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ABSTRACT WebIDE is leveraged for IoT application development, which could adapt to the rapid growth of
IoT applications and meanwhile facilitate the rapid development. Resource allocation is of vital significance
in the WebIDE cloud service system. Existing resource allocation approaches may encounter issues such as
unbalanced resource assignments, which could lead to the reduced system resource utilization or extended
system response time. Existing methods are typically on the basis of predetermined resource demands for
each task, and not applicable to the case that the resource demands are dynamic and unknown. This article
predicts the tasks to be performed by the WebIDE cloud service through task pre-scheduling, and then
applies the existing resource allocation methods. Firstly, all tasks are classified, based on the execution
state, execution operations andWebIDE cloud server resource requirements. Secondly, the grouped tasks are
mapped to different system states, with the Markov state transition probability matrix leveraged to model
the transition probability between tasks, followed by the prediction model constructed. Finally, integrating
task pre-scheduling with ant colony algorithm, WebIDE cloud server resource allocation is carried out.
Experiment results show that adding the task prediction model could significantly not only reduce the task
response time, but also improve the cloud server resource utilization.

INDEX TERMS Cloud server resource allocation, task pre-scheduling, Markov state transition probability
matrix, IoT application development.

I. INTRODUCTION
With With the emergence of visual interaction, cloud server
as well as IoT applications, locally executed applications
have been migrated to the cloud, and a so-called cloud-based
Integrated Development Environment (IDE) (e.g., WebIDE)
is gradually becoming a hot spot in the academia [1]. Like-
wise, in the industry, more and more corporations begin to
use WebIDE for application development, and exemplary
WebIDE systems include Coding WebIDE, Cloud9, Eclipse
che and Codenvy, etc. [2] The WebIDE system relies on
cloud servers and browsers to provide users with visual file
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management and code editing, and supports the one-stop
deployment of programming environment and code running.
Cloud server, which relies on server cluster, is an applica-
tion offering functions such as fast computing and secure
storage. It is on the basis of distributed computing, parallel
computing, network storage and virtualization technologies.
Unlike the legacy computing and storage approaches in the
PC era, cloud server takes the network as the intermediate
medium and turns to executing data storage and computing
in the remote cluster service centrer. For users, the cluster
service centre is similar to the invisible ‘‘cloud’’ end. In par-
ticular, cloud servers are typically with four characteristics,
i.e., virtualization, super-scale, high reliability, on-demand
service [3]–[5].
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Resource allocation is the key issue in cloud services.
Suppose that there exist four physical servers (hosts) with the
identical hardware environment and four tasks to be assigned.
Then, two illustrative resource allocation schemes could be
provided, as shown in Figure 1. Figure 1 (a) prioritizes the
host with the most remaining resources for allocation. In this
case, task allocation is even, which can guarantee the quality
of users, yet with a lower resource utilization. Figure 1 (b)
is a physical machine that prioritizes the allocation with the
least remaining resources. As such, the resource utilization
could be improved, yet resulting in a higher Service-Level
Agreement (SLA) violation rate. In particular, if tasks are
excessively concentrated on the physical machine (as shown
in Figure 1 (c)), then CPU and memory requirements for
the host would be high, and there might be a security risk
of outage. Therefore, in view of high-concurrency tasks,
an efficient resource allocation approach operating on the
cloud server is prerequisite to improve resource utilization
and reduce task response time.

FIGURE 1. Physical machine resource allocation scheme.

Numerous existing works have focused on the resource
allocation problem of cloud servers in the WebIDE [6]–[17],
by utilizing particle swarm, ant colony or packing opti-
mization algorithms. In reality, the basic idea behind task
scheduling is to allocate resources to tasks with the purpose
of time loss minimization and performance maximization
[6]–[8]. To this end, one scheduling framework was designed
to consider applications’ I/O performance in terms of accept-
able latency, then translating them to associated priority val-
ues for disk access [9]. More specially, Agrawal et al. [10]
compared the resource allocation problem with the boxing
one, transformed the server integration modelling into a
vector packaging problem, and then proposed a grouping
genetic algorithm based on VPC (a vector packing problem
with conflicts). Furthermore, Mishra and Sahoo [11] pro-
posed a vector distribution method built on mathematical
statistics theory, and Mills et al. [12] presented an online
boxing distribution approach to solve the resource alloca-
tion conflict. Moreover, for the resource scheduling and
without violating the SLA protocol, a multi-objective task
scheduling algorithm was applied to improve the data centre
throughput and reduce the data center cost [13]. In addition,

Juarez et al. in [14] applied the dynamic energy perception
to parallel task scheduling and Bhupesh et al. in [18] pro-
pose a self-optimized energy efficient resource management
strategy, while Alsarhan et al. in [15] studied the adaptive
allocation and configuration of resources in a multi-service
cloud environment. Besides, to balance the workload among
all virtual machines with resilient resource provisioning and
de-provisioning, one dynamic k-interval based scheduling
algorithm was proposed in [16]. Moreover, the compara-
tive experimental performance study in [19] demonstrate the
space shared technique for cloud resource scheduling is much
beneficial as compared to the time shared technique. What is
more, Priya et al. in [20] constructs a Fuzzy-based multidi-
mensional resource scheduling model to avoid underutiliza-
tion and overutilization of resources, improving latency time
for each class of request.

All aforementioned works [6], [7], [9]–[16] solved the
cloud server resource allocation under the premise of task pre-
determination, i.e., the arrival time, the execution time and
required resources for each task are deterministic and pre-
determined. Nevertheless, in the practical operation of cloud
servers, there exist numerous uncertainties with respect to
tasks [21]–[23], e.g., dynamic arrival and stochastic execution
time, which would result in a lowered prediction accuracy.
Therefore, it is prerequisite to study the resource allocation
of cloud servers under the premise of task uncertainties.
If the arrival time, execution time and required resources
of the task can be known, the resource allocation efficiency
will be improved. Then we propose a method to improve
the existing resource allocation algorithm by predicting the
undetermined tasks. The main contributions of this paper can
be summarized as follows:
• We propose a task prediction model to predict the suc-
ceeding tasks to be executed in theWebIDE system, with
theMarkov state transitionmatrix involved. TheMarkov
state transfer matrix can describe the state transition
between tasks in the webIDE system.

• To exploit the system resources more efficiently,
a resource allocation approach integrating both colony
algorithm and task prediction model is presented. After
the task prediction, the predicted one is transferred into
the virtual queue for task pre-scheduling, which con-
tributes to the system resource preparation. Then, the ant
colony algorithm could be utilized to allocate resources
in the cloud server optimally with the least time to
complete all tasks.

• Extensive simulations are conducted with diverse sys-
tem parameters to show the effectiveness of proposed
approach. It is revealed that the task prediction model
could significantly not only reduce the task response
time, but also improve the cloud server resource
utilization.

The remainder of this paper is organized as follows.
In Section II, we present the cloud server resource allocation
model based on task pre-scheduling. In Section III, we formu-
late the task classification in WebIDE system. In Section IV,
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FIGURE 2. Cloud server resource allocation model based on task pre-scheduling.

we construct the task prediction model based on Markov
state transition probability matrix. In Section V, we solve
the task pre-scheduling based on task prediction model.
In SectionVI, we propose the cloud server resource allocation
with task prediction involved. In section VII, experiments
results are shown to reveal the effectiveness of proposed
approach. Section VIII concludes this paper with future work.

II. CLOUD SERVER RESOURCE ALLOCATION MODEL
BASED ON TASK PRE-SCHEDULING
In the proposed WebIDE system, the cloud server resource
allocation model based on task pre-scheduling consists
of four modules shown in Figure 2, i.e., task division,
task prediction, task pre-scheduling and resource allocation,
as follows:

• WebIDE system task division: the tasks in the WebIDE
system are categorized into groups on the basis of execu-
tion state, execution operations, as well as cloud server
resource requirements.

• Task prediction model construction: the grouped tasks
are mapped to different system states. In particular,
Markov state transitionmatrix [24] is leveraged tomodel
the transition probability between tasks, followed by the
prediction model constructed.

• Task prediciton and pre-scheduling: both the system task
queue and virtual machine local task queue are involved
in the pre-scheduler, and the predicted succeeding task
is placed into the virtual machine local task queue for
pre-scheduling. The cloud server resource information
is collected through the resource monitoring module
in the scheduler. Meanwhile, the resource scheduling
module acquires resource consumption data required by
historical tasks analogously, and combines the resource
monitoring module to collect resource information for
scheduling, so as to make resource available in advance
for prediction.

• Cloud server resource allocation: pre-scheduled tasks,
cloud server resources and other information are intro-
duced into ant colony algorithm, which has been widely
utilized in the cloud server resource allocation, and could
significantly reduce both the task response time and
resource consumption when emergencies are triggered.

III. WEBIDE SYSTEM TASK TRANSITION MODEL
A. DEFINITIONS
The task model of WebIDE system is defined as

T = (DC,ATs,DIs), (1)

where DC is the function description, ATs is the action
set, i.e., ATs = {AT1,AT2, . . . ,ATm}, and DIs is the set
of resource items, i.e., DIs = {DI1,DI2, . . . ,DIn}. Next,
the task granularity model is defined as

P = {AT ,DI }, (2)

where AT and DI are the actions taken by the task and
resource item, respectively. When action and resource items
are identical in the task granularity, they are supposed to be
with the same task granularity.

In line with the general function of WebIDE system,
the ATs and DIs of action set in task model are instantiated
as

ATs = {Virtual machines and engineering creation,

Code download, Online programming,

Code execution, Code submition}, (3)

and

DIs = {CPU, Memory, Compile environment,

Project files, Code, Network}, (4)

respectively.
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In addition, Ta and Tb are defined as the sets of tasks
before and after partition, respectively. Then, Ta is catego-
rized into Tb according to the task granularity as follows:

Ta =



Tb1 = {Virtual machines and engineering creation,
(CPU, Memory, Network)}

Tb2 = {Code download, (Network, Hardware)}
Tb3 = {Online programming, (Network)}
Tb4 = {Code execution, (CPU, Memory, Hardware)}
Tb5 = {Code submition, (Hardware, Network)}.

(5)

B. DETERMINATION OF TASK DEPENDENCIES
In line with ATs instantiated in Equation (3) and the require-
ments of CPU and memory in the WebIDE system, the TY
dependent set after task action can be obtained as

TY =


TY2 = {TY1,TY5}
TY3 = {TY1,TY2,TY5}
TY4 = {TY1,TY3}
TY5 = {TY2,TY3,TY4}.

(6)

According to Equations (5) and (6), the dependent set R
between partitioned tasks is as

R =


Tb2 = {Tb1,Tb5}
Tb3 = {Tb1,Tb2,Tb5}
Tb4 = {Tb1,Tb3}
Tb5 = {Tb2,Tb3,Tb4}.

(7)

C. TASK TRANSITION MODEL CONSTRUCTION
By analysing the dependency set R item by item, the task
transition model can be acquired following the dependencies
between tasks as in Figure 3. As revealed from Figure 3,
tasks can be translated to each other in probability. The
transition probability between tasks is described by the
two-dimensional matrix, with each element TM [i][j] repre-
senting the probability of task i transitioned into task j. In the
transition probability matrix, the value of 0 indicates that
there is no transition between two tasks. Meanwhile, the sum
of each row or column is equal to 1. It should be noted
that, the performed task corresponds to the system execution

FIGURE 3. Task transition model.

state as

Tbi ⇔ Si, (8)

which could represent the mapping of tasks and system
execution states (8). Therefore, the study on tasks can be
transformed into that on the execution state. It follows that
the state transition probability matrix can be solved for the
system based on Markov state transition probability matrix.

IV. TASK PREDICTION MODEL CONSTRUCTION
In this section, the Markov state transition probability matrix
is analysed and each task is regarded as one state in the
system operation; thus, the probability matrix could indicate
the transition between each task in the system operation.

A. MARKOV TRANSITION PROBABILITY
Suppose there are n incompatible system states, and the state
space is defined as I = {1, 2, ..., n}. Then Markov one-step
state transition probability can be defined as

Pij(m) = P {S(m+ 1) = j|S(m) = i} , i, j ∈ I, (9)

where Pij is the probability that the system changes from state
i to state j in one step. Then, Markov k-step state transition
probability matrix is defined as

Pkij(m)=P {S(m+ k) = j|S(m) = i} , i, j ∈ I, k≥1, (10)

where Pkij is the probability that the system changes from
state i to j in k steps. If the system state can be transitioned
in k steps, then it can be described by the k-step transition
matrix, denoted as P(k), as

P(k)
= P(k−1)

· P = Pk , (11)

which indicates that, the k-step transition matrix changes
again on the basis of previous transition and thus is the k-
power of one-step transition matrix.

B. STATE TRANSITION PROBABILITY MATRIX DERIVATION
Assuming that there exist a total of n execution states in the
system, the initial system state vector turns out to be

s(0) = [s01, . . . , s0j, . . . , s0n], (12)

where s0j represents the initial probability that the system lies
in state j. Then, the probability that the system lies in state j
after k-step transition is denoted as skj, and the state vector
after k-step transition becomes

s(k) = [sk1, . . . , skj, . . . , skn]. (13)

Then, the state i after k-step transition is denoted as ski, i.e.,

S =



s11 ... s1j ... s1n
s21 ... s2j ... s2n
. ... ... ... .

. ... sij ... .

. ... ... ... .

s(k−1)1 ... s(k−1)j ... s(k−1)n
sk1 ... skj ... skn


. (14)
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As shown in Equation (14), state ski could be obtained by a
k-step transition from any state, and the first row of the matrix
represents the state at which the transition occurs.

Then, suppose there exists a state transition probability
matrix P as

P =



P11 ... P1j ... P1n
P21 ... P2j ... P2n
. ... ... ... .

. ... Pij ... .

. ... ... ... .

P(n−1)1 ... P(n−1)1j ... P(n−1)n
Pn1 ... Pnj ... Pnn


. (15)

where Pij represents the probability of state i transitioning to
state j. As such, state s21 could obtained by s(1) (all the states
after one-step) multiplied by [P11,P21, ...,Pn1]T , i.e., s21 =
s(1)× [P11,P21, ...,Pn1]T . Likewise, s2n is acquired by state
s(1) multiplied by [P1n,P2n, ...,Pnn]T , i.e., s2n = s(1) ×
[P1n,P2n, ...,Pnn]T . Therefore, we have

s11 × P11 + s12 × P21 + ...+ s1n × Pn1 = s21

s11 × P12 + s12 × P22 + ...+ s1n × Pn2 = s22

......

s11 × P1n + s12 × P2n + ...+ s1n × Pnn = s2n

......

s(k−1)1 × P11 + s(k−1)2 × P21 + ...+ s(k−1)n × Pn1 = sk1

s(k−1)1 × P12 + s(k−1)2 × P22 + ...+ s(k−1)n × Pn2 = sk2

......

s(k−1)1 × P1n + s(k−1)2 × P2n + ...+ s(k−1)n × Pnn = skn.

(16)

which can be written more compactly as
PT

PT

...

PT

×


sT (1)
sT (2)
...

sT (n− 1)

=

sT (2)
sT (3)
...

sT (n)

. (17)

Also, the sum of probabilitymoving from one state to all other
states is equal to one, namely,

P11 + P12 + ...+ P1n = 1

P21 + P22 + ...+ P2n = 1

......

Pn1 + Pn2 + ...+ Pnn = 1.

(18)

Integrating Equation (18) with the historical data, the state
transition probability matrix P can be finally acquired.

C. TASK PREDICTION MODEL CONSTRUCTION
The Markov task prediction model is constructed on the state
transition probability matrix, which eventually turns out to
be:

s(k)

= s(k − 1)× P

= s(k − 1)×



P11 ... P1j ... P1n
P21 ... P2j ... P2n
. ... ... ... .

. ... Pij ... .

. ... ... ... .

P(n−1)1 ... P(n−1)j ... P(n−1)n
Pn1 ... Pnj ... Pnn


= s(0)× Pk

= s(0)×



Pk11 ... Pk1j ... Pk1n
Pk21 ... Pk2j ... Pk2n
. ... ... ... .

. ... Pkij ... .

. ... ... ... .

Pk(n−1)1 ... Pk(n−1)j ... Pk(n−1)n
Pkn1 ... Pknj ... Pknn


.

(19)

It should be noted that, if the initial state s(0) is known, then
s(0) × Pk can be used to acquire the system execution state
given parameter k . By taking into account Equations (7), (8)
and (19), the system execution state prediction model can be
translated into the task prediction model with the initial task
vector defined as

t(0) = [tb1(0), . . . , tbj(0), . . . , tbn(0)]. (20)

Finally, the task transition prediction model derived on the
system execution state prediction one can be represented as

t(k) = t(k − 1)× P = t(0)× Pk . (21)

V. PREDICTION-BASED TASK PRE-SCHEDULING
For simplicity, the task being performed on the virtual
machine is called ‘‘VM execution task’’, and the predicted
task that would be scheduled on the virtual machine is called
‘‘VM prediction task’’. Nevertheless, during the execution
of ‘‘VM execution task’’, the triggered tasks are termed as
‘‘VM task 1’’, ‘‘VM task 2’’, ..., ‘‘VM task n’’, which are
readily stored in the system task queue, waiting to be called
for execution. Among them, there is only one system task
queue in the whole system, and the tasks actually triggered
by users in the system are stored in the task queue. Different
virtual machines have their proprietary virtual machine task
queues, and both the tasks that are being executed and that
are to be executed need to be stored, as shown in Figure 4.

In the task pre-scheduling model in Figure 4, the system
task queue is built in both the entire service and control
module, comprising all tasks that need to be executed by the
virtual machine (including both new arrival tasks and waiting
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FIGURE 4. Physical machine resource allocation scheme.

tasks). VM’s task queue is virtual machine VM task queue,
includes both tasks that are being executed and those to be
performed; the resource monitor supervises resource usage
across the cloud server, while the resource scheduler conducts
resource scheduling to prepare resources for the execution of
predicted tasks. Moreover, the task comparator is responsible
for comparing the predicted task with that belonging to the
virtual machine (to be executed in the system task queue).
The detailed task pre-scheduling process is as follows:
• On the basis of prediction model in Section IV-C,
the next task is predicted on the task queue in VM. Then
the predicted task is called into the task queue as the one
to be executed.

• The resource information required for the execution of
historical tasks (which are analogous to the ‘‘VMpredic-
tion task’’) is acquired for the execution of ‘‘VM predic-
tion task’’. In particular, the resource scheduler adjusts
resources in line with both the resource information
required by the ‘‘VM prediction task’’ and the resource
monitoring information from the resource monitor, so as
to prepare resources for the execution of predicted one.

• The task comparator is responsible for comparing the
‘‘VM prediction task’’ and ‘‘VM task 1’’ in the system
task queue. The identical result indicates an accurate
prediction, while the opposite one necessitates that the
‘‘predicted task inVM’’ is discarded and ‘‘VM task 1’’ in
the system task queue is called into the virtual machine
VM task queue.

In particular, if the task prediction accuracy is sufficiently
high, then the next task can be called into the virtual machine
task queue beforehand. Accordingly, cloud server resource
scheduling also works in advance to prepare resources for
the next task execution. Thus, the overall response time of
task execution could be reduced and meanwhile the resource
utilization is improved.

VI. CLOUD SERVER RESOURCE ALLOCATION
An efficient resource allocation in cloud servers is related to
the scheduling approach. If the cloud server can be aware of
pending tasks beforehand, then it can reduce task response
time and resource consumption. Ant colony algorithm, which
could collect discrete resource information and reach the opti-
mal solution of resource allocation, has been widely utilized

in cloud servers. In particular, the ant colony algorithm could
speed up the evolution through positive feedbacks, which is
consistent with the real-time demand of cloud servers. The
ant colony algorithm is depicted as follows:
• In line with the pheromone concentration and heuristic
information on the route, the next route is chosen;

• Upon arrival at the destination, the associated
pheromone information is released and the pheromone
on the route is updated.

The pheromone concentration is described by the ant route
selection transition function. Integrated with the heuristic
information, the next route of the k-th ant is selected as

Pki,j =


[τ (i, j)]α × [η(i, j)]β∑
s∈rk [τ (i, s)]

α × [η(i, s)]β
, j ∈ rk

0, j /∈ rk

(22)

where rk represents the k-th path of all routes through which
an ant can pass at point i. η(i, j) represents the heuristic
information, in general expressed as the reciprocal of distance
between point i and j. In particular, the closer the distance is,
the larger the heuristic information value would be, and the
more decisive it would be to screen the next point. τ (i, j) is the
pheromone concentration on the path from point i to j. α and
β are respectively utilized to adjust the weights of pheromone
concentration and heuristic information in ant route selection
function.When α is 0, the route transition function becomes a
simple random greedy function; and when β is 0, the function
completely depends on the pheromone concentration to deter-
mine the next route, which would lead to the occurrence of
extreme cases in practical problems. As such, it might result
in a large error between the route constructed and the actual
one.

Then, the pheromone update function is expressed as{
τi,j(t + 1) = ρτi,j(t)+1τi,j, 0 < ρ < 1

1τi,j =
∑n

k=1
1τ ki,j,

(23)

where n represents the ant number, and ρ (0 < ρ < 1) is the
evaporation concentration of pheromones. Moreover,1τi,j is
the amount of pheromones released by the k-th ant along the
route between point i and j.

As in (23), after updating, the amount of pheromones
would reduce due to evaporation. Only the amount of
pheromones in the path that has been visited by ants would
increase or remains the same. Moreover, changes are related
to the length of routes that the ant has traveled. The shorter the
distance is, the more pheromones would be released, which
would in turn increase the amount of pheromones on the
route. Conversely, for a sufficiently long route, the amount
of pheromones decreases or remains basically unchanged.

Next, integrating ant ant colony algorithm with task
pre-scheduling, the cloud server resource allocation
can be described below. It is assumed that resource
C = {C1,C2, ...CN } is composed of different computing
capacities, and T = {T1,T2, ...TK } represents the tasks to
be processed on each resource node. First, the executing
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task is captured and the next one is predicted with the
prediction model in Section IV-C. Secondly, the predicted
task is called into the virtual machine task queue for task
pre-scheduling. Thirdly, ant colony algorithm is leveraged
to allocate resources for predicted tasks. The cloud server
resource allocation could be summarized in detail as follows:

1) Set the coefficients in the transition matrix of ant
colony algorithm according to [?];

2) Assign tasks to the cloud server node randomly;
3) Following (23), update the pheromone concentration

for the task associated with each cloud server node;
4) As in (22), choose the cloud server node associated

with the task;
5) Calculate the probability that the task is consistent with

the cloud server node, and add results to the next loop
queue for comparison;

6) The number of cycles is increased by 1. If k is less
than the total number of tasks, then the pheromone is
updated as in (23) and the loop starts from step 3;

7) Find the optimal solution and output the selection
results, which are the tasks to be executed.

VII. EXPERIMENT AND ANALYSIS
Some existing works have conducted experiments on
resource allocation of cloud servers. For instance, an alloca-
tion method with both ant colony and genetic algorithms was
proposed with 8 virtual machines in the Matlab simulation.
The task number increases from 20 to 100, and the execution
time of each task is random. Through dynamic load balancing
algorithm, services are deployed on the cloud server to detect
the utilization rate of virtual machine CPU, memory and
other resources. A task scheduling algorithm with QoS clas-
sification was proposed in [25], with CloudSim simulating
multiple virtual machines and tasks. In particular, CloudSim
is utilized to simulate 200 virtual machines. In addition,
genetic algorithm, ant colony algorithm and an improved one
are respectively applied, with the number task increased from
100 to 500.

A. EXPERIMENT 1: PREDICTION MODEL ACCURACY AND
RESPONSE TIME
Firstly, the task history information is collected. Then,
the probability matrix is calculated with Markov transition
probability, and the next task is predicted by constructing
the prediction model. The task and cycle number are set to
be 5 and 20, respectively. Figure 5 reveals the task predic-
tion accuracy Pt in the task prediction stage, which can be
obtained as

Pt = Np/Nt , (24)

where Np represents the number of tasks predicted correctly,
and Nt denotes the number of all prediction tasks. As can be
seen from Figure 5, the accuracy decreases with the growth
of task prediction times. Moreover, the adjustment frequency
is set to be 5, that is to say, the adjustment is prerequisite
when the prediction number reaches 5. Furthermore, the state

FIGURE 5. Accuracy rate of task prediction.

transition probability matrix is recalculated according to
Equations (15) and (19). In addition, the prediction model
is adjusted for task prediction with the prediction accuracy
shown in Figure 6.

FIGURE 6. Adjusted and non-adjusted accuracy rate.

As can be seen from Figure 6, when the prediction model
is adjusted after 5 consecutive task predictions, the prediction
accuracy could be significantly improved. Nevertheless, fre-
quent adjustments would in turn increase the task response
time. In particular, the adjustment frequency is set as 1, 2, 5,
10 and 20, respectively, with their associated results shown
in Figure 7.Meanwhile, the average task response timewithin
each adjustment and the average task response time after
20 task predictions are shown in Table 1. From Figure 7 and
Table 1, it follows that the minimum response time lies in the
adjustment frequency of 5.

B. EXPERIMENT 2: TASK RESPONSE TIME WITH
DIFFERENT TASK NUMBERS
Experiments are conducted to show the difference in task
response time of different approaches. As the task number
gradually increases from 5 to 200, the average task response
time for two different algorithms is shown in Figure 8. As can
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FIGURE 7. Task response time with different frequencies.

TABLE 1. The average task response time with different frequency.

FIGURE 8. The average response time of tasks with pre-scheduling and
non pre-scheduling.

be seen from Figure 8, with the increase of task number,
the average task response time with both task prediction and
pre-scheduling become significantly lower than that of ant
colony algorithm.

C. EXPERIMENT 3: RESOURCE UTILIZATION BASED ON
CLOUDSIM
Cloud experiment environment is simulated using CloudSim.
With the task number increased from 5 to 500, the resource
allocation is carried out by our proposed approach as well

as ant colony algorithm, respectively. The CPU and memory
utilization results are shown in Figures 9 and 10, respectively.

In this part, 500 tasks are randomly generated. As shown
in Figures 9 and 10, as the task number increases from 50 to
100, both CPU and memory utilization increase significantly
and then converge. In particular, with the increase of task
number from 50 to 100, some tasks with high CPU and
memory requirements (e.g., code running) are added. Thus,
there exist differences in hardware resource demand in the
WebIDE system for different tasks. In addition, given the task
number, our proposed approach requires less resources than
the ant colony algorithm.

FIGURE 9. CPU utilization.

FIGURE 10. Memory utilization.

VIII. CONCLUSION
In this paper, existing cloud server resource allocation
approaches were analyzed, the current cloud server resource
allocation algorithm is based on the premise of request task
determination. Themethod proposed in this paper predicts the
tasks to be executed by the WebIDE cloud service, presched-
ules the tasks after the prediction, and then applies the exist-
ing resource allocation method to allocate the resources of
the WebIDE cloud server. Experiments showed that if the
resource allocation of the WebIDE cloud server is carried
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out after task pre-scheduling, then the average task response
time can be effectively reduced and the resource utilization is
improved.
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