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ABSTRACT This paper investigates the performance limitation of multi-input multi-output (MIMO)
networked control systems (NCSs). The communication channel is modeled as a power constrained channel
with channel noise and the bandwidth constraints. The optimal performance index of the system is expressed
by the covariance of the reference input signal and the system output error signal. Some new results about
MIMO NCSs are obtained by co-prime factorization, inner-outer factorization and spectral decomposition
techniques. The results demonstrate that the tracking performance depends on the non-minimum phase zeros,
unstable poles and their directions. At the same time, the network communication parameters constraints,
energy constraints and the essential feature of reference input signal also restrict the performance. Some
illustrative examples are presented to demonstrate the feasibility of the proposed methods.

INDEX TERMS Bandwidth constrains, channel noise, communication channels, performance limitation.

I. INTRODUCTION
In recent decades, network control systems(NCSs) have
attracted people’s attention because of its wide applica-
tion [1]–[6], such as smart grid [7], mobile sensor net-
works [8], transportation systems [9] and robot control. At the
same time, many challenges arise when NCSs have been
widely used in practical fields, such as bandwidth [10], [11],
packet dropout [12], [13], and quantization [14], [15]. It is
well known that stability is the primary condition of the
system, and many experts and scholars have attempted to
improve the stability of NCSs [16]–[19].

In [17], the stability analysis of improved delay-dependent
NCSs have been conducted. The stabilization of NCSs under
clock mismatches and quantization have been investigated
in [18]. The optimal control and the stabilization of NCSs
under packet dropout and input delay constraint have been
concerned in [19]. The technologies about modeling of the
NCSs and stabilization analysis are now fairly mature. But
from the angle of application, we should investigate not only
the stability, but also the tracking performance of system.
This paper mainly focuses on solving new problems with
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communication network constraints, such as the best track-
ing performance of networked control systems, and the per-
formance limitation depends on the essential characteristics
of the NCSs and communication parameters. In past years,
several scholars have achieved excellent results in the perfor-
mance limitation about NCSs [22]–[26]. In [22], the modi-
fied tracking performance limitation of MIMO NCSs under
packet dropouts has been obtained. The performance lim-
itation for MIMO NCSs under bandwidth and quantiza-
tion constraints have been discussed in [23]. The optimal
performance for MIMO discrete-time NCSs under quanti-
zation was investigated in [25]. It is well-known that the
network signal transmission is bidirectional in networked
control systems. Currently, most of the above mentioned
research studies only considered the influence factor existed
in the feedback channel. Only few studies in the literatures
considered the influence factor existed in the forward and
the feedback channels simultaneously, and it was shown
in [20] that, in order to obtain the minimal tracking error,
the channel input of NCSs is often required to have an infi-
nite energy. This requirement cannot be satisfied in general
practice. Thus, the channel input energy of NCSs should be
considered in the performance index to address this issue.
According to analysis above and [26], a novel model with
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channel noise and bandwidth constraint is established for
MIMO NCSs.

The relationships among channel noise, energy constraints,
bandwidth constraints and performance limitation of NCSs
are investigated in this paper. The main objectives are as
follows. First, the influence factor both existing in forward
and feedback loops are studied, channel noise and band-
width in forward and feedback loops simultaneously. Second,
the performance limitation is affected by several parameters,
such as the intrinsic properties of given plant, bandwidth and
channel noise, at the same time, the performance limitation
has strong connection with the nonminimum phase zeros and
unstable poles of the given plant. At last, the expressions
for the performance limitation are obtained by inner-outer
factorization and the spectral decomposition technique.

The rest of the paper is organized as follows. Section 2
introduces the problem and some regular symbols.
Section 3 investigates the performance limitation for NCSs
under quantization and bandwidth constraints. Some exam-
ples are presented to prove the accuracy of results in
Section 4. Section 5 presents the conclusion and the future
research directions.

II. PROBLEM FORMULATIONS
For a complex vector v, the complex conjugate transpose
is vH . For any vector u, the transpose and the conjugate
transpose are uT and uH respectively, and its Euclidean norm
is ‖u‖. The open unit disc, closed unit disc, exterior of
the closed unit disc, and unit circle are denoted as D 1

=

{z : |z| < 1}, D̄ 1
= {z : |z| ≤ 1}, D̄c 1= {z : |z| > 1} and ∂D 1

=

{z : |z| = 1}, respectively. Moreover, L2 is the Hilbert space
and is defined as:

〈F,G〉 :=
1
2π

∫ π

−π

tr
[
FH

(
eiθ
)
G
(
eiθ
)]
dθ

Finally, RH∞ represents all stable, and rational transfer
function matrices.

Fig. 1 shows the block diagram of a MIMO NCS with
channel noise and bandwidth constraints. In the fig. 1, G,
K , F1, and F2 represent the given plant, one-parameter com-
pensator, and the bandwidth, with transfer function matrices
as G (z) ,K (z), F1 (z), and F2 (z), respectively. n1, n2 denote
channel noise. The r and y represent the reference input and
the system output signals, respectively, with transfer function
matrices as r (z) and y (z), respectively. r is the Brownian
motion process and r (k) = (r1 (k) , r2 (k) , · · · rm (k))T ,
F1 (z) ,F2 (z) are chosen to be low-pass Butterworth filters
of order one that can be denoted as:

F (z) = diag [f1 (z) , f2 (z) , · · · , fm (z)] .

For channel i, the spectral density of ri, n1i and n2i are
defined as αi, δi and σi respectively. The reference signals r ,
n1 and n2 are uncorrelated with each other. The matrices are
denoted as:

U2
= diag(α21, α

2
2, . . . , α

2
m), V 2

= diag(δ21, δ
2
2, . . . , δ

2
m),

FIGURE 1. Model of one-parameter compensators.

A2 = diag(σ 2
1 , σ

2
2 , . . . , σ

2
m).

Illustrated by Fig. 1, we have:

u = K [r − (F2y+ n2)] = Kr − KF2y− Kn2
y = GF1 (u+ n1) = GF1u+ GF1n1 (1)

After calculation, it can be rewritten as:

u = (I + KF2GF1)−1Kr − (I + KF2GF1)−1KF2GFn1
−(I + KF2GF1)−1Kn2

y = GF1(I + KF2GF1)−1Kr + GF1(I + KF2GF1)−1n1
−GF1(I + KF2GF1)−1Kn2 (2)

Then, following can be calculated:

e = r−y

=

[
I − GF1(I + KF2GF1)−1K

]
r

−GF1(I + KF2GF1)−1n1
+GF1(I + KF2GF1)−1Kn2

= T1r − T2n1 + T3n2 (3)

where T1 = I − GF1(I + KF2GF1)−1K ,T2 =

GF1(I + KF2GF1)−1,T3 = GF1(I + KF2GF1)−1K .
The performance limitation for NCSs under bandwidth

constrain can be defined as:

J := (1− ε)E
{
‖e‖22

}
+ ε

{
E
{
‖y‖22

}
− 0

}
where 0 ≤ ε < 1, represents the trade-off between tracking
error and channel input power. The power constraint does not
exist when ε = 0.
Based on (2) and (3), it can be obtained:

E
{
‖e‖22

}
= ‖T1r − T2n1 + T3n2‖22 = ‖T1U‖

2
2

+ ‖T2V‖22 + ‖T3A‖
2
2

E
{
‖y‖22

}
= ‖T3U + T2V − T3A‖22 = ‖T3U‖

2
2

+ ‖T2V‖22 + ‖T3A‖
2
2
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For any transfer function matrix F2GF1, it may be
factorized as:

F2GF1 = NM−1 (4)

where N ,M ∈ RH∞, and satisfy the Bezout identity:

MX−NY = I (5)

where X ,Y ∈ RH∞, the stabilizing compensators K can be
characterized by Youla parameterization [27]:

K : =
{
K : K = −(X − RN )−1 (Y − RM)

= − (Y − RM) (X − RN )−1,R ∈ H∞
}

(6)

A nonminimum phase transfer function may factorize a
minimum phase part and an all pass factor [28]:

N = F2LzNnF1, M = BpMm (7)

where Lz and Bp are all-pass factor, Nn andMm are minimum
phase part. Lz includes all zeros of the plant outside the unit
circle sk ∈ D̄c, k = 1, 2, · · · , n, and Bp includes all poles of
the plant outside the unit circle pk ∈ D̄c, k = 1, 2, · · ·m. Lz
and Bp can be co-prime factorized as:

Lz (z) =
n∏
i=1

Li (z),Bp (z) =
m∏
j=1

Bj (z) (8)

where Li (z) =
z−si
1−siz

ηiη
H
i + YiYHi ,Bj (z) =

z−pj
1−pjz

ωjω
H
j +

WjWH
j , ηi and ωj are the unitary vectors as the direction of

nonminimum phase zeros and unstable poles, respectively,
and ηiηHi + YiY

H
i = I , ωjωHj +WjWH

j = I .
According to (4) and (6), following can be obtained:

T1 = I + F−12 N (Y − RM ),T2 = F−12 N (X − RN ),

T3 = −F
−1
2 N (Y − RM ).

Then, we have:

J = (1− ε)E
{
‖e‖22

}
+ ε

{
E
{
‖y‖22

}
− 0

}
= (1− ε)

∥∥∥[I + F−12 N (Y − RM)
]
U
∥∥∥2
2

+ ε

∥∥∥F−12 N (Y − RM)U
∥∥∥2
2

+

∥∥∥F−12 N (X − RN )V
∥∥∥2
2

+

∥∥∥F−12 N (Y − RM)A
∥∥∥2
2
− ε0

OPTIMAL TRACKING PERFORMANCE OF NCSS WITH
CHANNEL NOISE AND BANDWIDTH CONSTRAINTS
The tracking performance limitation for NCSs under channel
noise and bandwidth constraints is defined as J∗, The per-
formance limitation J∗ may be achieved by all the possible
stabilizing controllers (denoted by K ). Then, J∗ can be
expressed as:

J∗ = inf
K∈K

J (9)

Then, J∗ can be obtained as:

J∗ = inf
R∈H∞


∥∥∥∥∥
√
1− ε

[
I + F−12 N (Y − RM)

]
√
εF−12 N (Y − RM)

U

∥∥∥∥∥
2

2

+

∥∥∥F−12 N (X − RN )V
∥∥∥2
2

+

∥∥∥F−12 N (Y − RM)A
∥∥∥2
2
− ε0

}
Theorem 1: For given NCSs such those presented in Fig. 1,

r, n1 and n2 are independent of each other, the performance
limitation is given by:

J∗ ≥ (1− ε)
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])

+ (1− ε)
m∑

i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
γHj γi

)
+ ε

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
λHj λi

)
+

n∑
i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

tr
(
�H
j �i

)
+

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
θHj θi

)
− ε0

where

γj =
(
2U + L−1z

(
pj
)
F−12

(
pj
)
U
)
EjξjξHj 8j,

λj = L−1z
(
pj
)
F−12

(
pj
)
UEjξjξHj 8j,

�j = Nn (zi)F1 (zi)M−1 (zi)VEiηiηHi 8i,

θj = −L−1z
(
pj
)
F−12

(
pj
)
AEjξjξHj Fj.

Proof: J∗ can be decomposed as:

J∗1 = inf
R∈RH∞

∥∥∥∥∥
√
1− ε

[
I + F−12 N (Y − RM)

]
√
εF−12 N (Y − RM)

U

∥∥∥∥∥
2

2

,

J∗2 = inf
R∈RH∞

∥∥∥F−12 N (X − RN )V
∥∥∥2
2
,

J∗3 = inf
R∈RH∞

∥∥∥F−12 N (Y − RM)A
∥∥∥2
2
. (10)

From (7), it can be obtained:

J∗1 = inf
R∈RH∞

∥∥∥∥∥
√
1− ε

[
I + F−12 F2LzNnF1(Y − RM )

]
√
εF−12 F2LzNnF1(Y − RM )

U

∥∥∥∥∥
2

2

Because Lz is the all-pass factor, J∗1 can be calculated:

J∗1 = inf
R∈RH∞

∥∥∥∥√1− ε [L−1z + NnF1(Y − RM )
]

√
εF1(Y − RM )

U

∥∥∥∥2
2
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By a simple calculation, we have:

J∗1

= inf
R∈RH∞

∥∥∥∥v√1− ε [L−1z −2+2+NnF1 (Y−RM)]√
εNnF1 (Y − RM)

U

∥∥∥∥2
2

where 2 =
n∏
i=1

f (si), f (si) = −s̄iηiηHi + YiYHi . Since(
L−1z −2

)
is in H⊥2 , and [2+ Nm (Y − RM)] is in H2.

Hence:

J∗1 =

∥∥∥∥√1− ε (L−1z −2)0
U

∥∥∥∥2
2

+ inf
R∈RH∞

∥∥∥∥√1− ε [2+ NnF1 (Y − RM)]√
εNnF1 (Y − RM)

U

∥∥∥∥2
2

Then:

J∗11 =

∥∥∥∥√1− ε (L−1z −2)0
U

∥∥∥∥2
2
,

J∗12 = inf
R∈RH∞

∥∥∥∥√1− ε [2+ NnF1 (Y − RM)]√
εNnF1 (Y − RM)

U

∥∥∥∥2
2

According to [29], it can be obtained:∥∥∥√1− ε (L−1z −2)U∥∥∥22
= (1− ε)

n∑
i=1

i∏
k=1

|f (sk)|2
∥∥∥(L−1i (z)− f (si)

)
U
∥∥∥2
2

Next,

J∗11 = (1− ε)
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])
Then, calculating J∗12, we denote that MU = MϕmBϕp,

where Bϕp =
m∏
j=1

Bϕj, Bϕj =
z−pj
1−p̄jz

ξjξ
H
j + 3j3

H
j , ξj is

the unitary vector, as the direction of unstable poles, thus

ξjξ
H
j +3j3

H
j = I , and ξj =

FU−1ωj
‖FU−1ωj‖

. Then,

J∗12

= inf
R∈RH∞

∥∥∥∥√1− ε [2+ NnF1 (Y − RM)]√
εNnF1 (Y − RM)

U

∥∥∥∥2
2

= inf
R∈RH∞

×

∥∥∥∥√1− ε (2U + NnF1YU)B−1ϕp−√1−εNnFRMϕm
√
εNnFYUB−1ϕp −

√
εNnFRMϕm

∥∥∥∥2
2

At the same time, following is denoted:

J∗a = inf
R∈RH∞

∥∥∥√1− ε (2U + NnF1YU)B−1ϕp
−
√
1− εNnF1RMϕm

∥∥∥2
2
,

J∗b = inf
R∈RH∞

∥∥∥√εNnFYUB−1ϕp −√εNnF1RMϕm

∥∥∥2
2
.

From partial fraction procedure, it can be obtained:
√
1− ε (2U + NnF1YU)B−1ϕp

=
√
1− ε

m∑
j=1

(2U+ Nn
(
pj
)
F1
(
pj
)
Y
(
pj
)
U
)
Ej

×

(
B−1ϕj − B

−1
ϕj (∞)

)
8j + R1

√
εNnF1YUB−1ϕp

=
√
ε

m∑
j=1

Nn
(
pj
)
F1
(
pj
)
Y
(
pj
)
UEj

×

(
B−1ϕj − B

−1
ϕj (∞)

)
8j + R2

where R1,R2 ∈ RH∞, and Ej =
j−1∏
k=1

(
Bϕk

(
pj
))−1

,8j =

m∏
k=j+1

(
Bϕk

(
pj
))−1.

So, it can be calculated:

J∗a = inf
R∈RH∞

∥∥∥∥∥∥√1− ε
m∑
j=1

(2U+ Nn
(
pj
)
F1
(
pj
)
Y
(
pj
)
U
)

×Ej
(
B−1ϕj −B

−1
ϕj (∞)

)
8j+R1−

√
1− εNnF1RMϕm

∥∥∥∥∥∥
2

2

Because of
(
B−1ϕj − B

−1
ϕj (∞)

)
∈ H⊥2 , and(

R1 −
√
1− εNmF1RMϕm

)
∈ H2, J∗a can be rewritten as:

J∗a =

∥∥∥∥∥∥√1− ε
m∑
j=1

(2U+ Nn
(
pj
)
F1
(
pj
)
Y
(
pj
)
U
)

× Ej
(
B−1ϕj − B

−1
ϕj (∞)

)
8j

∥∥∥∥∥∥
2

2

+ inf
R∈RH∞

∥∥∥R1 −√1− εNnF1RMϕm

∥∥∥2
2

Because of R1,R ∈ RH∞, it can find the proper values of
R1 and R, then,

inf
R∈RH∞

∥∥∥R1 −√1− εNnF1RMϕm

∥∥∥2
2
= 0

So, following is obtained:

J∗a = (1− ε)
m∑

i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
γHj γi

)
where γj =

(
2U + Nn

(
pj
)
F1
(
pj
)
Y
(
pj
)
U
)
EjξjξHj 8j.

In the same way, we have:

J∗b

=

∥∥∥√εNn (pj)F1 (pj)Y (pj)UEj (B−1ϕj − B−1ϕj (∞))8j

∥∥∥2
2

+ inf
R∈RH∞

∥∥R2 −√εNnF1RMϕm
∥∥2
2
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Because of R ∈ RH∞, it can find the proper values of R,
can be selected to make

inf
R∈RH∞

∥∥R2 −√εNnF1RMϕm
∥∥2
2 = 0

Then, one gets:

J∗b = ε
m∑

i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
λHj λi

)
where λj = Nn

(
pj
)
F1
(
pj
)
Y
(
pj
)
UEjξjξHj 8j, and since

J∗12 = J∗a + J
∗
b , therefore:

J∗12 = (1− ε)
m∑

i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
γHj γi

)
+ ε

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
λHj λi

)
From (5), and M

(
pj
)
= 0, we get: Y

(
pj
)
=

−F−11

(
pj
)
N−1n

(
pj
)
L−1z

(
pj
)
F−12

(
pj
)
.

Then, γj =
(
2U + L−1z

(
pj
)
F−12

(
pj
)
U
)
EjξjξHj 8j,

λj = L−1z
(
pj
)
F−12

(
pj
)
UEjξjξHj 8j.

Thus:

J∗1 = (1− ε)
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])

+ (1− ε)
m∑

i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
γHj γi

)
+ ε

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
λHj λi

)

Next, J∗2 and J∗3 are calculated.

NV = NϕnLϕz,

where Lϕz =
n∏
i=1

Lϕi, Lϕi =
z−si
1−siz

ηjη
H
j + YiYHi , then,

following is obtained:

J∗2 = inf
R∈RH∞

‖NnF1XV − NnF1RNV‖22

= inf
R∈RH∞

∥∥NnF1XV − NnF1RNϕnLϕz∥∥22
= inf

R∈RH∞

∥∥∥NnF1XVL−1ϕz − NnF1RNϕn∥∥∥22
From partial fraction procedure:

NnF1XVL−1ϕz

= Nn (zi)F1 (zi)X (zi)VEi
(
L−1ϕz − L

−1
ϕz (∞)

)
8i + R3

where R3 ∈ RH∞,Ei =

i−1∏
k=1

(
Lϕk (zi)

)−1
,8i =

n∏
k=i+1

(
Lϕk (zi)

)−1. From (5), we have X (zi) = M−1 (zi).

Then,

J∗2

=

∥∥∥Nn (zi)F1 (zi)M−1 (zi)VEi (L−1ϕz − L−1ϕz (∞))8i

∥∥∥2
2

+ inf
R∈RH∞

∥∥R3 − Nn (zi)F1 (zi)RNϕn∥∥22
Because of R3,R ∈ RH∞, it can find the proper values

of R3, R, can be selected to make,

inf
R∈RH∞

∥∥R3 − Nn (zi)F1 (zi)RNϕn∥∥22 = 0

Following can be obtained:

J∗2 =
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

tr
(
�H
j �i

)
where �j = Nn (zi)F1 (zi)M−1 (zi)VEiηiηHi 8i.

At the same time:

J∗3 = inf
R∈RH∞

‖LzNnF1 (Y − RM)A‖22

= (1− 2ε) inf
R∈RH∞

‖NnF1 (Y − RM)A‖22

From J∗1 , following can be obtained:

J∗3 =
m∑

i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
θHj θi

)
where θ = −L−1z

(
pj
)
F−12

(
pj
)
AEjξjξHj Fj.

The proof is completed.
Next, the problem of the performance limitation for NCSs

under two-parameter compensators is discussed, as shown
in Fig. 2.

[
K1 K2

]
represents the two-parameter com-

pensators, and the transfer function is
[
K1(s) K2(s)

]
. The

defined dimension of
[
K1 K2

]
is the same as the number of

communication channels.
From Fig. 2, it is clear that:

u = K1r + K2 (F2y+ n2) , y = GF1 (u+ n1) (11)

A simple calculation can provide the following:

u = (I − K2F2GF1)−1K1r

+ (I − K2F2GF1)−1K2F2GF1n1

+ (I − K2F2GF1)−1K2n2

y = GF(I − K2F2GF1)−1K1r

+GF1(I − K2F2GF1)−1n1

+GF1(I − K2F2GF1)−1K2n2

= T7r + T5n1 + T6n2 (12)
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FIGURE 2. Model of constraint with channel noise and bandwidth.

e = r − y

=

[
I − GF(I − K2F2GF1)−1K1

]
r

−GF1(I − K2F2GF1)−1n1
−GF1(I − K2F2GF1)−1K2n2

= T4r − T5n1 − T6n2 (13)

The same as one-parameter compensator,K can be written
as [22]:

K := {K : K = [K1 : K2]

= (X − RN )−1 [Q Y − RM ] ,Q,R ∈ H∞
}

(14)

According to (4) and (14), one has:

T4 = I − GF(I − K2F2GF1)−1K1 = I − F−12 NQ,

T5 = GF1(I − K2F2GF1)−1 = F−12 N (X − RN ) ,

T6 = GF1(I − K2F2GF1)−1K2 = F−12 N (Y − RM) ,

T7 = GF(I − K2F2GF1)−1K1 = F−12 NQ.

Then,

J = (1− ε)E
{
‖e‖22

}
+ ε

{
E
{
‖y‖22

}
− 0

}
= (1− ε)

∥∥∥(I − F−12 NQ
)
U
∥∥∥2
2
+ ε

∥∥∥F−12 NQU
∥∥∥2
2

+

∥∥∥F−12 N (X − RN )V
∥∥∥2
2

+

∥∥∥F−12 N (Y − RM)A
∥∥∥2
2
− ε0 (15)

According to (5) and (15), it can be calculated:

J∗ = inf
Q∈RH∞
R∈RH∞


∥∥∥∥∥
√
1− ε

(
I − F−12 NQ

)
√
εF−12 NQU

U

∥∥∥∥∥
2

2

+

∥∥∥F−12 N (X − RN )V
∥∥∥2
2

+

∥∥∥F−12 N (Y − RM)A
∥∥∥2
2
− ε0

}
Theorem 2: NCSs with channel noise and bandwidth con-

straints as depicted in Fig. 2, if K is expressed as (14),

the performance limitation can be obtained as:

J∗ = (1− ε)
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])

+ ε (1− ε)
m∑
i=1

α2m

+

n∑
i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

tr
(
�H
j �i

)
+

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
θHj θi

)
− ε0

where �j = Nn (zi)F1 (zi)M−1 (zi)VEiηiηHi 8i, θj =

−L−1z
(
pj
)
F−12

(
pj
)
AEjξjξHj Fj.

Proof: J∗ can be decomposed as:

J∗4 = inf
Q∈RH∞

∥∥∥∥∥
√
1− ε

(
I − F−12 NQ

)
√
εF−12 NQ

U

∥∥∥∥∥
2

2

,

J∗5 = inf
R∈RH∞

∥∥∥F−12 N (X − RN )V
∥∥∥2
2

J∗6 = inf
R∈RH∞

∥∥∥F−12 N (Y − RM)A
∥∥∥2
2

From J∗1 , we have:

J∗4 =

∥∥∥∥√1− ε (L−1z −2)0
U

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥√1− ε (2− NnF1Q)√
εNnF1Q

U

∥∥∥∥2
2

Next, calculating J∗4 , denotes:

J∗41 =

∥∥∥∥√1− ε (L−1z −2)0
U

∥∥∥∥2
2
,

J∗42 = inf
Q∈RH∞

∥∥∥∥√1− ε (2− NnF1Q)√
εNnF1Q

U

∥∥∥∥2
2

From Theorem 1., it can be obtained:

J∗41 = (1− ε)
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])
From [22], an inner-outer factorization is introduced:

1i10 =

(
−
√
1− εI
√
εI

)
NnF1

where 1i =

(
−
√
1− εI
√
εI

)
,10 = NnF1.

we select ψ =
(

1H
i

I −1i1
H
i

)
, and ψTψ = I .
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Then:

J∗42

= inf
Q∈RH∞

∥∥∥∥ψ ((√1− εI0

)
+

(
−
√
1− εI
0

)
NnF1Q

)
U

∥∥∥∥2
2

=

∥∥∥∥(I − ψiψH
i

)(√1− εI
0

)
U

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥(ψH
i

(√
1− εI
0

)
+ ψ0Q

)
U

∥∥∥∥2
2

Proper Q, can be selected to obtain the following:

inf
Q∈RH∞

∥∥∥∥(ψH
i

(√
1− εI
0

)
+ ψ0Q

)
U

∥∥∥∥2
2
= 0.

A simple calculation can provide the following:∥∥∥∥(I − ψiψH
i

)(√1− εI
0

)
U

∥∥∥∥2
2

=

∥∥∥∥( εI
√
ε (1+ ε)I

√
ε (1+ ε)I (I − ε) I

)(√
1− εI
0

)
U

∥∥∥∥2
2

Thus:∥∥∥∥(I − ψiψH
i

)(√1− εI
0

)
U

∥∥∥∥2
2
= ε (1− ε)

n∑
i=1

α2n

From one-parameter compensators, it can be found that:

J∗5 = J∗2 =
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

tr
(
�H
j �i

)
J∗6 = J∗3 =

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
θHj θi

)
The proof is completed.
Corollary. 1 The following corollary. 1 can be obtained by

Theorem 2 directly. If the channel has been not considered In
Theorem 2, then the performance limitation can be obtained
as:

J∗ =
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])
Corollary. 2 The following corollary. 2 can be obtained

by Theorem 2 directly. In Theorem 2, if n1 = 0, then the
performance limitation can be obtained as:

J∗ = (1− ε)
n∑

i,j=1

(1− sis̄i)
(
1− sjs̄j

)
s̄isj − 1

×

i∑
k=1

|f (sk)|2tr
([
ηiη

H
i U

]H [
ηjη

H
j U

])

+ ε (1− ε)
m∑
i=1

α2m

+

m∑
i,j=1

(
1− pjp̄j

)
(1− pip̄i)

p̄jpi − 1
tr
(
θHj θi

)
− ε0

where θ = −L−1z
(
pj
)
F−12

(
pj
)
AEjξjξHj Fj.

III. NUMERICAL SIMULATIONS
This section presents some examples to illustrate the results.

Example 1: Consider the given plant as:

G (z) =

(
1
z−5 0
1 z−k

(z+0.5)

)
From this plant, |k| > 1, it can be seen the nonminimum

phase zeros are located at z = k , the zero-direction vector η is

η =

(
1
0

)
, the unstable pole is p = 5, and the pole direction

vector ω is ω =
(
0
1

)
.

Let suppose0 = 10,U =
(
2 0
0 2

)
,V =

(
1 0
0 1

)
,N (z) =

F2

(
1 0
1 z−k

z+0.5

)
F1,A =

(
3 0
0 3

)
,

so Nn (z) =
(
1 0
0 1

z+0.5

)
,M−1 (z) =

( 1
z−5 0
1 1

)
.

Next, the bandwidth is assumed as: F (z) =

(
µ
z+µ 0
0 µ

z+µ

)
,

where µ is the bandwidth rate, if µ = 10, following can be

obtained: F1(zi) =

(
10

k+10 0
0 10

k+10

)
,F−12

(
pj
)
=

( 3
2 0
0 3

2

)
.

The ε is assumed for three different values of ε1 = 0, ε2 =
1
2 , ε3 =

4
5 , from Theorem 1, following can be obtained:

J∗1 =
(
k2 − 1

)
k2 +

6
(
2k2 + 5k − 3

)2
+ 1350(1− 5k)2

(5− k)2

+

(
k2 − 1

) [ 900

(k + 2)2(k + 10)2

+
100

(k + 2)2(k + 10)2(k − 5)2

]
+ 1086

J∗2 =
1
2

(
k2 − 1

)
k2 +

3
(
2k2 + 5k − 3

)2
+ 1377(1− 5k)2

(5− k)2

+

(
k2 − 1

) [ 900

(k + 2)2(k + 10)2

+
100

(k + 2)2(k + 10)2(k − 5)2

]
+ 889

J∗3 =
1
5

(
k2 − 1

)
k2 +

6
(
2k2 + 5k − 3

)2
+ 6966(1− 5k)2

5(5− k)2

+

(
k2 − 1

) [ 900

(k + 2)2(k + 10)2

+
100

(k + 2)2(k + 10)2(k − 5)2

]
+

2990
5

The performance limitation for NCSs under different ε
is shown in Fig. 3. It can be seen from the Fig.3 that the
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FIGURE 3. The performance limitation under different nonminimum
phase zeros.

FIGURE 4. Performance limitation under nonminimum phase zeros.

performance limitation will be influenced by ε, the greater
ε is, the greater the performance of NCSs will be.
Next, if ε = 1

2 , and other conditions are unchanged, from
Theorem 1 and Theorem 2, following can be obtained:

J∗4 =
1
2

(
k2 − 1

)
k2 +

3
(
2k2 + 5k − 3

)2
+ 1377(1− 5k)2

(5− k)2

+

(
k2 − 1

) [ 900

(k + 2)2(k + 10)2

+
100

(k + 2)2(k + 10)2(k − 5)2

]
+ 889

J∗5 =
1
2

(
k2 − 1

)
k2 +

1350(1− 5k)2

(5− k)2

+

(
k2 − 1

) [ 900

(k + 2)2(k + 10)2

+
100

(k + 2)2(k + 10)2(k − 5)2

]
+ 481+

5
4

The performance limitation for NCSs under one or
two-parameter compensator is shown in Fig. 4. It can be seen
from Fig. 4 that the optimal performance for NCSs under

FIGURE 5. Performance limitation under nonminimum phase zeros.

two-parameter compensator is better than one-parameter
compensator. It can also be seen from Fig. 4 that the per-
formance will be influenced by the non-minimum phase
zeros, unstable poles and their directions of systems, the per-
formance of the systems becomes worse as unstable poles
and nonminimum phase zeros are located close to each
other.

The bandwidth and two channel noises often appear in
NCSs and inevitably degrade or destabilize the control perfor-
mance of the NCSs. The optimal tracking problem for NCSs
over a communication channel with bandwidth is studied
in [30] only considers the feedback bandwidth constraint.
This paper is aimed at addressing the tracking performance
limitation of NCSs with considering the bandwidth and two
channel noises. The choice of data is the same as in previous
example, thus, according to Theorem 2 and [30], the tracking
performance limitation can be obtained in Fig. 5. In Fig. 5,
it can be seen that the more communication constraint param-
eters, the worse the performance is.

Example 2: Consider the given plant as:

G (z) =


1

(z− 5)
0

1
z− 3
z+ 0.5


From this plant, the values of nonminimumphase zeros and

unstable poles are known, it can be seen that the nonminimum
phase zeros are located at z = 3, the zero-direction vector η

is η =
(
1
0

)
, the unstable pole is located at p = 5, and the

pole direction vector ω is ω =
(
0
1

)
.

Let suppose 0 = 10, ε = 1
2 ,U =

(
2 0
0 2

)
,N (z) =

F2

(
1 0
1 z−3

z+0.5

)
F1, so we have Nn (z) =

(
1 0
0 1

z+0.5

)
,

M−1 (z)=
( 1

z−5 0
1 1

)
.
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FIGURE 6. The performance for NCSs under different channel noise.

FIGURE 7. The performance limitation for NCSs under channel noise and
bandwidth constraints.

At first, the bandwidth is selected as: F1(zi) =( 10
13 0
0 10

13

)
,F−12

(
pj
)
=

( 3
2 0
0 3

2

)
, and V =

(
δ 0
0 δ

)
,

A =
(
σ 0
0 σ

)
,

From Theorem 2, following can be obtained:

J∗6 =
232
169

δ2 + 24300σ 2
+ 141

The performance limitation for NCSs under different chan-
nel noise is shown in Fig. 6. It can be seen from Fig. 6 that
the performance limitation for NCSswill be influenced by the
channel noise, and the greater the channel noise is, the worse
the performance limitation for NCSs will be.

Second, the bandwidth is selected as: F1(zi) =( 10
13 0
0 10

13

)
,F−12

(
pj
)
=

(
µ2+10
µ2

0

0 µ2+10
µ2

)
, and V =(

3 0
0 3

)
,A =

(
σ 0
0 σ

)
, From Theorem 2, we can obtain:

J∗7 =
1200(µ2 + 10)2

µ2
2

σ 2
+

4007
169

The performance limitations for NCSs under channel noise
and bandwidth are shown in Fig. 7. The Fig. 7 shows that the

channel noise and bandwidth affect the performance limita-
tion for NCSs. The greater the bandwidth is, the greater the
performance limitation of NCSs will be, and the greater the
channel noise is, the worse the performance of NCSs will be.

IV. CONCLUSION
The performance limitation for NCSs under two-channel
constraints is investigated in this paper. Channel noise and
bandwidth in forward and feedback loops simultaneously.
The obtained results show that the performance limitation for
NCSs is related to the intrinsic properties of a given plant such
as locations and directions of nonminimum phase zeros and
unstable poles. At the same time, the performance limitation
for NCSs is influenced by parameters such as channel input
power, energy constraints, channel noise and bandwidth.
Finally, different influence factors and different Pole-Zero are
discussed to validate the feasibility of the proposed methods
in the simulation section. The proposed methods in this paper
assumes that the parameters of the system models are known.
For the systems with unknown parameters, one uses some
identification approaches [31]–[33].

This paper has discussed the performance of SISO or
MIMO NCSs with communication constraints. However,
practical applications also include SIMONCSs. It is essential
to discuss the performance limitation for SIMO NCSs under
the constraints used in this paper. This problemwill be studied
in future work.
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