cognitive
tasks, which makes it more responsive in time and promises
a broader field of application.
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