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ABSTRACT In demand response programs, load service entity (LSE) can aggregate user as an independent
entity to participate in the day ahead energy market, and complete the response target through incentive in
the next day. In order to reduce the incentive cost of LSE, a differentiated incentive mechanism that consider
the differences in user response flexibility is proposed in this paper. Then, a user response behavior model is
established by using the long short-term memory (LSTM) network, with aim of accurately predicting users’
response. Subsequently, an optimization strategy combining particle swarm (PSO) and LSTM is proposed,
so that the response target can be accurately completed with low cost. Simulation experiments verified that
the cost of LSE is close to the theoretical minimum, and can be reduced by 20% compared with the optimal
result under unified incentive mechanism. Moreover, it also verified that the proposed strategy has high
response accuracy and good stability.

INDEX TERMS Demand response (DR), differentiated incentive, user response behavior model, LSTM-
PSO optimization strategy.

NOMENCLATURE
Abbreviation
LSE load service entity
ISO independent system operator
LSTM long short-term memory
PSO particle swarm optimization
URBM user response behavior model
ACO ant colony optimization
GA genetic algorithm
SA simulated annealing algorithm

Variables and parameters in modeling

t time
T temperature
L user’s load
I0 basic incentive
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γ incentive factor
Rtb response reported by LSE in day ahead

market
Ptb unit price reported by LSE in day ahead

market
Rtc response target obtained from day ahead

market
Ptc unit price obtained from day ahead market
Rti response of user
C t
i user’s response cost
αti , β

t
i parameters of the user’s cost function

εti noise of user’s response
Y ti revenue of the user
Rti−max maximum responsiveness of the user
Y tLSE revenue of the LSE
I t∗unified incentive in unified

incentive mechanism
Cdifferentiated cost of LSE under differentiated

incentive mechanism
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Cunified cost of LSE under unified incentive
mechanism

µi, νi coefficient of temperature influence degree
At Weather in t timeslot
S Season
D Day type

Variables and parameters in LSTM network

ft forgetting gate
σ sigmoid function
W weight
b bias
ht output
xt input
it input gate
C̃t candidate value
Ct CELL
ot output gate

Variables and parameters in PSO-LSTM algorithm

λ a strictly increasing sequence
s the number of iterations
H (x) unbalance function
θ multi-level assignment function
ϕ level of the penalty function
Pi optimal position of particle i
Pg optimal position of particle swarm
Vi speed of particle i
Xi particle position after each iteration update

I. INTRODUCTION
With the massive penetration of new energy power genera-
tion, the flexibility of the generation is gradually decreasing.
It is very important to aggregate demand side resources to
maintain the flexibility of the power system [1]. According to
the International Energy Agency (IEA), the demand response
potential usually accounts for about 15% of the peak demand.
By 2050, the EU’s response potential may exceed 150GW [2].
Currently, distributed small users are gradually participating
in the demand response. IEA proposed to integrate home
users and participate in the power market in its report [2].
Similarly, the PJM power market also proposed to expand
the scope of demand response to participate in the power
market [3].

In PJM, distributed small users can participate in the
demand response of the electricity market through the load
service entity (LSE). LSE participates in the day-ahead mar-
ket bidding as an entity, bids for the amount of load reduction
and obtained the response target on the next day after the mar-
ket clearing. Then the LSE need to organize users to complete
the response target by means of direct load control (DLC) [4],
dynamic price [5], contract [6], or incentives [7], etc. Since
distributed small users are mainly home users, it is difficult to
achieve DLC due to device limitations or privacy reasons [8],
so in this paper, we focus on the incentive method.

A. LITERATURE REVIEW
Many literatures are dedicated to improve the economics of
demand response. Reference [9] presented a fast distributed
algorithm, to minimize the cost of aggregator while maxi-
mizing the users’ comfort level. In [10], household load is
divided into non-shiftable, shiftable appliances and electric
vehicle, the total energy procuring cost is minimized by
optimizing these loads. Reference [11] proposed a dynamic
energy management framework based on highly-resolved
personal energy consumption models, to re-shape the aggre-
gate demand. In these studies, the load information of each
appliance of the user needs to be obtained.

However, due to the limitation of the load information
collection equipment, or the privacy issues, the user’s load
information of each appliance is often difficult to obtain, this
will cause the uncertainty of user’s response for LSE. User
response functions need to be established when developing
demand response strategies, many literatures have studied on
this issue.

In [12], the author assumed that the response is linearly
proportional to the incentive payment, and proposed a reward
scheme for utilities. Considering the economic characteristics
of users, [13] established a consumer’s cost function using
quadratic function, and then develop a joint online learning
and pricing algorithm, to obtain the appropriate price for all
the consumers in each time slot. Reference [14] used Stack-
elberg game theory to analyze the user’s decision in demand
response, and also used the quadratic function to establish
the user’s cost function. Reference [15] analyzed the impact
of incentive-based demand response on microgrid operation,
and [16] implemented incentive-based demand response by
establishing stochastic energy cost function in microgrid.

At the same time, it is found that there are great dif-
ferences between users through the analysis of user behav-
ior [17]. Considering differences when developing incentives
can improve the benefits in demand response, and there are
already some literatures on this issue. Reference [18] divided
the load into three categories and calculated the demand
response cost respectively. Reference [19] designed three dif-
ferent reward schemes for different comfort level of users, but
completed information is needed to calculate users’ comfort
level. In [20], a classification algorithm is employed to divide
consumers into different categories, and a pricing model is
formulated as a nonlinear programming problem, aiming to
minimize the overall operation cost.

Based on the above analysis, demand response incentive
strategies that consider user differences under incomplete
information conditions need to be further studied:

1) When modeling the user’s response behavior, most of
the existing research established a static model, which is
independent of time. However, due to the influence of the
external environment (such as temperature, lighting, etc.),
the user’s response behaviormay have different performances
at different time, that is, the user’s response elasticity is time-
dependent [21]. Therefore, using a static model may result in
larger error.
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2) In the existing incentive mechanism, the difference of
users has not been fully utilized. Most of the existing litera-
tures clustered users first, and then designed incentive mech-
anisms for different types of users. But the differences among
users of the same type have yet to be explored. At the same
time, clustering may bring the issue of unfairness between
different types of users. For example, A user who is clustered
into category A thinks that the mechanism of category B is
better, and he should be clustered into category B. In this case,
the user may feel unfair.

B. NOVELTY AND CONTRIBUTION OF THIS PAPER
In many cases, LSE have specific demand response targets
at a particular time [13]. For example, the LSE partici-
pates in day-ahead market to obtain specific response tar-
get, or obtains response target from demand response calls.
Therefore, in order to accurately complete the target response,
LSE needs to know the response behavior of users under
different incentives. In this paper, a user response behavior
model based on LSTM network is established. The model
can reflect the relationship between user response behavior
and external environmental factors, thus can describe user
response behavior more accurately, compared with the exist-
ing static model. Then, a differentiated incentive mechanism
and strategy is proposed to minimize incentive costs on the
premise of achieving response target.

The main contributions of this paper are summarized as
follows:

1) A differentiated incentive mechanism consists of basic
incentive and incentive factor is proposed in this paper.
In each time slot, the same basic incentive and incentive factor
are announced to all users, which guarantees the fairness.
Basic incentive ensures that users participating in demand
response can get revenues, and incentive factor makes the
user’s revenue increase faster with the increase of response,
thus increase users’ motivation to participate in demand
response. The incentive cost of the LSE under the differen-
tiated incentive mechanism is always lower than the existing
unified incentive mechanism is proved in this paper.

2) The user’s response behavior under different external
environments and incentives is analyzed, and a time-
correlated user response behavior model (URBM) is estab-
lished, which based on Long Short-Term Memory (LSTM)
network. On the one hand, URBM can reflect the time cor-
relation of user response behavior, thereby improving the
accuracy of themodel. On the other hand, it can flexibly select
the input parameters (price, differentiated incentive, unified
incentive, etc.) according to the requirements, without chang-
ing the structure of the model. In this paper, the simulation
experiment showed that the model has a good performance
under the differentiated incentive mechanism.

3) The Starkelberg game theory is used to analyze
the decision-making behavior of users and LSE. Then a
LSTM-PSO optimization strategy is established, by com-
bining LSTM with particle swarm optimization (PSO).
The incentive cost can be reduced to near the theoretical

FIGURE 1. Implementation architecture of LSE aggregated distributed
small users participation in demand response.

minimum, on the premise of achieving the response target.
At the same time, the algorithm occupies less computing
resources, and can support the implementation of large-
scale engineering applications under the support of parallel
computing.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
described the system framework and proposed differentiated
incentive mechanism, then the decision-making behavior of
LSE and users is analyzed by using Stackelberg game theory,
and the superiority of the proposed mechanism is proved
mathematically. Section III established the user response
behavior model. In Section IV, the LSTM-PSO optimization
strategy is proposed. In Section V, case studies are performed
and the results are discussed. Finally, conclusions and future
work are presented in Section VI.

II. SYSTEM FRAMEWORK AND DIFFERENTIATED
INCENTIVE MECHANISM
A. SYSTEM FRAMEWORK
In the electricity market, LSE can aggregate the demand side
resources as an independent entity to participate in demand
response bidding in the day-ahead energy market, such as
day-ahead demand response program (DADRP) in PJM.

As shown in Fig.1, in day-ahead energy market, LSE
reports the amount of load Rtb that can be reduced in the t-slot
on the next day and the corresponding unit price Ptb. After the
clearance of the day-ahead energy market, LSE obtains the
amount of power Rtc actually needed to be reduced on the next
day. The price Ptc is determined by the Locational Marginal
Price (LMP) in the day-ahead energy market.

On the implementation day, LSE collects user and environ-
ment data in t-1 time slot, and obtain the optimal incentive
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strategy through algorithm iteration. At the beginning of the
t period, LSE announces the incentive, and users make their
response decision.

After the users execute the response decision, only the
users’ actual load can be measured. Therefore, in order to
obtain the real response of users, it is necessary to calculate
the baseline load of users. At present, many power markets
have official baseline load calculation methods [22], many
literatures also focus on the calculation method of user base-
line load [17]. All the above methods can be used to calculate
the user’s baseline load, so as to calculate the user’s actual
response.

B. DIFFERENTIATED INCENTIVE
MECHANISM DESCRIPTION
The differentiated incentive mechanism proposed in this
paper consists of two parts: basic incentive I0 and incentive
factors γ . Under this mechanism, the revenue of user is as
follows:

E ti =
(
I t0 + γ

tRti
)
· Rti (1)

where, I t0 and γ
t are the basic incentive and incentive factors

respectively in time slot t , Rti is the response of user i in time
slot t .

Changes in the user’s electrical behavior will result in a loss
of comfort. According to the theory of demand elasticity [23],
the loss of user comfort will increase at a faster rate as the
response depth increases. Usually, the user’s cost function can
be approximated as follows [13]:

C t
i =

1
2
β ti
(
Rti + ε

t
i
)2
+ αti

(
Rti + ε

t
i
)

(2)

where C t
i is the user’s response cost function, Rti is the

response of the i-th user to the incentive in time slot t , αti and
β ti are two parameters of the user’s cost function. εti is the
noise caused by the randomness and uncertainty of the i-th
user’s response behavior at time slot t . In this paper, the ran-
dom noise is assumed to obey the Gaussian distribution [13].
The user’s revenue from the response in time slot t is:

Y ti =
(
I t0 + γ

t (Rti + εti )) · (Rti + εti )− C t
i

s.t. 0 ≤ Rti ≤ R
t
i−max (3)

where Y ti is the revenue of the user and Rti−max is the maxi-
mum responsiveness of the user in the time slot t .

C. STACKELBERG GAME ANALYSIS IN
DIFFERENTIATED/UNIFIED
INCENTIVE MECHANISM
A Stackelberg game is one type of extensive game that
studies a situation with leader and followers, leader first
make its strategy, and followers take actions subsequently.
In proposed mechanism, LSE plays the leader role, and
announces incentive first, and then users decide their response
correspondingly.

The total revenue of LSE in proposed mechanism can be
expressed as follows:

Y tLSE = Rtc · P
t
c −

n∑
i=1

(
I t0 + γ

tRti
)
Rti

s.t.
n∑
i=1

Rti = Rtc (4)

LSE’s goal is to maximize revenue, so the optimal decision
of LSE can be expressed as follows:

(
I t∗0 , γ

t∗)
= argmax

I t0,γ
t
Rtc · P

t
c −

n∑
i=1

(
I t0 + γ

tRt∗i
)
Rt∗i

s.t.
n∑
i=1

Rt∗i = Rtc (5)

where Rt∗i is the optimal response of the user i under the basic
incentive I t0 and the incentive factor γ t .

Suppose user i offered by the basic incentive I t∗0 and incen-
tive factor γ t∗ in differentiated incentive mechanism, they
will react based on their objective function. By substituting
(2) into (3), the user’s objective function can be obtained as
follows:

max
Rti

Y ti =
(
I t∗0 + γ

t∗ (Rti + εti )) · (Rti + εti )
−

1
2
β ti
(
Rti + ε

t
i
)2
− αti

(
Rti + ε

t
i
)

s.t.0 ≤ Rti ≤ R
t
i−max (6)

The first derivative and second derivative of (6) can be
expressed as follows:

dY ti
dRti
= I t∗0 + 2γ t∗

(
Rti + ε

t
i
)
− β ti

(
Rti + ε

t
i
)
− αti

(7a)
d2Y ti(
dRti

)2 = 2γ t∗ − β ti (7b)

From (7a) and (7b), the optimal decision Rt∗i of users in
demand response can be obtained as follows:

Rt∗i =


αti − I

t
0 2γ t − β ti − ε

t
i2γ

t
− β ti < 0

Rti−max2γ
t
− β ti ≥ 0

(8)

In each demand response, LSE wants to complete the
response target at the lowest cost to maximize its own rev-
enue. As mentioned above, differentiated incentive mecha-
nism can reduce the incentive cost of LSE, compared with
the existing unified incentive mechanism, the mathematical
proof is as follows.

Suppose user i offered by the incentive I t∗unified in unified
incentive mechanism, they also will react based on their
objective function. the user’s objective function can be
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obtained as follows:

max
Rti

Y ti = I t ·
(
Rti + ε

t
i
)
−

1
2
β ti
(
Rti + ε

t
i
)2
− αti

(
Rti + ε

t
i
)

s.t.0 ≤ Rti ≤ R
t
i−max (9)

From (9), the user’s optimal decision can be obtained as:

Rt∗i,unified =
I tunified − α

t
i

β ti
− εti (10)

Suppose that the response target is the same under two
kinds of mechanisms, that is Rt∗i =R

t∗
i,unified , the cost of LSE

under the two incentive mechanisms are as follows:

Cunified =
(
Rt∗i,unified + ε

t
i

)
· I tunified (11a)

Cdifferentiated =
(
Rt∗i + ε

t
i
)
·
(
I t∗0 + γ

t∗ (Rt∗i + εti ))(11b)
By substituting (8) and (10) into (11b) and (11a), the incen-

tive cost of LSE can be expressed as:

Cunified = β ti ·
(
Rt∗i,unified + ε

t
i

)2
+ αti ·

(
Rt∗i,unified + ε

t
i

)
(12a)

Cdifferentiated = β ti ·
(
Rt∗i + ε

t
i
)2

+αti ·
(
Rt∗i + ε

t
i
)
− γ t ·

(
Rt∗i + ε

t
i
)2 (12b)

Since γ t is a value that is always greater than zero,
Cdifferentiated < Cunified is always established, that is in the
case of the same response target, the cost of the LSE in the
differentiated incentive mechanism will always be low.

III. USER RESPONSE BEHAVIOR MODEL
As can be seen from (8), if LSE knows the parameters αti and
β ti , the response R

t∗
i of the user i to the incentive I t0 + γ

tRti
at time t can be obtained. Then, LSE can obtain the optimal
decision I t∗0 and γ t∗ for each demand response by solving (5).
But for the LSE, the parameters αti and β

t
i of each user in

different time slot t are unknown, the information that LSE
can obtain is the incentives users received and corresponding
response in the historical demand response.

In the existing research, some literatures used linear regres-
sion to estimate user parameters αti and β ti [13], but the
assumption of this method is that the user’s parameters αti and
β ti are similar in different external environments, otherwise it
will cause a large error. In fact, the user’s parameters will be
different in different external environments. Therefore, LSE
needs to find a more accurate method, which can reflect the
impact of environmental factors on user response behavior,
to simulate the response of users under different incentives
and make optimal incentive strategy accordingly.

The parameters of LSTM network can be trained by using
the user’s historical data (Incentives received by users, their
response, and external environmental data, etc.), and then
predict the user’s response behavior in different external
environments without needing to know the values of αti
and β ti .The prediction result of the LSTM network depends
only on the historical data. Even if the values of αti and

FIGURE 2. LSTM-based user response behavior model (URBM)
architecture.

β ti are changed, the LSTM network can fit well. Therefore,
the LSTM network is very suitable for predicting the user’s
response behavior.

According to the actual operation of the PJM power mar-
ket, the user’s load curve has time-correlation characteristics
and is affected by external environmental factors [24], cor-
respondingly, the user’s response behavior also has similar
characteristics [25]. Therefore, the user’s response behavior
has historical similarity and is affected by the current environ-
ment at the same time. It is necessary to find an appropriate
method to simulate and predict the user’s response behavior.
Long short-term memory (LSTM) network can transfer the
user’s historical characteristics on the time axis [26], and at
the same time, it can output different predictions according
to the current input [27], which is a good method to solve the
above problems. LSTM-based user response behavior model
(URBM) architecture is shown in Fig.2 [28].

As shown in Fig.2, a LSTMnetwork consists of one CELL,
one Input Gate, one Forget Gate and one Output Gate. The
parameters of the LSTM network are trained based on his-
torical data, and the predicted values are outputted based on
the input data. According to the previous analysis, the user’s
response behavior has time-correlation characteristics and
is affected by environmental factors. Therefore, the user’s
current load L, time t , temperature T , basic incentive I and
incentive factor γ can be chosen as input data.

Among them, the current load L contains information
of the maximum response potential. The value L in t slot
can be accurately predicted by the data collected in t-1
slot [17]. the time t contains information of time-correlation
characteristics, and the temperature T contains informa-
tion of external influence factors, which can also be accu-
rately predicted by using data in t-1 slot [29]. In addition,
factors such as weather, season, day type (working day /
non-working day), etc., will also affect the user’s response
behavior. All these inputs will affect the parameters αti and
β ti of the user in demand response. Therefore, the predicted
response of the user in different incentives can be expressed as
follows:

Rt∗i
(
I t0, γ

t)
= URBM

(
L ti , t,T

t , I t0, γ
t ,At , S,D, . . .

)
(13)
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The Forgot Gate is used to determine what information
is stored in the CELL. The model is expected to remember
strongly related historical information and discard weakly
related historical information. The update equation for the
Forgot Gate is as follows:

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(14)

where σ is the sigmoid function, Wf is the weight of the
Forgetting Gate, bf is the bias of the forgetting gate, ht−1 is
the output of the previous moment, and xt is the input of the
current moment.

The Input Gate determines what value will be used to
update the information in the CELL. First, the input vector is
processed by the activation function sigmoid, and the candi-
date value vector is generated by the tanh function. The input
equation for the input gate is as follows:

it = σ (Wi · [ht−1, xt ]+ bi) (15)

C̃t = tanh (WC · [ht−1, xt ]+ bC ) (16)

whereWi, bi are the input weight and bias, respectively,WC ,
bC are the weight and bias of the candidate value vector,
respectively, and C̃t is the candidate value vector.

After the input information is processed by the Input Gate
and the Forget Gate, the update rule of the stored data in the
CELL can be obtained. The equation for updating the CELL
is as follows:

Ct = ft × Ct−1 + it × C̃t (17)

After updating the state of the CELL, it is possible to
determine what to output based on the content of the CELL
and the current input, that is, the expected response of the
user. The update equation for the Output Gate is as follows:

ot = σ (Wo [ht−1, xt ]+ bo) (18)

ht = ot × tanh (Ct) (19)

where, WO, bO are the input weight and bias respectively.
The LSTM-based user response behavior model is estab-

lished based on TensorFlow. The flowchart is shown in Fig.3.
Since the training of the model takes a long time, LSE can

train and store the user response behavior model in advance,
and directly call the trained model when needed. Before each
demand response is implemented, LSE optimizes to obtain
the optimal incentive strategy by using the user response
behavior model, and sends the incentive to the user to imple-
ment the demand response, then collects the actual response
data of the user for the correction training of the model.
After each n times of demand response, LSE retrains the user
response behavior model based on the updated historical data
to ensure the accuracy of the model.

IV. LSTM-PSO OPTIMIZATION STRATEGY
After the user response behavior model established, LSE
needs to optimize the optimal incentive strategy according to
the target response Rtc of each demand response.

FIGURE 3. Training flow chart of user response behavior model based on
LSTM.

TABLE 1. Comparison of intelligent optimization algorithms.

If the LSE knows all the parameters, the model can be
transformed into a nonlinear programming problem. But
due to the lack of an accurate mathematical model of
user response behavior, intelligent algorithm can be used to
optimize the best incentive. Several intelligent algorithms
are compared in this paper, including particle swarm opti-
mization (PSO), ant colony optimization (ACO), genetic
algorithm (GA) and simulated annealing algorithm (SA),
as shown in Table 1.

From Table 1, it can be seen that the PSO algorithm has
the fastest convergence speed, and the algorithm is simple
and easy to implement for LSE. Although PSO may fall into
local optimum, it can be avoided as much as possible by
adjusting parameters. Therefore, considering the efficiency
and implementation difficulty of the algorithm, PSO is cho-
sen in this paper as the basic optimization algorithm. Then
the LSTM-PSO optimization strategy is established by com-
bining it with the user response behavior model.

From (4), the goal of LSE is tomaximize the benefit in each
demand response. At the same time, the incentive strategy of
LSE should satisfy the constraint that the total user response
is equal to the target response. Therefore, the fitness function
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of the LSTM-PSO optimization strategy can be composed
of the benefit Y tLSE of the LSE and the penalty function
considering the power balance constraint, as follows:

F (x) = Y tLSE − λ (s)H (x) (20)

Among them, Y tLSE is the benefit of LSE, which can be
calculated by using the prediction result of the user response
behavior model in (13), as follows:

Y tLSE = Rtc · P
t
c −

n∑
i=1

(
I t0 + γ

t
· Rt∗i

(
I t0, γ

t))
· Rt∗i

(
I t0, γ

t)
(21)

λ (s) is a strictly increasing sequence. The form of λ (s) in
this paper is as follows:

λ (s) = s ·
√
s (22)

where, s is the number of iterations of the LSTM-PSO opti-
mization strategy.
H (x) is obtained by the amount of imbalance between the

user response and the target response, expressed as follows:

H (x) = θ

(∣∣∣∣∣
n∑
i=1

Rt∗i − R
t
c

∣∣∣∣∣
) ∣∣∣∣∣

n∑
i=1

Rt∗i − R
t
c

∣∣∣∣∣
ϕ

(23)

where θ is a multi-level assignment function, ϕ is the level
of the penalty function, and the values of θ and ϕ can be
determined by the following rules:

when 0 <

∣∣∣∣∣
n∑
i=1

Rt∗i − R
t
c

∣∣∣∣∣ ≤ 0.001 ϕ = 1, θ = 10

when 0.001 <

∣∣∣∣∣
n∑
i=1

Rt∗i − R
t
c

∣∣∣∣∣ ≤ 0.1 ϕ = 1, θ = 20

when 0.1 <

∣∣∣∣∣
n∑
i=1

Rt∗i − R
t
c

∣∣∣∣∣ < 1 ϕ = 1, θ = 100

when 1 ≤

∣∣∣∣∣
n∑
i=1

Rt∗i − R
t
c

∣∣∣∣∣ϕ = 2, θ = 300 (24)

After the fitness function is established, the optimal values
of basic incentive I t∗0 and incentive factor γ t∗ can be obtained
by using the PSO algorithm. The current optimal position of
particle i is updated as follows:

Pk+1i =

{
Pki ,F

(
xk+1

)
≥ F

(
xk
)

X k+1i ,F
(
xk+1

)
< F

(
xk
) (25)

The optimal position update equation for the entire particle
swarm is as follows:

Pk+1g ∈

{
Pk1,P

k
2, . . . ,P

k
m

}
= max

{
Pk1,P

k
2, . . . ,P

k
m

}
(26)

The speed and position of each particle in each iteration is
updated as follows:

V k+1
i = ω × V k

i + c1 × r1 ×
(
Pi − X ki

)
+ c2 × r2 ×

(
Pg − X ki

)
(27)

X k+1i = X ki + V
k+1
i (28)

where i is the number of the particles in the particle group,
k is the number of iterations, r1 and r2 are random numbers
distributed between 0 and 1. and c1 and c2 are the acceleration
factors, which determine the rate of change in the velocity
of the particle in its optimal direction and global optimal
direction, respectively.
In order to ensure that the particles do not escape the search

space in the iteration process, it is necessary to set constraints
on the particle’s speed, as follows:

−Vmax ≤ vi ≤ Vmax (29)

The algorithm steps of LSTM-PSO optimization strategy are
as follows:
Step 1: Initialize a particle swarm of size m, randomly set

the initial position P0i and the initial velocity v
0
i of the particle

within the search range;
Step 2: Transmitting the position information of each par-

ticle, that is, the values of basic incentive I t∗0 and incentive
factor γ t∗, into the user response behavior model, then cal-
culate the fitness function Fi based on the results predicted
by the model, set P0j

(
F0
j = max

{
F0
1 ,F

0
2 , . . . ,F

0
m
})

as the

optimal position P0g of the particle swarm;
Step 3: Update the position of each particle according

to (25);
Step 4: Compare The fitness function value F si of the opti-

mal position of each particle and the value F sg of the optimal
position fitness function of the particle swarm, if F si > F sg,
replace F sg with F

s
i ;

Step 5: Update the speed and position of each particle
according to (28), (29), and (30);
Step 6: If the maximum number of iterations is reached,

terminate and exit, if not, continue to loop from step 3.

V. CASE STUDIES
A. SIMULATION SETTING
Suppose LSE has 100 user resources to participate in demand
response and obtains the response target Rtc =100kW in slot
t of the next day from the electricity market with the price
Ptc = 20U/kW .
According to (8), the response decision of the user i

is determined by the values of αti and β ti . In the existing
research, there are many types of daily load characteristics of
users [30], and they all show the periodic characteristics [31],
that is, for the same type of users, they have similar load
characteristics in the same time period every day [32].
In order to reflect the periodic characteristics of the user,

one day is divided into four time periods, and the response
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TABLE 2. User response behavior parameter

characteristics of user i are assumed to be the same every
6 hours. It should be pointed out that this paper only uses
this division as an example to generate user data, the actual
division of time in which users have similar response char-
acteristics may be different, but the proposed algorithm can
adapt.

At the same time, weather, season, day types and other
factors will also affect the user’s response flexibility. In the
simulation experiments, the weather is divided into four cat-
egories: sunny, cloudy, rain and snow. The season includes
spring, summer, autumn, and winter, and the day types are
divided into working days and non-working days.

In order to simulate the complexity of user response in the
real environment as much as possible, this paper assumed that
users have different response flexibility under the combina-
tion of different influencing factors. There are four types of
seasons, two day types, four types of weather, and four types
of time segments, and there are 128 different combinations in
total. In each combination, the basic values of αti−0 and β

t
i−0

of user i are randomly generated, as shown in Table 2.
Among all loads of users, heating, ventilation and air con-

ditioning (HVAC) load accounts for a large proportion [33],
which are greatly affected by the external temperature [34].
And according to [35], temperature is one of the most impor-
tant factors affecting the load behavior of users. Therefore,
In order to reflect the influence of external temperature on
user response behavior, it is necessary to add a temperature
correction factor to correct the basic values of αti−0 and β

t
i−0.

The greater the deviation between the ambient temperature
and the user’s comfort temperature, the more the user’s load
demand [36]. Therefore, the adjusted parameters of users are
as follows:

αti =

(
1+µi ·

∣∣Tt − T 0
i

∣∣
T 0
i

)
· αti−0

β ti =

(
1+νi ·

∣∣Tt − T 0
i

∣∣
T 0
i

)
· β ti−0

(30)

Among them, T 0
i is the optimum temperature of user i, Tt

is the external temperature in time slot t , and µi and νi are the
influence degree parameters of the basic values of αti−0 and
β ti−0 respectively, which are used to indicate the sensitivity
of the user i to the external temperature. The random error εti
of the user is generated according to the normal distribution
with 0.02 as the mean square error and 0 as the expectation.

In this case, the values of all the parameters in (30) are
shown in Table 3.

TABLE 3. The value of the temperature correction factor

FIGURE 4. Relationship between incentive and response of user group.

The hidden layer unit of the user response behavior model
is set to 20, and the batch method is used to train the model.
The batch size is set to 60 and the learning rate is set to 0.0006.

When using the LSTM-PSO optimization strategy for iter-
ative optimization, the number of particle swarms is set to 20,
the number of iterations is set to 100, the values of c1 and c2
were set to 2, the search scope for the basic incentive and the
incentive factor is set to [10,15] and [0,5], respectively, and
the maximum speed is set to 15% of the variable range.

In order to verify the effect of the proposed differentiated
incentive strategy, the strategy in [13] is used as the com-
parison algorithm, called unified incentive method in this
paper. In fact, other literatures are similar, only have unified
incentives in their strategy, such as [14].

B. RESULT ANALYSIS
1) ANALYSIS OF USER RESPONSE BEHAVIOR UNDER
DIFFERENT INCENTIVES
Incentive directly determines the response of the user group,
so the relationship between incentive and response is first
analyzed, as shown in Fig.4.
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FIGURE 5. Relationship between incentive and response of single user.

The different combinations between the basic incentive I t0
and the incentive factor γ t can achieve the same response,
as shown by contour lines in Fig.4(a), but the cost of LSE
varies with different combinations. The response of user
group increases with the increase of incentives. From Fig.4(b)
it can be seen that the response of the user group rises linearly
with basic incentive rises, and the slope of the rise is different
under different incentive factors. At the same time, under
the same basic incentive, the sensitivity of the user group’s
response increases with the increase of the incentive factor
as shown in Fig.4(c). Therefore, it is necessary to find the
optimal combination to reduce the incentive cost of LSE.

Fig.5 showed the relationship between incentive and
response of each user. Where, each layer in Fig.5 (a) repre-
sents one user, and the lines of each color in Fig.5 (b) and (c)
represent one user. As can be seen from Fig.5, the response
characteristic of single user is similar to the user group, but
the sensitivity of different users to the basic incentive I t0 and
the incentive factor γ t is quite different. As the incentive
rises, some users’ responses are truncated and no longer rise,
because the user has reached the maximum responsiveness.
Therefore, LSE needs to develop incentive strategies within
a reasonable range.

Furthermore, the relationship among unit cost, basic incen-
tive and incentive factor is analyzed. As can be seen from

FIGURE 6. Relationship among unit cost, response, basic incentive and
incentive factor.

FIGURE 7. Incentives and revenues of LSE in each optimization iteration,
and responses and benefits for each user.

Fig.6, the unit response cost also increases as the basic incen-
tive I t0 and the incentive factor γ t increase. However, it can
be seen from the trend of the contour line (the same unit cost)
that the change in unit cost is different from the change in
the response, that is, the unit cost of response is not strictly
increased as the response increases.

Although unit costs are positively correlated with
responses, for each identified response, there will be different
unit costs due to different incentive combinations of the
basic incentive I t0 and the incentive factor γ t . The purpose
of the LSTM-PSO optimization strategy is to make the unit
response cost as close as possible to the lower boundary on
the premise of completing the target response.
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2) ANALYSIS OF OPTIMIZATION RESULTS
OF LSTM-PSO STRATEGY
For the case presented in this paper, the optimization itera-
tion results are shown in Fig.7. Fig.7(a) showed the results
of 100 iterations of the LSTM-PSO optimization strategy.
Among them, the blue solid line and the blue dotted line
represent the changes of the basic incentive and the incentive
factor in the iteration process respectively. The red solid line
and the red dotted line represent the revenue of LSE under the
differentiated incentive mechanism and the unified incentive
mechanism respectively.

It should be noted that both methods are optimized by PSO
algorithm. The state space of unified incentive, which have
only one variable, is small, so it converges to the optimal
result in the first iteration.

The orange and blue curves represent the change in the
basic incentive I t0 and the incentive factor γ t with iterations,
respectively. After 100 iterations, the LSE’s revenue reached
501.63 using the differentiated incentive method, and its
incentive cost is 1498.37. In comparison, the LSE’s revenue
is 175.34 using unified incentive method, and its incentive
cost is 1824.66. Compared with the unified incentive method,
the proposed differentiated incentive method helps the LSE
reduce the incentive cost by more than 20%. In addition, the
unit incentive cost of differentiated incentive method after
100 iterations is 14.98, which is very close to the theoretical
optimum about 14.90 (See Fig.6(b)).

Fig.7(b) showed the response of each user and its unit rev-
enue, it can be seen that the larger the response is, the higher
the unit revenue user obtained under the differentiated incen-
tive mechanism proposed in this paper.

3) ANALYSIS OF THE ACCURACY AND STABILITY
OF THE ALGORITHM
Then, the accuracy of the proposed method for the predic-
tion of user group response is analyzed. Whether the total
response of the user group can be close to the target response
depends mainly on the performance of the user response
behavior model and the penalty function.

As can be seen from Fig. 8(a), at the beginning of the
iteration, since the error between the users’ response and
the target response is large, the loss of the fitness function
value caused by the penalty function is large. As the iteration
progresses, the loss of the fitness function value caused by
the penalty function decreases rapidly and then stabilizes in a
small range. It is shown that the penalty function established
in this paper can well constrain the LSTM-PSO optimization
strategy to search for the optimal solution in the domain that
satisfies the balance constraint of the response.

As can be seen from fig.8(b), the predicted response of
the user group has an error of about 4.2 kW from the tar-
get response of 100 kW at the beginning of the iteration.
As the iteration proceeds, the predicted response of the user
group can always fit near the target response and the error is
within±1.1kW. The actual response in the figure is assumed

FIGURE 8. The error between the user response and the response target,
and the prediction result of 20 experiments of the user response behavior
model.

to know that all the parameters of the user model. It can
be seen from the figure that the user response behavior
model has a good performance. In 100 iterations, the user’s
response can be accurately predicted, and the maximum error
is within 1.1%.

In order to verify the accuracy of the user response behav-
ior model in depth, 20 random simulation experiments were
performed in this paper, and the results are shown in Fig.8(c).
It can be seen from the figure that the user response behavior
model established in this paper has stable performance. Under
different external environments and incentives, it can accu-
rately predict the user’s response behavior, and the maximum
error is less than 2.5%.

It should be noted that due to the uncertainty of users’
behavior, the prediction of user response behavior cannot be
completely accurate. Therefore, there will be some deviations
between the users’ actual response and the target response.

In some power market, such as PJM, as long as the user’s
actual response is higher than the target response, it can be
considered as completing the response task [3]. Therefore,
LSE can set the response target in the optimization process
to be higher than the actual response target (For example,
the response target obtained from the electricity market is Rtc,
the response target can be set to 1.1 × Rtc during the opti-
mization process), thereby ensuring that the response task can
be completed. At present, the actual response in PJM market
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FIGURE 9. Convergence performance under different particle numbers.

is often greater than the target response [37]. But this will
undoubtedly increase the incentive cost of LSE.

In addition, the LSE can also use other adjustable resources
to make up for user response errors, such as load resources
that can be directly controlled. But the cost of these adjust-
ment methods will be higher than the incentive-based demand
response. First, many load devices lack the function of remote
control, and adding remote control module requires a lot of
investment. Second, many users are unwilling to authorize
LSE to control their own devices due to privacy or other
issues, unless LSE pays a high price. So only by making the
actual response of the user as close as possible to the target
response, can it ensure that the LSE obtains a higher revenue.

Then, the paper verified the stability of convergence of
the proposed optimization strategy. As mentioned above,
the PSO algorithm is fast in calculation, but may fall into
a local optimum. The number of particles is one of the
important parameters of the algorithm’s convergence. As long
as the number of particles is large enough, the result can
be prevented from falling into a local optimum as much
as possible. In this paper, 10 particles and 20 particles are
selected respectively for 10 times simulation experiments, the
results are shown in Fig.9.

It can be seen from the figure that when the number of
particles is 10, the optimization result is unstable after 100
iterations due to the small number of particles, but all the
results are still better than the unified excitation method.
When the number of particles is increased to 20, the results
after 100 iterations can stably converge to the optimal value.
Therefore, the optimization strategy proposed in this paper
can help LSE get ideal optimization results stably as long as
the number of particles is large enough.

4) EFFICIENCY ANALYSIS OF ALGORITHM
The operation efficiency of the algorithm has a great impact
on the large-scale implementation of the algorithm. There-
fore, the running time andmemory usage of differentmodules

TABLE 4. Algorithm module operation efficiency analysis.1

of the proposed algorithm are recorded, and the running
efficiency of the algorithm in large-scale implementation is
analyzed.

The running time and memory usage of each algorithm
module are shown in Table 4. It can be seen that in the
algorithm, the most computing resources are consumed by
the prediction of user response behavior. In each iteration,
it takes 5. 1s to load the graph, but because the structure
of each user’s graph is the same, in large-scale engineering
implementation, graph needs to be loaded only once in each
iteration, no matter howmany users participate in the demand
response.

At the same time, in the large-scale engineering imple-
mentation, parallel computing can be used to improve the
efficiency of the algorithm, so it is necessary tomake statistics
on thememory usage of each algorithmmodule to analyze the
feasibility of large-scale parallel computing. The parameter
loading and result calculation of each user in the URBM
model only use 5MiB memory, therefore, ordinary servers
can support parallel computing for a large number of users.

The above analysis showed that the LSTM-PSO algorithm
proposed in this paper can support large-scale engineer-
ing implementation of demand response. Since the calcula-
tion of each user’s response behavior occupies less memory
resources, parallel computing technology can be used in the
project implementation, which can ensure that the algorithm’s
running time does not increase significantly, even with a large
number of users.

VI. CONCLUSION
In order to make full use of users’ differences to reduce the
cost of LSE in demand response, this paper proposed a differ-
entiated incentive mechanism and established a LSTM-PSO
strategy. Compared with the existing unified incentive mech-
anism, revenue per unit response of user is no longer unified,
but depend on users’ response. The mathematical proof and
simulation experiment in this paper showed that the incentive
cost can be reduced by 20% compared with the optimal
result under unified incentive mechanism. At the same time,

1Program environment is python, and URBM is established based on
Tensorflow. Machine configuration is: core i7-9750H CPU, 16GB memory,
and NVIDIA Geforce GTX 1660 Ti (6 GB) graphics card.
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the accuracy and stability of the algorithm are also verified in
the simulation experiments.

In future works, distributed energy storage and renewable
energy resources on the user side can be considered when
developing optimization strategy. At the same time, different
LSEs can exchange energy, so appropriate mechanisms need
to be proposed to achieve the Nash equilibrium between
different LSEs.
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