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ABSTRACT In skeleton-based abnormal gait recognition, using original skeleton data decreases the
recognition performance because they contain noise and irrelevant information. Instead of feeding original
skeletal gait data to a recognition model, features extracted from the skeleton data are normally used.
However, existing feature extraction methods might include laborious processes and it is hard for them
to minimize the irrelevant information while preserving the important information. To solve this problem,
an automatic feature extraction method using a recurrent neural network (RNN)-based Autoencoder (AE)
is proposed in this paper. We extracted features from skeletal gait data by using two RNN AEs: a long
short-term memory (LSTM)-based AE (LSTM AE) and a gated recurrent unit (GRU)-based AE (GRU AE).
The features of the RNN AEs are compared to the original skeleton data and other existing features.
We evaluated the features by feeding them to various discriminative models (DMs) and comparing the
recognition performances. The features extracted by using the RNN AEs are more easily recognized and
robust than the original skeleton data and other existing features. In particular, the LSTM AE shows a
better performance than the GRU AE. Compared to single DMs fed with the original skeleton directly,
hybrid models where the features of the RNN AEs are fed to DMs show a higher recognition accuracy with
fewer training epochs and learning parameters. Therefore, the proposed automatic feature extraction method
improves the performance of skeleton-based abnormal gait recognition by reducing laborious processes and
increasing the recognition accuracy effectively.

INDEX TERMS Abnormal gait recognition, skeleton-based recognition, RNN Autoencoder, feature extrac-

tion, hybrid model, deep learning.

I. INTRODUCTION

Gaitrecognition is a very important research problem because
the weakness in a specific function of the human body can
be detected by recognizing an abnormal and unbalanced gait.
Since body functions are weakened as people age, abnormal
gaits are frequently observed in elderly people. Traditionally,
inertial sensors, such as accelerometers and gyro sensors, are
used to measure gait patterns. These sensors are attached to
the body to measure the data, so it is hard to collect and
analyze the data in our daily lives. With the development
of depth sensors, such as Kinect, gait patterns can be easily
measured without attaching sensors to the body when using
them. Many methods using a depth sensor for skeleton-based
gait analyses, such as gait parameter measurement [1]-[6],
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human identification [7]-[11], and abnormal gait recogni-
tion [12]-[21] have been proposed in the past few years.
Spatial-temporal skeleton data of the human gait are used
to analyze gait patterns with different approaches. Skeleton-
based algorithms that measure gait parameters, such as the
stride length, the step length, the walking speed, the cadence,
and the angle of the foot and hips, have been proposed [1]-[6].
These parameters are closely related to human health. There-
fore, measuring them accurately is the main consideration of
these algorithms. There have been other approaches based on
gait pattern recognition. Human identification using skeletal
gait data has been actively researched [7]-[11]. Since physi-
cal characteristics and natures of individuals permeate to their
gait patterns, it is possible to identify individuals by using gait
data. Human identification can be simplified by noncontact
methods using the skeleton-based gait data obtained through
depth sensors. Additionally, skeleton-based abnormal gait
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recognition has also received much attention. Many methods
using machine learning algorithms to recognize normal and
abnormal gait patterns have been developed [12]-[21].

Skeleton-based gait data are sequential times series data.
Recurrent neural networks (RNNs) are a powerful deep learn-
ing algorithm to analyze sequential data. Long short-term
memory (LSTM) [22] and gated recurrent units (GRUSs) [23]
are popular RNN architectures. They can overcome the van-
ishing gradient problem of the basic RNN [24], [25]. RNN
architectures can be used to build RNN-based discriminative
models (RNN DMs) for data classification, and RNN-based
Autoencoders (RNN AEs) for feature extraction and data
reconstruction. They have shown great performance in han-
dling sequential data, such as speech recognition [26], [27],
machine translation [28], [29], video analysis [30]-[32], and
skeleton-based action recognition [33]-[35]. Therefore, it is
appropriate to use RNN architectures when treating skeleton-
based gait data.

To increase the performance of gait recognition, feature
extraction from skeleton data is needed. The size and orien-
tation of skeleton data are normalized to increase the robust-
ness of the data [12], [18]. The normalized skeleton can be
used as features. Additionally, the joint angles calculated by
using skeleton data can be used as features [13], [18]. These
developed features can improve the recognition performance
due to their robustness. However, it is laborious to find a
proper feature extraction method for the purpose, and manual
extraction does not have the ability to extract the discrimina-
tive information from the data. Additionally, it is necessary
to find a well-matched model because the manual features
sometimes show lower performance than the original data
on some discriminative models. To solve these problems,
we propose an automatic feature extraction method by using
an RNN AE.

AEs are a typical unsupervised machine learning algorithm
to extract features from original data or to reconstruct the
data [36]. In the training of the AE, the input is the original
data, and the output is the reconstructed data. It is trained
by reducing the difference between the original data and the
reconstructed data [37]. As it is trained, irrelevant and redun-
dant data can be reduced in the extracted features and the
reconstructed data. Therefore, using the extracted features
or the reconstructed data as the input of the DM achieves a
higher accuracy than using the original data as the input.

Many methods using an LSTM AE have been proposed
in various fields [31], [38]-[42]. Srivastava et al. [31] used
LSTM networks to build an AE for video representation.
Patraucean et al. [38] introduced a spatial-temporal AE com-
posed of a convolutional LSTM to extract features from
videos. Tu et al. [39] proposed a spatial-temporal data aug-
mentation method using an LSTM AE for skeleton-based
recognition of human action. Compared to an LSTM AE,
there are only a few studies on a GRU AE [43]-[45]
because a GRU was recently proposed. Both of these methods
are considered the best RNN architectures, and they have
been compared repeatedly in several fields. Despite the less
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FIGURE 1. lllustration of the single discriminative model and the
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complicated structure, a GRU has shown similar perfor-
mances compared to an LSTM, but it has not been confirmed
yet whether it can replace an LSTM. Therefore, it is mean-
ingful to compare their performances when used to build an
AE and a DM for skeleton-based abnormal gait recognition.
In this paper, we propose a feature extraction method using
an RNN AE to improve the performance of skeleton-based
abnormal gait recognition. Instead of using a manual feature
extraction method, we use an RNN AE to extract features
from the original skeleton-based gait data. We evaluate the
features by comparing them to the original skeleton data and
other features. The original skeleton data or features are fed
to various DMs for the evaluation, and in particular, an RNN
DM is mainly treated. When the extracted features of an RNN
AE are used as the input of an RNN DM, the model is defined
as an RNN AE-DM hybrid model as shown in Fig. 1. A single
RNN DM fed with the original skeleton data is used as a base-
line to evaluate the hybrid model. We compare the recognition
result of the hybrid model to the result of the single RNN
DM to show that the features are more discriminative than
the original skeleton data and that two-step training is more
effective than a single-step training.
The following are the contributions of this paper:
« We propose an automatic feature extraction method
from skeletal gait data by using two RNN AEs: an LSTM
AE and a GRU AE. The extracted features are more
discriminative and robust than the original skeleton data.
o The proposed RNN AEs minimize the amount of irrele-
vant information from the original skeleton data while
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preserving the significant information to improve the
recognition accuracy in abnormal gait recognition.
o The proposed feature extraction method shows better
performance than other manual and automatic methods.
It maximizes the recognition performance of the DMs
without the laborious processes or loss of the important
data, which decreases the performance in other existing
methods.
o We compared the LSTM and GRU, which are consid-
ered the most powerful RNN architectures, when they
are used to build an AE (LSTM AE vs GRU AE) and a
DM (LSTM DM vs GRU DM).
This paper is organized as follows. In Section II, we review
related works on skeleton-based abnormal gait recognition.
In Section III, we briefly review RNN architectures used
in the experiments and introduce the RNN DM, the RNN
AE, and the RNN AE-DM hybrid model. In Section IV,
we demonstrate the improvement by using the features of
the RNN AEs and the effectiveness of the RNN AE-DMs.
Finally, we provide a conclusion in Section V.

Il. RELATED WORKS

In this section, we briefly review publicly accessible skeleton-
based datasets of abnormal gaits. Then, we introduce machine
learning methods for skeleton-based gait recognition. Finally,
we describe feature extraction methods used in skeleton-
based gait recognition.

A. 3D SKELETON DATASETS OF ABNORMAL GAITS

Many studies on skeleton-based abnormal gait recognition
have been published [12]-[21]. However, there are a few pub-
licly accessible 3D skeleton datasets of abnormal gaits [12],
[17], [18], [46]. Publicly accessible datasets are collected by
simulation of actors [12], [18] or using equipment [17], [46],
such as padding a sole and attaching a weight, which cause
abnormal gaits. The datasets are summarized as follows:

o Paiement et al. [18] collected normal, Parkinson’s dis-
ease, and stoke gait data by using Kinect v1. Eleven
subjects participated in the data collection, and only five
of them simulated the abnormal gaits. Since the sensor
looked down to the subjects when collecting the data,
some joints were not well detected.

o Chaaraoui ef al. [12] obtained abnormal gaits by using
Kinect v2. Seven subjects participated in the data collec-
tion and simulated 4 abnormal gaits: right knee injury,
left knee injury, right foot dragging, and left foot drag-
ging. Since they collected only 4 datasets for the normal
gait and 1 dataset for each abnormal gait from every
subject, the number of datasets was small.

o Nguyen et al. [46] used equipment that can cause abnor-
mal gaits. They used 5-cm, 10-cm, and 15-cm soles and
a 4-kg weight. By padding the sole under the foot or
attaching the weight to the ankle, they induced abnormal
gaits. A treadmill was used to collect the gait data, and
the data were obtained using Kinect v2. Nine subjects
participated in the data collection, and each of them
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TABLE 1. Description of gait datasets [46] used for evaluation.

Gait Type Description

Gait 1 Normal gait

Gait 2 Padding a 5-cm-thick sole under the left foot
Gait 3 Padding a 10-cm-thick sole under the left foot
Gait 4 Padding a 15-cm-thick sole under the left foot
Gait 5 Weight of 4 kg on the left ankle

Gait 6 Padding a 5-cm-thick sole under the right foot
Gait 7 Padding a 10-cm-thick sole under the right foot
Gait 8 Padding a 15-cm-thick sole under the right foot
Gait 9 Weight of 4 kg on the right ankle

created 1 normal and 8 abnormal gait datasets. Each
walking dataset contains 1,200 frames of the skeleton
data.

« Khokhlova er al. [17] also used a sole in a similar way to
Nguyen et al. [46]. However, they used only a 7-cm sole
in the data collection. They caused abnormal gaits by
putting the sole into the right shoe or asking participants
not to bend the right knee during walking. Twenty-seven
subjects participated and walked between 5 and 7 times
for each gait type.

Among these datasets, we chose the dataset collected by
Nguyen et al. [46] to evaluate our methods. Other datasets
have a small amount of data [12], [18], only a few abnor-
mal gait types [17], [18], or much noise [18]. On the other
hand, the selected dataset has the largest amount of data
(9 people 9 gaits 1,200 frames), various gait types, and stable
skeleton data. As shown in Table 1, the dataset contains
similar gait patterns for which the only difference is the
height of the sole, whereas other datasets are composed of
easily distinguishable gait types. Classifying barely distin-
guishable gait types can effectively evaluate how powerful the
model is.

B. SKELETON-BASED ABNORMAL GAIT RECOGNITION
USING MACHINE LEARNING

Recently, skeleton-based abnormal gait recognition has
received much attention because skeleton data can be easily
collected in daily life without attaching sensors or markers
by using a depth sensor. Various methods to recognize gait
patterns have been proposed. In particular, machine learning
algorithms have shown strength in gait recognition [12]-[21].
In this section, we briefly review studies using machine learn-
ing algorithms for abnormal gait recognition based on skeletal
gait data.

Prochazka et al. [19] proposed a method for analysis of gait
disorders and recognition of Parkinson’s disease by applying
a Bayesian classifier to skeleton data. Chaaraoui et al. [12]
applied the bag of key poses algorithm to spatial-temporal
gait features extracted from skeleton data for abnormal gait
recognition. Tupa et al. [20] proposed a method to recognize
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Parkinson’s disease by applying deep learning to extracted
gait parameters, such as the stride length and gait velocity.
Nguyen et al. [13] used a hidden Markov model (HMM)
to recognize abnormal gaits. Li et al. [21] applied the
k-nearest neighbors (k-NN) classifier to a covariance matrix
extracted from skeleton data for abnormal gait recognition.
Khokhlova et al. [17] proposed an ensemble LSTM classi-
fier to recognize abnormal gaits. They used dynamic fea-
tures of low limb flexion extracted from skeleton data.
Nguyen et al. [16] compared k-means clustering, Bayesian
inference, a bag-of-words model, and an HMM for abnormal
gait recognition.

C. FEATURE EXTRACTION FOR THE RECOGNITION

OF ABNORMAL GAITS

Machine learning-based feature extraction has been widely
applied in computer vision and data mining to improve clas-
sification accuracy [47], [48]. Transferring data to another
domain helps a DM to more easily classify the data. How-
ever, machine learning-based feature extraction method for
the skeleton-based recognition of abnormal gaits has not
been proposed. Instead, various manual features have been
introduced [12]-[14], [18]. The extracted features of the gait
patterns are more easily recognized than the original skeleton
data and are more robust to the environment. The manual fea-
ture extraction methods used for the recognition of abnormal
gaits are described as follows:

e Chaaraoui er al. [12] used normalized skeleton data
obtained by 3D transformation. They set the centroid of
all joints as the origin coordinate and normalized the size
of the skeleton based on the length between each joint
and the centroid. Finally, they normalized the orientation
of the skeleton by rotating it to align on the same axis.

o Paiement et al. [18] applied an averaging filter to skele-
ton data to reduce the noise. Then, they normalized
the filtered skeleton data by using Procrustes analysis.
Additionally, they used the angles between each joint
and the hip center.

o Meng et al. [14] used the distances between two joints
as features. Among obtainable 25 joints from Kinect v2,
they selectively used 20 joints because the other 5 joints:
the fingers, spine, and shoulders are sources of noise and
redundancy in the recognition of abnormal gait.

o Nguyen et al. [13] used 7 joint angles from skeleton
data as features for abnormal gait detection. The joint
angles used are the left hip angle, right hip angle, left
knee angle, right knee angle, left ankle angle, right ankle
angle, and two feet angles.

The above features can improve the performance of abnor-
mal gait recognition. However, some of the features per-
form differently depending on the DM. Therefore, it is
required to find the DM that matches the manually extracted
features well. In addition, some features require multi-
ple processes, such as filtering, normalization, and joint
selection.
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lll. METHODS

In this section, we briefly review three RNN architectures:
basic RNN, LSTM, and GRU architectures, which are used in
this paper. Then, we describe the RNN DM, the RNN AE, and
the RNN AE-DM hybrid model. The purpose of the RNN DM
is to recognize abnormal gaits. In this paper, the RNN DM is
used to evaluate various features and to compose the RNN
AE-DM. The purpose of the RNN AE is to extract features
from the skeleton data, and it is used to align the data in a
more discriminative way and to compose the RNN AE-DM.
In the RNN AE-DM, the features of the RNN AE are fed to
the RNN DM. This model is compared to a single RNN DM
where skeleton data are directly fed to the DM.

A. RNN ARCHITECTURES
RNNSs are powerful neural networks for handling sequential
data, such as text, sounds, and human gestures [26]-[35].
Compared to the multilayer perceptron (MLP), considered
the simplest deep neural network, RNNs also have learning
parameters called hidden states. A key to handle sequential
data is based on these hidden states. During training, they are
updated based on both the previous and current information
of the sequential data.

The hidden state /; and the output y; of the recurrent layer,
where t € {1,...,T} denotes the index of the frame, are
calculated as follows:

hy = tanh (Wpphy—1 + Wax; + by) (€))
Vi = Wihs + by @

where W and b denote the weights and biases, respectively,
between elements.

The hidden state A, is updated by using the current input
x; and the previous hidden state h,_;. Thus, the previous
information influences the neural network calculation of the
current information in sequential data. The output values
of the recurrent layer are calculated through (2). Basically,
an LSTM and a GRU follow this equation to calculate the
output value.

The basic RNN has the vanishing gradient problem for
learning long-term dependencies [24], [25]. An LSTM [22]
can solve the problem by updating the hidden states using
additional learning variables composed of the forget gate
value f;, the input gate value i;, the output gate value o;, and
the cell state value C; as follows:

fi = o (Wyrxi + Wighi—1 + by) 3)
ir = 0 (Wyixy + Wyihi—1 + by) 4)
Cr = fr o Ci—1 + iy otanh (Wycxy + Wichi—1 +bc)  (5)
or = 0 (Wyoxy + Wiohi—1 + by) (6)
h; = o; o tanh (Cy) (7)

where W and b denote the weights and biases, respectively.
A GRU [23] can also solve the vanishing gradient problem
of the basic RNN. It is known that a GRU achieves a similar
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FIGURE 2. Structure of the RNN DM.

performance to an LSTM, but a GRU involves a smaller
number of variables. Similar to an LSTM, a GRU is based on
a gate structure. A GRU updates the hidden states by using
the reset gate value r; and the update gate value z; as follows:

rr =0 Wexs + Whehi—1 + by) (8)
2t = 0 (Wyxy + Wighi—1 + by) 9
he = —z;) o hy—1+ z; o tanh (Wypx; + e 0 Wiphe—1 + bp)

(10)

where W and b denote the weights and biases, respectively.

B. RNN DM

In this paper, we apply an RNN DM to recognize the abnor-
mal gait from the skeleton data. The RNN DM is mainly
used to evaluate features extracted from the skeletal gait data.
It is composed of a basic RNN, GRU, or LSTM, as shown
in Fig. 2. The input data v, is fed to the input layer of the
RNN DM. The equation for the input layer is:

a, = ReLU (Wy,V; + by) (11)

where a; denotes the activated value before putting it into the
RNN structure. In the input layer, the input data v; are used to
calculate the activated value a,. The neural calculations based
on the weight Wy, and the bias b, are conducted, and then the
results are activated by using a rectified linear unit (ReLU).

Each v, contains x;, where i € {1, ..., I} denotes the index
of the input data in each frame. The value of I is the same
as the number of input data in a single frame. If the original
skeleton data are directly fed into the RNN DM, [ is equal to
75 because the 3D coordinates of 25 joints compose a single
frame of the data. On the other hand, / is the same as the
number of features in a single frame when features are fed to
the model.

We construct a 4-layer RNN architecture for the RNN DM.
In the RNN layer, the hidden states h, are updated by:

h; =RNN (a;, h;—1, C,—1) 12)

where RNN(-) denotes the selected RNN architecture among
the basic RNN, LSTM, and GRU. For an LSTM, the previous
cell state C,_ is additionally used to update the hidden state,
whereas the other architectures use only a; and h,_;.
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The last hidden state hy is used to classify the data. The
equation for the classification is as follows:

3 = softmax (Wpshr + b;) (13)

where §, Wps, and by denote the predicted gait type, the out-
put weight, and the output bias, respectively. A softmax clas-
sifier is used to recognize the gait pattern. During training,
the cross-entropy cost function, L2 regularization, and adap-
tive moment estimation (Adam) [49] are applied to update the
learning parameters.

C. RNN AE

We propose a sequence to sequence RNN AE to extract the
sequential features from the original skeleton data. In this
paper, we use two RNN AEs: LSTM AE and GRU AE. They
have the same structure except for the architecture used to
compose the RNN layers. As shown in Fig. 3, the RNN AE
consists of an encoder and a decoder. In the encoding layers,
the dimensions are reduced, and the features are extracted.
The equations for the encoder are:

h{* = RNN (v, h'"), €, ) (14)
f, = Wy hi® + by”) (15)

where th) and f; denote the hidden states of the encoder and
the extracted features, respectively, at frame 7. f; is composed
of fi,, where n € {1,...,N} and N denotes the number of
features. Thus, the extracted features of all the frames are
formatted as a 7 x N matrix. f; is calculated by using the
weight Wﬁ? and the bias ng). Four RNN layers compose the
encoder, and the number of hidden neurons in one RNN unit
is equal to the number of features in a single frame.

GRU or LSTM is used to
construct the RNN AE.

RNN € { GRU,LSTM }

Reconstructed Data
(T x I matrix)

Extracted Features

Inputs Data (T * N matrix)

(T x I matrix)

l
c m_._m_._m
:

E=HO

Encoder Decoder
(Extraction) (Reconstruction)

FIGURE 3. Structure of the RNN AE.
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The extracted features of all the frames are fed to the
decoder. In the decoding layer, the dimensions are expanded,
and the features are used to reconstruct the data. The equa-
tions for the hidden state of the decoder th) and the recon-
structed input data v, are as follows:

h'” = RNN (f,, n”), C,_l) (16)
iy = WD 1 o a
L=Y (vi—¥%) (18)

t

where W;D{/) and béD) denote the weight and the bias, respec-
tively, from the hidden states to the reconstructed data. The
loss L is defined as sum of mean squared error between
the input skeleton data and the reconstructed skeleton data.
A single RNN layer composes the decoder, and the number
of hidden neurons is the same as the amount of the skeleton
data in a single frame. To maximize the representation per-
formance of the features, we use a single RNN layer in the
decoder, whereas multiple RNN layers compose the encoder.
The training is conducted by reducing the difference between
the original input v, and the reconstructed data v,.

D. RNN AE-DM HYBRID MODEL

Whereas the single RNN DM is fed with the original skeleton
data directly, the features extracted by using the RNN AE are
fed to the RNN DM in the proposed hybrid model, as shown
in Fig. 4. The original skeleton data of size T x I are trans-
formed to the features of size T x N through the RNN AE.

[RNN AE-DM Hybrid Model|

Extracted Features RNN AE
(T x N matrix)

Original Data
(T X I matrix)

RNN € { GRU,LSTM }

Features extracted by using the RNN AE
are used as the input data of the RNN DM.

RNN DM

Predicted Output

?

Softmax

Fully Connected Layer

FIGURE 4. Structure of the RNN AE-DM hybrid model.
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Then, they are fed to the RNN DM, and the input gait pattern
is recognized. The training is conducted separately on the
RNN AE and the RNN DM. After the RNN AE is trained
to successfully extract the features, the RNN DM is trained
to recognize gaits by using the features. We supposed that
the features are successfully extracted when the difference
between the input data and the reconstructed data is mini-
mized.

IV. EXPERIMENTS

In this section, we conducted various experiments to evaluate
the features of the RNN AEs for skeleton-based abnormal gait
recognition. First, we evaluated the features extracted through
the RNN AEs by comparing them to the original skeleton
data. Then, we conducted experiments to show effectiveness
of the proposed RNN AE-DMs compared to the single RNN
DMs. Finally, we compared the performance between the
features of the RNN AEs and other developed features used
in skeleton-based abnormal gait recognition.

We evaluated our model on the gait datasets by
Nguyen et al.[46], which are composed of 1 normal and
8 abnormal gaits. There are 81 gait datasets for 9 people and
9 gaits. Each dataset contains 1,200 frames of skeleton data.
However, this number of frames could be obtained because
the data were collected by using a treadmill. The purpose
of this paper is to develop a gait recognition model that is
applicable in real life. Therefore, we needed to set the number
of frames obtainable by just walking in front of the sensor.
According to Microsoft, Kinect v2 can obtain skeleton data
stably when the distance between the sensor and a person
ranges from 1.2 m to 3.5 m. Since approximately 50 frames
of skeleton data can be obtained when a person walks in the
recommended range, we set the number of frames to feed into
the model to 50.

We divided the 1,200 frames of each gait dataset into 24
smaller datasets. Thus, each sliced dataset contains 50 frames
of the skeleton data, and there are total 1,944 sliced gait
datasets. The datasets are fed to DM or AE. When the sliced
gait datasets or the extracted features are fed to DM, 3-fold
cross-validation is used to evaluate the model. The 3-fold
cross-validation is conducted 5 times, so a total of 15 trainings
are conducted and the average test accuracies are used for the
evaluation.

The configuration of computer used for experiments is
Intel(R) Core(TM) i7-7700K central processing unit (CPU),
8.00 GB random-access memory (RAM), and NVIDIA
GeForce 1050-Ti. The computational cost for the RNN AEs
and RNN DMs depends on the RNN architecture used.
For the RNN DM, the running times of the basic RNN,
LSTM, and GRU for a single epoch are 0.33s, 0.76s, and
0.82s, respectively. This method requires a minimum of
300 epochs to satisfactorily train the RNN DMs. For the RNN
AE, the running times of the LSTM and GRU for a single
epoch are 0.14s and 0.17s, respectively. This approach also
requires a minimum of 50,000 epochs to effectively train the
RNN AEs.

19201



IEEE Access

K. Jun et al.: Feature Extraction Using an RNN Autoencoder for Skeleton-Based Abnormal Gait Recognition

TABLE 2. Recognition accuracy as the number of features of the
RNN AEs changes.

TABLE 3. Improvement by using features of the RNN AEs compared to
the original skeleton data.

Data Discriminative Model Improvement
Number of . - Input Type P
Input Dat c s
fput Data Features orr}lg’tei;mon ﬁz;\]s;\? LSTM GRU Discriminative by Using Features
Oricinal Model Original Features of Features of GRU LST™M
Shapa / / 883% | 91.3% | 91.4% Skeleton the GRUAE the LSTM AE | AE AE
0, 0, 0,
60 0.80 922% | 945% | 954% BasicRNN | 88.3 % 92.5% 92.8 % 56% 59%
50 0.67 92.8% | 94.7% | 95.9%
Features of the " 0.53 012% | 92.7% | 93.6% LSTM 913 % 94.0 % 94.7 % 24%  31%
LSTM AE 0 . 0
30 0.40 89.1% | 91.9% | 92.1% GRU 91.4 % 94.9 % 95.9 % 48% 58%
20 027 86.8% | 882% | 87.6%
10 013 820% | 833% | sas% CNN 86.8 % 933 % 93.4% 65%  6.6%
60 0.80 90.0% | 92.1% | 932% MLP 84.5 % 90.3 % 91.5% 58% 7.0%
50 0.67 92.5% | 94.0% | 94.9%
Features of the 40 0.53 92.20% 92.3% 93.3% k-means 79.8 % 83.3% 90.9 % 35% 111 %
GRU AE
30 0.40 90.2% | 93.0% [ 93.0% K-NN 80.4 % 84.5% 91.2% 42% 108%
20 027 90.0% | 91.4% | 90.3% Rand
anaom
10 0.13 795% | 78.8% | 79.5% Forest 794 % 86.0% o1.0% 6.6% 116%

A. IMPROVEMENT BY USING THE FEATURES

OF THE RNN AE

We conducted the experiments to evaluate the features
extracted by using the RNN AEs. In the experiments, we com-
pared the recognition accuracies when using the features of
the RNN AEs and the original skeleton data. The features
were extracted by using two RNN AEs: the LSTM AE and
the GRU AE. Through the experiments, we also compared
the performances of the features between the two RNN AFEs.
We fed the extracted features or the original skeleton data into
DMs for the comparison.

The number of extracted features is related to representa-
tiveness and loss of the data. If the number of extracted fea-
tures is too few or too many, they do not effectively represent
the data. There is a loss of important data when the number
of extracted features is too few. On the other hand, there
are irrelevant data in the extracted features if there are too
many extracted features. Therefore, it is important to find the
proper number of extracted features through the experiment.
The number of data points in a single frame is 75 because
the 3D coordinates of the 25 joints compose the skeleton.
We extracted the features by changing the number in a single
frame from 10 to 60 and compared the recognition accuracy
between them. The data compression ratio is defined as the
number of extracted features over the number of original data
points. We fed the extracted features of different sizes and
the original skeleton data into the three RNN DMs to find the
proper number of features.

Table 2 shows the recognition accuracy as the number of
the extracted features changes. When the number of features
in a single frame is 30 or more, feeding the extracted features
of the RNN AEs shows a higher accuracy than feeding the
original skeleton data. Although the features have less data
than the original data, the results using them show better
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performances. If the number of the features of the LSTM
AE and GRU AE is less than 30, there is a loss of the
important data, and the features do not represent the gait
patterns effectively. Therefore, it is not proper to use these
features. One of the most important considerations in feature
extraction is to preserve the important data while reducing the
dimensionality.

When the number of features is equal to 50, the highest
recognition accuracy is achieved. If the number of features
is more than 50, they contain unnecessary data for abnormal
gait recognition, which reduces the performance. Therefore,
we considered the features containing 50 data points in a
single frame as the best effective features and conducted the
following experiments with them.

Table 3 shows the improvement by using the features
of the RNN AEs compared to using the original skeleton
data directly. The features were fed to various DMs, includ-
ing the RNN DMs and other machine learning algorithms.
Both the features of the LSTM AE and the GRU AE improve
the performance of the DMs without exception. In particular,
the features of the LSTM AE achieve a higher accuracy
than the features of the GRU AE in the overall results.
The results show that the extracted features of the RNN
AEs are more easily recognizable than the original skeleton
data. Through the neural calculations during the training of
the RNN AEs, the noise in the original data is reduced,
and the features are aligned in a more discriminative way.
Therefore, although the amount of the input data is reduced,
the recognition accuracy is higher when using the extracted
features.

Non-RNN models, such as convolutional neural network
(CNN), MLP, k-means clustering, k-NN, and random forest
algorithms, have a lower ability to recognize the sequen-
tial data than the RNN DMs. However, they achieve a
higher improvement than the RNN DMs when feeding the
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Case 1 : More Separable Subject Data (Subject 2)
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Input Data: Original Skeleton

Input Data: Features of the GRU AE

Input Data: Features of the LSTM AE

Case 2 : Less Separable Subject Data (Subject 9)

Input Data: Original Skeleton

Input Data: Features of the GRU AE

Input Data: Features of the LSTM AE

FIGURE 5. Improvement by using the features of the RNN AEs. The t-SNE Visualization of the input data is used to show the effectiveness of the
features. (a) Visualization of more separable subject data (Subject 2). (b) Visualization of less separable subject data (Subject 9).

TABLE 4. Recognition accuracy of the RNN AE-DMs and the end-to-end
models.

Fiepine | Pisgiiis T Enfie o T s o
GRU Basic RNN 91.5% 92.5%
GRU LSTM 88.1 % 94.0 %
GRU GRU 91.5% 94.9 %
LSTM Basic RNN 90.3 % 92.8 %
LSTM LSTM 89.5 % 94.7 %
LSTM GRU 91.3 % 95.9 %

features of the RNN AEs. The results show that the fea-
tures of the RNN AEs can reduce the nonlinearity caused
by the sequential characteristics of the gait data and can
help the non-RNN models recognize the data more eas-
ily. Although greater improvements are achieved by the
non-RNN DMs, the recognition accuracy itself is higher in
the RNN DMs.

The LSTM AE + GRU DM hybrid model achieves the
best performance. The performances of LSTM and GRU
are different depending on the model with them. When they
are used to compose the RNN AE, a better performance is
achieved by the LSTM. On the other hand, the GRU shows
higher recognition accuracy compared to the LSTM when
they compose the RNN DM.
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B. VISUALIZATION OF THE INPUT DATA

We applied t-distributed stochastic neighbor embedding
(t-SNE) to visually show that the extracted features of the
RNN AEs are more recognizable than the original skeleton
data. The t-SNE method reduces the dimensionality of the
input data. In general, it is used to visualize the input data
in 2D or 3D space. The better grouped the data are, the more
discriminative they are. Therefore, the improvement by using
the features of the RNN AEs compared to the original data
can be visually shown by using the t-SNE method. We fed
the extracted features or the original skeleton data of the
9 gait patterns of each subject into the t-SNE model. Among
the subjects, we selected two cases (i.e., a more separable
subject data and a less separable subject data) to evaluate the
features. The number of features in a single frame used in this
experiment is also 50. Fig. 5 shows the results of the t-SNE
visualization in 2D space.

In the results of the more separable subject data, there
are some overlapping areas for the groups when feeding the
original skeleton data of the 9 gait patterns. When feeding the
features of the RNN AEs, the groups are more recognizable,
although there are still overlapping areas in the GRU AE.
The results show that the LSTM AE achieves the best perfor-
mance. The gait pattern groups are clearly recognizable when
feeding them. In the results of the less separable subject data,
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itis hard to recognize the gait patterns when using the original
skeleton data. We applied t-SNE to these data by changing
the learning configurations many times, but the results did
not change. However, when feeding the features of the GRU
AE and the LSTM AE, the gait patterns are much more easily
grouped together. In particular, when using the features of the
LSTM AE, the gait patterns can be clearly recognized.

The results show that the gait patterns become more rec-
ognizable in both of the more and less separable cases when
using the features extracted by using the RNN AEs. In par-
ticular, the features of the LSTM AE achieve the best per-
formance. The gait patterns are clearly recognizable even
in the less separable subject data. The LSTM AE extracts
more recognizable and robust features than the GRU AE. The
results of the t-SNE visualization support the improvement by
using the features of the RNN AEs compared to the results
using the original skeleton data.

C. EFFECTIVENESS OF THE RNN AE-DM

We compared the RNN AE-DM hybrid models and the sin-
gle RNN DMs with respect to effectiveness by showing the
training curve of the models and the training results of the
models as the number of the learning parameters changes.
The number of extracted features was fixed at 50 in the
experiments.

Fig. 6 shows the test accuracy curves when feeding the
features of the RNN AEs and the original skeleton data into
the three RNN DMs. The results show that the hybrid models
are more effective than the single DMs in terms of the training
speed. The training speed is related to how easily the input
data can be recognized. In all the graphs, the recognition
accuracy when feeding the features of the RNN AEs increases
faster than the result using the original skeleton data. The
features of the RNN AEs accelerate the training and increase
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FIGURE 6. Test accuracy curves when feeding the three types of input

data to the three RNN DMs: (a) the basic RNN DM, (b) the LSTM DM, and
(c) the GRU DM. (d) Comparison between the results.
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FIGURE 7. Training results of the models as the number of parameters
changes.

the recognition accuracy. In particular, the fastest increase in
the recognition accuracy is achieved when the RNN DMs are
fed with the features of the LSTM AE.

A likely question is whether the RNN AE-DM hybrid
models achieve a better performance at the expense of more
learning parameters than do single RNN DMs. Given that
the use of the RNN AEs means including more learning
parameters, we therefore conducted an experiment to show
that the hybrid models show higher accuracy with a similar
number of parameters than do single DMs. Fig. 7 shows the
recognition accuracy of each model as the number of learning
parameters increases. We changed the number of parameters
by increasing or decreasing the hidden neurons of the DMs
while keeping the number of hidden layers constant. The
results show that the hybrid models using the features of
the RNN AEs outperform the single DMs with the same or
smaller number of parameters.

D. EVALUATION OF TWO-STEP TRAINING

OF THE RNN AE-DM

The RNN AE-DM hybrid model is a two-step training model.
The purposes of each step are different. First, the RNN
AE is trained to extract the features from skeleton data.
In this training, it is focused on extracting the meaningful
features and reconstructing the data as much as possible.
Then, the RNN DM is trained to recognize the abnormal gait
patterns by using the extracted features. This training focuses
on classifying the gait patterns accurately. We evaluated the
two-step training of the RNN AE-DMs by comparing the
recognition accuracies of the RNN AE-DMs to those of End-
to-End models that have a single-step training.

Fig. 8 shows the structure of the End-to-End model.
The data flow is exactly same as the RNN AE-DM. The
features extracted from the encoding layers are fed to the dis-
criminative layers. However, interaction between the encod-
ing layers and the discriminative layers is different. In the
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TABLE 5. Recognition accuracy when using the features of the RNN AEs and other features.

Discriminative Model

Input Data Type GRU LSTM |BasicRNN | CNN MLP k-means | k-NN R;(’)‘i‘;n
Original Skeleton 91.4% | 913% 88.3 % 86.8 % 84.5 % 79.8 % 80.4% | 79.4%
Features of the LSTM AE 959% | 947% | 928% | 934% | 915% | 909% | 912% | 91.0%
Features of the GRU AE 949% | 94.0% 92.5 % 933% | 903% 833 % 84.5% | 90.4%
Features of PCA 84.8 % 86.6 % 823 % 89.0 % 87.7 % 773 % 80.7% | 84.0%
Features of SVD 83.8 % 83.8 % 82.6 % 89.4 % 87.6 % 77.1% 802% | 833%
Normalized Skeleton [12] 93.8% | 91.7% 89.2 % 91.9 % 89.5 % 87.1% 91.4% | 84.9%
Filtering + Normalized Skeleton [18] | 93.1% | 91.9% 89.6 % 93.1% | 91.4% 87.6% | 922% | 87.7%
Filtering + Qf&gtlﬁi gf}tjw[?egr]‘ Each Joint| ¢ 74, 89.1 % 74.9 % 83.9 % 81.1 % 83.2 % 868% | 84.5%
Lengths Between 20 Joints [14] 924% | 91.4% 86.3 % 91.2% 86.3 % 88.0 % 92.1% | 89.5%
7 Joint Angles [13] 86.9 % 89.5 % 66.9 % 84.4 % 66.9 % 772 % 84.4% | 75.5%
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FIGURE 8. Structure of the End-to-End model.

RNN AE-DM, there is no interaction because the encod-
ing and the discriminative layers are trained separately.
The training of the RNN DM does not affect the param-
eters of the RNN AE. On the other hand, all the param-
eters in the encoding and the discriminative layers are
updated at the same time in the training of the End-to-End
model. Additionally, the End-to-End model does not have
the decoding layers that are needed to reconstruct the data in
the RNN AE.

We conducted two experiments with the End-to-End
model: 1) training with randomly initialized parameters, and
2) fine-tuning with parameters of the most accurate results
of two-step training. Table 4 shows the results of the first
experiment. The RNN AE-DMs achieve a higher accuracy
than that of the End-to-End models with randomly initial-
ized parameters in all of the combinations of the encoding
and the discriminative layers. In the fine-tuning experi-
ment, the recognition accuracy does not increase. Therefore,
we verified the effectiveness of the two-step training of the
RNN AE-DM. The separate training steps for the different
purposes are more effective than the single training step of
the End-to-End model. Consequently, the complicated recog-
nition problem can be changed into two simpler problems
by using the RNN AE-DM hybrid model, so it improves the
recognition accuracy.
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AND OTHER FEATURES

We evaluated the features of the RNN AEs by comparing
them with other existing features. Since there are noise and
unnecessary data in skeleton data for abnormal gait recog-
nition, the manual features are normally used instead of
directly feeding the original skeleton data into a learning
model [12]-[14], [18]. The detailed descriptions of the other
features are in Section II. We compared our features to the
manual features with respect to the recognition accuracy.
Furthermore, we compared our features with other automat-
ically extracted features obtained by using principal compo-
nent analysis (PCA) and singular value decomposition (SVD)
which are typical dimension reduction methods. In this exper-
iment, the number of features extracted by using the RNN
AEs was fixed at 50, which achieves the best performance,
as previously mentioned. In the experiment, we separately set
the learning configurations of the DMs, such as the learning
rate and the number of training iterations, for each model to
maximize their performance. Table 5 shows the results of the
experiment.

According to the results, the features of the LSTM AE
achieve the best performance in skeleton-based abnormal gait
recognition. The highest accuracies are achieved when the
features of the LSTM AE are fed to each DM, except for k-
NN. The features of the GRU AE are the next best, but they
show a relatively low performance when fed to k-means and
k-NN. Compared to other features, in most cases, the RNN
AEs achieve a better performance when they are fed to the
DMs. There is a loss of significant information in the other
existing methods, but this loss can be minimized by using the
feature extraction of the RNN AEs. Among the other features,
the filtered and normalized skeleton [18] achieves the best
performance.
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PCA and SVD can also extract features automatically.
They reduce the dimensionality of the data in an unsupervised
way. However, their features do not improve the recognition
accuracy of all the DMs. As shown in Table 5, they improve
the recognition performance only in the CNN, MLP, and
random forest. In particular, the performance of the RNN
DMs are remarkably decreased. It is hard for them to pre-
serve the sequential characteristics of the data when reducing
the dimensionality. On the other hand, the feature extrac-
tion of the RNN AEs not only reduces the dimensionality
but also aligns the data in a more discriminative way that
also preserves the sequential characteristics. The RNN AEs
require the longer training time to extract the meaningful
features than PCA and SVD. However, the features of the
RNN AEs show much better performance than the features
of PCA and SVD.

The performance of the other features is heavily influ-
enced by the DM. In particular, the features based on angles
show remarkably different results depending on DMs. The
results are worse than the original skeleton data in some DMs
while achieving fairly good performances with other models.
Therefore, when using the other features, the well-matched
DM must be found. On the other hand, the features of the
RNN AEs achieve a higher recognition accuracy than the
original skeleton data regardless of the DM.

V. CONCLUSION

In skeleton-based abnormal gait recognition, feature extrac-
tion from skeleton data is necessary because the original data
contain noise and irrelevant information, which decrease the
recognition accuracy. In this paper, we propose the feature
extraction method using the RNN AEs. The RNN AEs align
the original skeleton data in a more discriminative way and
minimize the irrelevant information, especially notable with
the LSTM AE which shows better performance than the
GRU AE. Therefore, the features improve the recognition
performance of the RNN DMs and the other DMs. Among
the DMs, the GRU DM shows the best performance in the
most features. Whereas the LSTM AE shows a better perfor-
mance than the GRU AE, the GRU DM achieves a higher
accuracy than the LSTM DM. The RNN AE-DM hybrid
models fed with the features show better performance than
the single RNN DMs fed with the original skeleton data, and
do so with less training time and fewer learning parameters.
Furthermore, the two-step training of the RNN AE-DM is
more effective than the single-step training of the End-to-End
model that has the same data flow.
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