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ABSTRACT Owing to the highly nonlinear dynamics and high number of nonlinear constraints, it is
exceedingly difficult and computationally expensive to solve the cooperative trajectory planning problem
of multimissile formation using existing approaches. To address this issue and improve the convergence
property and computational efficiency, a bi-level sequential convex programming (SCP) method consisting
of a system coordination level and an individual optimization level is proposed to solve the cooperative
trajectory planning of missile formation. At the system level, the time consensus constraints are determined,
the cooperative constraints that should be considered in the next iteration of the individual trajectory
optimization level are identified, and the members that have converged are removed from the optimization
sequence. As the number of members in the optimization sequence and the number of cooperative constraints
considered in the individual SCP are clearly decreased, the convergence property and the computational
efficiency of cooperative trajectory planning are evidently improved. At the individual level, the proposed
method creatively proposes the innovative idea: based on the updated information of the system level,
each member solves its individual trajectory optimization sub-problem independently and sequentially by
gradually adding and tightening the cooperative constraints with the evolution of optimization iteration of
SCP, which can further enhance the convergence property. Numerical simulations show that the proposed
bi-level SCP method can effectively solve the multistage cooperative trajectory planning of multimissile
formation with good convergence property, exhibiting the excellent scalability to the number of members
and higher effectiveness. The comparison with the generation optimal control software (GPOPS) method
further demonstrates the high efficiency of the proposed method.

INDEX TERMS Bi-level sequential convex programming, complex constraints, multistage cooperative
trajectory planning, multimissile formation, time consensus.

I. INTRODUCTION
The cooperative attack of a missile formation presents better
performance than that of an individual missile in penetrating
defense systems, detecting maneuvering targets, and surviv-
ing the threats [1]–[4], and the cooperative attack has become
an attractive and active research topic. As a key compo-
nent of a cooperative attack, cooperative trajectory planning
has gained significant attention. Typical cooperative trajec-
tory planning methods include mixed-integer programming
[5], nonlinear programming [6], rapidly exploring random
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tree [7], and heuristic-based intelligent methods [8]. How-
ever, as it is required to solve the trajectory optimization
simultaneously for multiple flight vehicles during coopera-
tive trajectory planning, these methods suffer from intensive
computational cost, particularly when the number of flight
vehicles is high.

Recently, the convex optimization has been widely
employed in trajectory planning owing to its high efficiency
in planetary powered soft landing [9]–[11], rendezvous and
proximity operations [12], spacecraft coordination [13], con-
trol of swarms of spacecraft [14], formation reconfiguration
[15], and entry trajectory optimization [16]. As most prac-
tical trajectory planning problems are highly nonlinear, it is
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impossible to transform them to strictly convex optimiza-
tion problems. In general, they cannot be solved in only
one iteration using the convex optimization. Therefore, the
sequential convex programming (SCP) approach has been
developed through iteratively solving a series of convex pro-
gramming sub-problems, which has demonstrated effective-
ness in many practical optimal control problems. Regarding
cooperative trajectory planning, several applications of SCP
can be found in the literature. Based on SCP, Morgan et al.
developed one centralized and two decentralized cooperative
trajectory planning approaches for swarm reconfiguration
of spacecraft with nonlinear dynamics [17]. Further, within
the decentralized framework proposed in [17], the model
predictive control (MPC) theory was integrated with SCP
to reduce the computational cost and increase the anti-
interference capability of the reconfiguration of a variable
swarm [18]. Moreover, Augugliaro et al. applied SCP to an
unmanned aerial vehicle (UAV) formation to solve coopera-
tive trajectory planning considering the collision-avoidance
constraint [19]. To achieve better computational tractability,
Chen et al. developed a decoupled cooperative trajectory
planning method based on SCP to sequentially generate the
trajectory of each UAV [20].

In the aforementioned works on cooperative trajectory
planning using SCP, the flight time of flight vehicles was
assumed to be pre-specified. However, for a missile forma-
tion attacking a target, it is impossible to pre-specify the
flight time of the missiles in practice. Very few studies on
cooperative trajectory planning with free flight time exist in
the literature. Meanwhile, in the cooperative attack scenario,
multiple missiles are required to attack the target simulta-
neously to utilize formation advantage with the purpose of
striking the enemy defense system and the target [21], [22].
To address this issue and to ensure the flight time consensus,
Wang et al. proposed a decoupled cooperative trajectory plan-
ning approach for UAV formation, in which the decoupled
sub-problems of trajectory optimization considering the con-
straint on time consensus for each member was solved with
SCP [23]. However, the optimization sequence always con-
tained all members during the optimization process, thus the
computational cost increased significantly with the increase
of the number of UAVs. Moreover, compared with a UAV
or an agent, the velocity and flight space of a missile are
significantly greater, and it is impossible for a missile to
realize hovering and circling in the same manner as a UAV
or an agent. In addition, the dynamics of a missile is more
nonlinear and complicated. Therefore, the feasible region of
optimization for the missile is significantly smaller and it
is more sensitive to the initial values during optimization.
So it is difficult to achieve SCP convergence, particularly
when the number of missiles is large. These characteristics
clearly increase the difficulty in solving the multi-constrained
trajectory planning problem for missile formation via convex
optimization.

Highly constrained trajectory optimization problems are
usually difficult to solve. Chai et al. proposed a specific

multiple-shooting discretization technique with the newest
NSGA-III optimization algorithm and constructs a new evo-
lutionary optimal control solver to solve the multiobjective
trajectory planning problem with constraints and obtained
the feasible trajectories [24]. Chai et al. employed a dis-
cretization technique to explore the optimal trajectories for
a spacecraft entry flight planning scenario with probabilis-
tic constraints and produced reliable and less conservative
solutions [25].

On the other hand, during the missile formation flight,
the corresponding cooperative trajectory planning problem
is more complicated. It is required that the information of
interception system be detected, the time of maneuvering
penetration be determined, and the corresponding operational
instructions for cooperative attack be generated, which indi-
cates that the missiles should have formation-aggregation
and formation-maintenance abilities. Therefore, the coop-
erative attack process of a missile formation has multiple
stages, including formation aggregation, formation mainte-
nance, formation penetration, and cooperative attack. For the
multistage missile formation, different performance indices
and constraints should be considered at different stages; evi-
dently, this increases the complexity and difficulty of cooper-
ative trajectory planning.

In this work, to address the aforementioned issues and
improve the convergence property and computational effi-
ciency, a bi-level SCP (Bil-SCP) method comprising both
the system and the individual level, is developed to solve
the cooperative trajectory optimization problem of missile
formation considering multiple stages (i.e., formation aggre-
gation, formation maintenance, formation penetration and
cooperative attack). At the system level, missile members that
have not achieved the time-consensus and states-convergence
criteria are identified and retained in the optimization
sequence. Meanwhile, the cooperative constraints of each
member that have not been satisfied in the previous iter-
ation are also identified. In addition, the constraints on
the flight time consensus are determined for each member.
Then, the trajectory optimization sub-problem is solved for
each member in the optimization sequence at its individ-
ual level independently and sequentially, considering the
identified cooperative constraints at the system level and
the previously determined flight time-consensus constraint.
Once one missile member has completed its optimiza-
tion, it will broadcast its current optimal trajectory to the
remaining missile members in the optimization sequence;
based on this optimal trajectory, the trajectory optimiza-
tion of the remaining missiles could be carried out in
turn, which is conducive to the convergence to a better
solution.

As the number of missiles participating in the optimization
gradually decreased with the evolution of iterations and the
decrease in the number of constraints, the computational
efficiency and the convergence property noticeably improve
in the cooperative trajectory optimization with the proposed
Bil-SCP method, which was beneficial to the expansion of
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formation size. To further improve the convergence prop-
erty of SCP, at the individual level, the Bil-SCP method
creatively proposes the innovative idea: the convex coop-
erative constraints are gradually tightened up and included
into the optimization with the evolution of the optimization
iteration of the SCP, and thus to form a sequence of more
relaxed and feasible intermediate optimization problems to
avoid the over-constrained optimization problem caused by
simultaneously introducing a large number of conservative
convex cooperative constraints. Furthermore, to guarantee the
free flight time of each stage for the members, the flight
time is set as a separate decision variable in the SCP
optimization.

The remainder of this article is organized as follows.
In Section 2, the initial non-convex multistage cooperative
trajectory planning problem with free flight time for multi-
missile formation will be established. In Section 3, the con-
vexification techniques that transform the original trajectory
planning problem to a convex one will be described. The
proposed bi-level cooperative trajectory planning method
based on the SCP theory, including the system coordina-
tion level and the individual level, will be presented in
Section 4. In Section 5, the numerical simulation results will
be presented to illustrate the effectiveness of the proposed
Bil-SCP method. Finally, the conclusions will be presented
in Section 6.

II. PROBLEM DESCRIPTION
In this section, the optimal control model of multistage
cooperative trajectory planning with free flight time for mul-
timissile formation will be established. In this work, the pro-
cess of the missile-formation cooperative attack is divided
into four successive stages: formation aggregation, formation
maintenance, formation penetration and cooperative attack.
For formation aggregation, all missile members fly to a
specified region, in which collision avoidance and no-fly
zone avoidance must be considered. Formation maintenance
refers to the process that all members fly in a fixed for-
mation within the allowable error range until certain mem-
bers detect the interceptor missiles. Formation penetration is
the process during which members maneuver to escape the
interceptor missiles. Cooperative attack refers to the process
of simultaneous cooperative attack on the assigned target,
according to the specified terminal requirements. Meanwhile,
the flight time of each stage is not limited to a specific
duration.

A. MISSILE DYNAMICS
At each flight stage, the dynamics of each formation member
is the same, as shown in Eq.(1). The fixed coordinate system
is established, in which the x-axis and y-axis point to the
east and vertically upward, respectively; the z-axis is such
that the coordinate system satisfies the right-hand rule. For a
multimissile formation with Nm members, the dimensionless

dynamics for each member is as the following.

V̇ = −D− sin θ/r2

θ̇ = L cos σ/V − cos θ/Vr2

ψ̇ = −L sin σ/(V cos θ )
ẋ = V cos θ cosψ
ẏ = V sin θ
ż = −V cos θ sinψ,

(1)

where (x, y, z) denotes the position coordinate of the missile
scaled by the radius of the earth R0, r = 1+ y represents the
radial distance from the earth center to the missile, V denotes
the velocity scaled by

√
g0R0 (g0 is the earth gravitational

acceleration at R0), the heading angle ψ is measured clock-
wise from the east, θ is the flight path angle, and σ is the bank
angle.

The differentiation is with respect to the dimensionless

time, t , scaled by
√
R0
/
g0. The dimensionless lift acceler-

ation, L, and the dimensionless drag acceleration, D, are

L = 0.5R0ρV 2Sref CL(α,Ma)/mref
D = 0.5R0ρV 2Sref CD(α,Ma)/mref , (2)

where ρ is the atmospheric density, Sref is the reference area,
mref is the reference mass, CD and CL are the drag and lift
coefficients, respectively.

It is apparent that the dynamics equations shown in
Eq. (1)are nonlinear; hence, they need convexification for the
application of the convex programming method. Therefore,
the following drag polar is used:

CD(α,Ma) = CD0(Ma)+ Km(Ma) · [CL(α,Ma)]2, (3)

where the zero-lift drag coefficient,CD0, and the induced drag
factor, Km, can be determined by interpolating the aerody-
namic coefficients.

Based on Eq. (3), the lift and drag coefficients correspond-
ing to the maximum lift-to-drag ratio can be obtained as
follows.

ĈL(Ma) =
√
CD0(Ma)/Km(Ma)

ĈD(Ma) = 2CD0(Ma) (4)

A normalized lift coefficient is defined:

η = CL(α,Ma)/ĈL(Ma). (5)

Substituting Eq. (5)into Eq. (4) yields

CD(α,Ma) = 0.5ĈD(Ma)[1+ η(α,Ma)2]. (6)

By combining Eq. (5) and Eq(6)., both CL and CD are func-
tions of η. Correspondingly, L and D are functions of η as
well.

L = L̂(Ma)η(α,Ma)

D = 0.5D̂(Ma)[1+ η(α,Ma)2], (7)

where L̂ and D̂ are the dimensionless lift and drag accelera-
tions corresponding to ĈL and ĈD, respectively.
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A new control vector, u = [u1, u2, u3]T , is defined.

u1 = η cos σ, u2 = η sin σ, u3 = η2 (8)

Obviously, the control variables must satisfy the following
condition:

u21 + u
2
2 = u3. (9)

In addition, constraints must be applied on u1, u2 and u3,
as α and σ are constrained. In this work, it is assumed that
the lift coefficient of the missile is non-negative, i.e., η > 0,
and that the upper bound of η could be determined by the
maximum allowable angle of attack:

0 ≤ η ≤ η̃(Ma), (10)

where η is the upper bound.
Thus

0 ≤ u3 ≤ ũ3, (11)

where ũ3 = [η̃(Ma)]2.
It is assumed that the bank angle, σ , is within [−180, 180]

deg. Thus, the control constraints can be expressed as

u ∈ {u21 + u
2
2 = u3, 0 ≤ u3 ≤ ũ3}. (12)

After u is obtained, the initial control variables α and σ can
be inversely deduced. To obtain α, η is first computed:

η =
√
u3. (13)

Using Eq.(5), CL(α,Ma) can be calculated. When Ma is
determined, the corresponding α can be found through the
obtained CL(α,Ma). To obtain σ , cos σ and sin σ are first
computed as follows:

cos σ =
u1
η
, sin σ =

u2
η
. (14)

Then, the value of σ can be calculated. It should be noted that
typically η 6= 0, otherwise u1 = u2 = u3 = 0.
For simplicity, the states and controls of the ith mem-

ber in the missile formation are defined as xi = [Vi, θi,
ψi, xi, yi, zi]T and ui = [u1i, u2i, u3i]T (i = 1, 2, . . . ,Nm,
Nm is the number of formation members), respectively. Then,
the aforementioned nonlinear dynamics (Eq. (1)) and control
constraints can be expressed as

ẋi = f (xi,ui), (15)

ui ∈ {u21i + u
2
2i = u3i, 0 ≤ u3i ≤ ũ3i}. (16)

The formation is intercepted by interceptor missiles during
flight. In this work, it is assumed that the interceptor missile
employs proportional guidance as commonly practiced, and
its dynamics equations are

V̇I = axI
θ̇I = ayI

/
VI

ψ̇I = azI
/
(VI cos θI )

ẋI = VI cos θI cosψI
ẏI = VI sin θI
żI = −VI cos θI sinψI ,

(17)

where axI is the axial acceleration of the interceptor mis-
sile that has been estimated via the formation cooperative
detection; ayI and azI are the accelerations along the y- axis
and z–axis, respectively, and are determined by proportional
navigation.

The state vector of the nth interceptor missile is denoted
as xI ,n = [VI ,n, θI ,n, ψI ,n, xI ,n, yI ,n, zI ,n]T (n = 1, 2...NI ),
where NI is the number of the interceptor missiles.

B. CONSTRAINTS
1) PATH CONSTRAINTS
To ensure safety, the dynamic pressure and normal overload
of missile members are constrained as the following:

qi = 0.5g0R0ρiV 2
i ≤ qmax

nL,i = 0.5R0ρiV 2
i Sref CL

/
mref ≤ nLmax

i = 1, 2, . . . ,Nm.

(18)

The exponential atmospheric density model is used [26],
as shown below.

ρi = ρ0e−βR0yi , (19)

where ρ0 = 1.225 and β = 1/7201.
The Eq. (18) can be rewritten as{

Vi ≤ Ṽq,i
Vi ≤ ṼnL,i,

(20)

where Ṽq,i =

√
2qmax

/
ρi

/
√
g0R0 and ṼnL,i =√

2nLmaxmref
/
ρiSref R0CL .

2) COOPERATIVE CONSTRAINTS
Collision avoidance constraints: it is required that the distance
between any two missile members is always greater than the
safe distance, Rs:∥∥C1 · [xi(t)− xj(t)]

∥∥ ≥ Rs, i, j = 1, 2, . . . ,Nm, i 6= j,

(21)

where matrix C1 = diag(0, 0, 0, 1, 1, 1) is used to extract the
space position of the missiles and ‖·‖ represents the distance
between any two missiles.

No-fly zone avoidance constraints: to improve the surviv-
ability, the members should always be located outside all no-
fly zones. In the present research work, the cylinder model
with an infinite height is used to represent the no-fly zone.∥∥C2 · xi(t)− pnfz,l

∥∥ ≥ Rn,l,
i = 1, 2, . . . ,Nm, l = 1, 2, . . . ,Nn, (22)

where matrix C2 = diag(0, 0, 0, 1, 1, 0) is used to extract the
horizontal position of the members, Nn is the number of the
no-fly zones, and pnfz,l and Rn,l are the horizontal position
and the radius of the l th no-fly zone, respectively.

Interceptor missile avoidance constraints: at the penetra-
tion stage, to achieve maneuvering penetration, each member
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FIGURE 1. Continuity of stages.

should always be outside the damage range, RI , of the inter-
ceptor missiles.∥∥C1 · [xi(t)− xI ,n(t)]

∥∥ ≥ RI ,
i = 1, 2, . . . ,Nm, n = 1, 2, . . . ,NI , (23)

where the positions of the interceptor missiles are predicted
via the formation cooperative detection.

3) BOUNDARY CONSTRAINTS
The boundary constraints for each flight stage for formation
members are determined according to the mission, which, are
expressed as follows in general.

8min,i,p ≤ 8(xi(tp−1), tp−1, xi(tp), tp) ≤ 8max,i,p, (24)

where p = 1, 2, 3, 4 is the number of flight stages, t0 is the
initial time, and t1, t2, t3, and t4 are the terminal times of the
first to the fourth stage, respectively.

4) MULTISTAGE CONNECTION CONSTRAINTS
In multistage trajectory planning, it is necessary to ensure the
close connection of the time and the states between adjacent
stages, as shown in Fig. 1. Therefore, mandatory connection
constraints need to be applied to the stage boundary.

M (xi(tp),ui(tp), tp) =
[
xi(t−p )− xi(t

+
p )

ui(t−p )− ui(t
+
p )

]
= 0, (25)

where p = 1, 2, 3 is the number of stages.

C. OPTIMAL CONTROL MODEL
The performance index of the first three stages is the min-
imum energy consumption, and the performance index of
the last stage is the maximum terminal velocity to achieve
the greatest damage effect on the targets. Then, the initial
optimal control problem, P1, for the cooperative trajectory
optimization of the missile formation is formulated as in the
following.

min
i=1,2,...Nm


Nm∑
i=1

∫ tp

tp−1
u3idt, p = 1, 2, 3

−Vi(t4), p = 4

s.t.:


(15)(16)(20) ∼ (22)(24)(25), p = 1, 2;
(15)(16)(20) ∼ (25), p = 3;
(15)(16)(20)(22)(24)(25), p = 4.

(26)

where the difference tp−1 − tp(p = 1, 2, 3, 4) denotes the
flight time of the pth stage, which is set as a separate decision
variable in the optimization to guarantee that the flight time
of each stage is free.

III. CONVEXIFICATION
The SCP technique is an iterative method to solve a series
of convex programming problems [14]. When SCP is used
to solve optimal control problems, a guessed initial nominal
state should be provided in the first iteration. In each itera-
tion, convex programming is employed to solve the optimal
control problem, of which the obtained optimal solution is
considered as the nominal guess for the convex programming
in the following iteration. The SCP iterations continue until
the states converge. To apply SCP to solve the aforemen-
tioned cooperative trajectory planning problem, convexifa-
tion techniques should be employed in the optimal control
problem, P1, to establish a convex trajectory planning prob-
lem. Linearization and discretization should be performed on
the missile dynamics to achieve convexification, and con-
vexification should also be performed on the cooperative
constraints. Furthermore, convex relaxation is used for the
equivalent reconstruction of the convex trajectory planning
problem.

A. LINEARIZATION AND DISCRETIZATION
OF DYNAMICS
Because the dynamic equations of each stage are identical in
form, the subscript p, which denotes the flight stage, is omit-
ted when introducing linearization and discretization.

1) LINEARIZATION
It is assumed that the optimal solution obtained in the mth

optimization iteration of SCP is
{
xmi ; u

m
i

}
, around which

the nonlinear dynamics shown in Eq. (15) employed in the
(m+ 1)th iteration is approximated as a linear one:

ẋi = Ami (x
m
i ,u

m
i )xi + B

m
i (x

m
i ,u

m
i )ui + c

m
i (x

m
i ,u

m
i ), (27)

where Ami (x
m
i ,u

m
i ) = ∂f (xi,ui)

/
∂xi

∣∣∣{xmi ; umi } and Bmi (x
m
i ,

umi ) = ∂f (xi,ui)
/
∂ui

∣∣∣{xmi ; umi } .
To ensure the accuracy of the aforementioned linearization,

a confidence region is required to be considered.∣∣xi − xmi ∣∣ ≤ ε, ε ∈ R6, (28)

where ε is a constant vector.

2) DISCRETIZATION
The flight time of each stage, tp − tp−1 (p = 1, 2, 3, 4), is set
as a decision variable to guarantee the free final time of each
stage, which is divided into K intervals with a time step of
1t = (tp − tp−1)

/
K ,(p = 1, 2, 3, 4). Then, each stage of the
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trajectory is discretized into K + 1 points in the time interval
[tp−1, tp], and tk = tp−1 + k ·1t (k = 0, 1, 2, . . . ,K ). States
and controls are discretized as xi[k] = xi(tk ) and ui[k] =
ui(tk ), respectively. Based on the trapezoidal numerical inte-
gration method, the linearized dynamic equations shown in
Eq. (27) are further discretized.

Gmi,k+1 · xi[k + 1]+ Gmi,k · xi[k]

+Hm
i,k+1 · ui[k + 1]+Hm

i,k · ui[k]

+ (Emi,k + E
m
i,k+1) ·1t + F

m
i,k + F

m
i,k+1 = 0,

k = 0, 1, ...K , (29)

where

Gmi,k = 0.51t̄ · Ami,k + I,

Gmi,k+1 = 0.51t̄ · Ami,k+1 + I,

Hm
i,k = 0.51t̄ · Bmi,k

Hm
i,k+1 = 0.51t̄ · Bmi,k+1,

Emi,k = 0.5f (xmi [k],u
m
i [k]),

Emi,k+1 = 0.5f (xmi [k + 1],umi [k + 1]),

Fmi,k = −0.51t̄ ·
(
Ak · xmi [k]+ Bk · u

m
i [k]

)
,

Fmi,k+1 = −0.51t̄

·
(
Ak+1 · xmi [k + 1]+ Bk+1 · umi [k + 1]

)
, (30)

Ami,k and B
m
i,k are the values of Jacobian matrices Ami (x

m
i ,u

m
i )

and Bmi (x
m
i ,u

m
i ) at the k

th discrete point, respectively.

B. CONVEXIFICATION OF COOPERATIVE CONSTRAINTS
As the current collision avoidance constraints shown in
Eq. (21) are non-convex, it is necessary to convert them
into convex ones. The following inequalities offer sufficient
conditions for the collision avoidance constraints among all
formation members [17].

(x̄i[k]− x̄j[k])T · CT
1C1 · (xi[k]− xj[k])T

≥ Rs ·
∥∥C1 · x̄i[k]− C1 · x̄j[k]

∥∥
i, j = 1, 2, . . . ,Nm, i 6= j, k = 1, 2, . . . ,K (31)

The original cylinder no-fly zone avoidance constraints
(Eq. (22)) can be convexified into half-plane affine con-
straints [17] at all discrete points of the nominal trajectory,
as in below.∥∥C2 · x̄i[k]− pnfz,l

∥∥
+

(C2 · x̄i[k]− pnfz,l)
T∥∥C2 · x̄i[k]− pnfz,l
∥∥ · (C2 · xi[k]− C2 · x̄i[k]) ≥ Rn,l

i = 1, 2, . . . ,Nm, l = 1, 2, . . . ,Nn, k = 1, 2, . . . ,K

(32)

However, it can be seen from Eq. (32) that the no-fly zone
avoidance constraints only function at discrete points; hence,
the trajectory between discrete points may not satisfy the
constraints. Therefore, the following constraints are added to

FIGURE 2. Convexification of no-fly-zone avoidance constraints.

ensure that the trajectory between the discrete intervals also
satisfies the constraints.∥∥C2 · x̄i[k − 1]− pnfz,l

∥∥
+

(C2 ·x̄i[k−1]−pnfz,l)
T∥∥C2 ·x̄i[k−1]−pnfz,l
∥∥ ·(C2 · xi[k]−C2 ·x̄i[k−1])≥Rn,l

i = 1, 2, . . . ,Nm, l = 1, 2, . . . ,Nn, k = 1, 2, . . . ,K

(33)

Fig. 2 depicts the geometric description of the no-fly-
zone avoidance constraints at the discrete points and between
discrete points after convexification, where the larger blue
circle denotes the no-fly zone and the left blank area denotes
the feasible zone after convexification. As shown in Fig. 2,
according to the constraints shown in Eq. (32), new positions,
i.e., wi[k − 1] and wi[k], are obtained by referring to the
corresponding nominal positions w̄i[k − 1] and w̄i[k] with
respect to the (k-1)th and k th discrete points, respectively.
As shown in Fig. 2 (a), the trajectory between the two adjacent
discrete points (i.e., wi[k − 1] and wi[k])—denoted by the
red dotted line—passes through the no-fly zone. However,
as shown in Fig. 2 (b), if constraints shown in Eq. (33) are
further considered, the line segments between the adjacent
discrete points (wi[k−1] andwi[k]) clearly no longer intersect
with the interior of the no-fly zone, which ensures the security
of trajectory.

At the penetration stage, to avoid interceptor missiles,
it is necessary to ensure that the position of each member is
outside the damage range, RI , of all interceptor missiles at all
discrete points. After convexification, the interceptor missile
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FIGURE 3. Relaxation of control constraints.

avoidance constraints at the discrete points are

(x̄i[k]−xI ,n[k])T ·CT
1C1 · (xi[k]−xI ,n[k])T

≥ RI ·
∥∥C1 · x̄i[k]− C1 · xI ,n[k]

∥∥
i = 1, 2, . . . ,Nm, n=1, 2, . . . ,NI , k=1, 2, . . . ,K .

(34)

C. CONVEX RELAXATION OF CONSTRAINTS
From Eq.(16), it may be noticed that the control constraints in
the optimal control problem, P1, are non-convex. Therefore,
the equality constraints in Eq. (16) are transformed into con-
vex inequality constraints, as shown below, using the convex
relaxation technique, as illustrated in Fig. 3. It is obvious that
the original non-convex set consists of one solid arc segment
on the semicircle, and the relaxed convex set consists of the
shaded area, including the boundaries.

ui ∈ {u21i + u
2
2i ≤ u3i, 0 ≤ u3i ≤ ũ3i} (35)

D. FORMATION OF THE CONVEX
PROGRAMMING PROBLEM
By employing the linearization, discretization, and convexifi-
cation presented previously, a convex programming problem,

P2, for the multistage cooperative trajectory optimization is
formed, as shown below.

min
i=1,2,...Nm


Nm∑
i=1

K∑
k=1

(u3i ·1t), p = 1, 2, 3

−Vi(t4), p = 4

s.t.:


(20)(24)(25)(29)(31) ∼ (33)(35), p = 1, 2;
(20)(24)(25)(29)(31) ∼ (35), p = 3;
(20)(24)(25)(29)(32)(33)(35), p = 4.

(36)

E. ASSURANCE OF EXACT CONVEX RELATION
As may be noticed in Eq.(35), the relaxation of controls may
not guarantee (u∗1i)

2
+ (u∗2i)

2
= u∗3i. Therefore, the scenario

of the regularization term is introduced to problem P2, and a
regularization term of the heading angle integral is added to
the performance index for the last stage, which yields P3:

min
i=1,2,...Nm


Nm∑
i=1

K∑
k=1

(u3i ·1t), p = 1, 2, 3

−Vi(t4)+ cψ

∫ t4

t3
ψidt, p = 4

s.t.:


(20)(24)(25)(29)(31) ∼ (33)(35), p = 1, 2;
(20)(24)(25)(29)(31) ∼ (35), p = 3;
(20)(24)(25)(29)(32)(33)(35), p = 4.

(37)

where cψ is selected to make cψ
∫ t4
t3
ψidt sufficiently small,

compared with the magnitude of Vi(t4).
Although the magnitude of the regularization term is very

small, based on Lemma 1, the solution of problem P3 can
guarantee the exactness of the convex relaxation.
Lemma 1: If {x∗i ;u

∗
i } is the optimal solution of problem P3,

(u∗1i)
2(u∗2i)

2
= u∗3i is always satisfied within [t0, t4].

Proof of Lemma 1 can be found in Appendix.
In combination with Lemma 1, the only difference

between P2 and P3 is the regularization term in the perfor-
mance index; the magnitude of the regularization term can
be sufficiently small by selecting a small cψ value. It can
be derived that {x∗i ;u

∗
i } is a near-optimal solution of P2 with

(u∗1i)
2
+ (u∗2i)

2
= u∗3i satisfied; then, {x

∗
i ;u
∗
i } is also a near-

optimal solution of P1.

IV. THE PROPOSED BI-LEVEL SCP METHOD
In this section, a cooperative trajectory planning method
based on SCP (referred to as Bil-SCP) that consists of the
system level and the individual level, is described in detail.
The flow chart of the proposed method is shown in Fig. 4.
To address the sensitivity issue to the initial values, the trajec-
tory optimization sub-problem of each member without con-
sidering the time consensus and the cooperative constraints is
solved first; and its optimal solution is passed to subsequent
SCP as initial values.
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FIGURE 4. Flowchart of the proposed Bil-SCP method.

At system level, three tasks should be accomplished. First,
the missile members that have achieved the time-consensus
and states-convergence criteria are identified and removed
from the optimization sequence. Second, the constraints on
time consensus are determined and updated for each member
in the optimization sequence (please refer to the inequality
relation, Eq. (39)).

As the trajectory of each member is optimized indepen-
dently, the time-step size of different members may be dif-
ferent. To ensure the flight time consensus, the following
constraints must be met.

max
i=1,2,...Nm

1tmi − min
i=1,2,...Nm

1tmi ≤ δt , (38)

where δt is a specified tolerance for flight time step size.
To coordinate the flight time of different members, the

lower-bound constraint of the time-step size is introduced to
the individual optimization:

1tmi ≥ 1t
m
min, i = 1, 2, ...Nm

1tmmin = (max
j∈2

(1t̄mj )+min
j∈2

(1t̄mj ))/2,

2 = {j|
∣∣∣1t̄mj −1t̄m−1j

∣∣∣/1t̄m−1j ≤ δ1t }, (39)

where1tmmin is the lower bound of the time-step size and1t̄mj
is the time-step size of the nominal trajectory.

It may be noticed that when calculating 1tmmin, only the
members whose variation of the nominal step size is less than
the specified error, δ1t , are considered.
Third, the cooperative constraints that have not been sat-

isfied in the previous iteration are identified, and they will
be considered in the next iteration of the SCP optimization.
To identify the cooperative constraints that are required to
be considered in the next iteration, a collision-avoidance
safety factor, r1, is defined, and the member pairs that have
violated the distance r1 ·Rs in a previous iteration is identified.
Thus, the collision-avoidance constraints may be expressed
as follows:

(x̄i[k]− x̄j[k])T · CT
1C1 · (xi[k]− x̄j[k])T

≥ Rs ·
∥∥C1 · x̄i[k]− C1 · x̄j[k]

∥∥
i = 1, 2, . . . ,Nm, j < i, j ∈ 0i, k = 1, 2, . . . ,K ,

(40)

0i = {j|∃k ∈ 1, 2, . . . ,K such that

×
∥∥C1 · [x̄i[k]− x̄j[k]

∥∥ < r1 · Rs}. (41)

For the no-fly zone avoidance constraints, the no-fly zone
avoidance safety factor, r2, is defined. Only the members
within the distance of r2 · Rn,l from the center of the l th

no-fly zone in the previous iteration are required to avoid the
no-fly zone in the next iteration. The no-fly zone avoidance
constraints may be expressed as follows:∥∥C2 · x̄i[k]− pnfz,l

∥∥
+

(C2 · x̄i[k]− pnfz,l)
T∥∥C2 · x̄i[k]− pnfz,l
∥∥ · (C2 · xi[k]− C2 · x̄i[k]) ≥ Rn,l,

(42)∥∥C2 · x̄i[k − 1]− pnfz,l
∥∥

+
(C2 · x̄i[k − 1]− pnfz,l)

T∥∥C2 · x̄i[k − 1]− pnfz,l
∥∥

· (C2 · xi[k]− C2 · x̄i[k − 1]) ≥ Rn,l
i = 1, 2, . . . ,Nm, l ∈ 3i, k = 1, 2, . . . ,K

3i = {l|∃k ∈ 1, 2, . . . ,K such that

×
∥∥C2 · [x̄i[k]− pnfz,l]

∥∥ < r2 · Rn,l}. (43)

Similarly, the interceptor missile-avoidance safety factor,
r3, is defined. Only the members within the distance of r3 ·RI
from the nth interceptor missile in the previous iteration are
required to avoid the interceptor missile in the next iteration.
The interceptor missile avoidance constraints may be written
as follows:

(x̄i[k]− xI ,n[k])T · CT
1C1 · (xi[k]− xI ,n[k])T

≥ Rs ·
∥∥C1 · x̄i[k]− C1 · xI ,n[k]

∥∥
i = 1, 2, . . . ,Nm, n ∈ ϒi, k = 1, 2, . . . ,K , (44)

ϒi = {n|∃k ∈ 1, 2, . . . ,K such that

×
∥∥C1 · [x̄i[k]− xI ,n[k]

∥∥ < r3 · RI }. (45)
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FIGURE 5. Members are successfully intercepted.

Cleary, the number of cooperative constraints in each
iteration can be greatly reduced. Each member retained in
the optimization sequence solves the trajectory optimiza-
tion sub-problem in its individual level independently and
sequentially, considering the identified cooperative con-
straints at the system level and the time-consensus constraint.
Once one missile member completes its optimization, it
will broadcast its current optimal trajectory to the remain-
ing missile members in the optimization sequence. Thus,
the trajectory optimization of other missiles can be performed
in turn.

As the number of missiles participating in the optimiza-
tion is gradually reduced with the evolution of iteration and
the number of constraints considered is clearly decreased,
the computational efficiency and the convergence property
have been obviously improved for the cooperative trajectory
optimization with the proposed Bil-SCP method, which is
beneficial to the expansion of the formation size. To further
improve the convergence property of SCP, at the individual
level, the convex cooperative constraints have been gradually
tightened up and have been included to the optimization
with the evolution of optimization iteration of SCP, and thus
to form a sequence of more relaxed and feasible interme-
diate optimization problems. The procedures at the system

FIGURE 6. Planned trajectories by Bil-SCP (Case 1).

and individual levels will continue to be executed until the
optimization sequence is empty, which would indicate that
the Bil-SCP method for cooperative trajectory optimization
has been completed.

Thus far, the multistage cooperative trajectory planning
of multimissile formation has been described as the convex
trajectory programming problem, P4:

Min
i=1,2,...Nm


Nm∑
i=1

K∑
k=1

(u3i ·1t), p = 1, 2, 3

−Vi(t4)+ cψ

∫ t4

t3
ψidt, p = 4

s.t.:



(20)(24)(25)(29)(30)(35)(39) ∼ (43),

p = 1, 2;

(20)(24)(25)(29)(30)(35)(39) ∼ (45),

p = 3;

(20)(24)(25)(29)(30)(35)(39)(42)(43),

p = 4.

(46)

For convenience, the elements in 0i,3i, ϒi have been
arranged in ascending order of their sequence numbers.
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Algorithm 1 Bi-Level SCP
1 {x̄i; ūi;1t̄i} = initial guess, ∀i
2 0i,3i, ϒi = ∅, ∀i
3 {x0i ;u

0
i ;1t

0
i } =solution to P4 without

Eqs. (39)(40)(42)(44), ∀i
4 x̄i = x0i , ūi = u0i ,1t̄i = 1t

0
i

5 Update 0i,3i, ϒi using Eqs. (41)(43)(45), ∀i
6 � = {1, 2, ...Nm}
7 m = 1
8 while � 6= ∅
9 for all i ∈ �
10 1tmmin = (max(1t̄mj )+min(1t̄mj ))/2, j ∈ 2
11 N = the maximum element number of 0i,3i, ϒi
12 Set0 = 0i, Set3 = 3i, Setϒ = ϒi
13 0i,3i, ϒi = ∅
14 for s = 1, 2...N
15 0i = 0i ∪ Set0(s),3i = 3i ∪ Set3(s),

ϒi = ϒi ∪ Setϒ(s)
16 {xsi ;u

s
i ;1t

s
i } =solution to P4 with iteration s

17 x̄i = xsi , ūi = usi ,1t̄i = 1t
s
i

18 end for
19 {xmi ;u

m
i ;1t

m
i } = {x

N
i ;u

N
i ;1t

N
i } is the solution

to P4 for member i
20 Update 0i,3i, ϒi using Eqs. (21)(22)(23)
21 x̄i = xmi , ūi = umi ,1t̄i = 1t

m
i

22 end for
23 if Eq.(38) is satisfied
24 for all i ∈ �
25 if xmi satisfy Eqs. (21)(22)(23) and∣∣∣xmi [k]− xm−1i [k]

∣∣∣ ≤ δ
26 Remove i from �

27 end if
28 end for
29 end if
30 m = m+ 1
31 end while
32 {xm−1i ;um−1i ;1tm−1i } is the solution to P4, ∀i

An iteration parameter, s, of SCP has been defined; then,
0i(s) is represented as a single-element set, containing only
the sth element of set 0i. If s is greater than the number of
elements of 0i, then 0i(s) = ∅. Based on the aforementioned
explanation, Algorithm 1 provides the pseudocode of the
proposed Bil-SCP method.

V. NUMERICAL SIMULATION
In this section, the Bil-SCP method is applied to solve
the multistage cooperative trajectory planning problem for
multimissile formation. The simulation is executed in a com-
puter with an Intel core i7-4790@3.6GHz processor. The
SCP method is implemented using the CVX toolbox with
the solver SDPT3, and the solver uses the default settings.
The parameters in the simulation cases are listed in Table 1.

TABLE 1. Parameters in simulation.

The constraints for states and controls are

ximin = [
0

√
g0R0

−π

2
−π

2
0e3
R0

0e3
R0

0e3
R0

]

ximax = [
1200
√
g0R0

π

2
π

2
100e3
R0

60e3
R0

100e3
R0

]

uimin = [−3− 30], uimax = [33 9]. (47)

Let

ε = [
200
√
g0R0

50π
180

50π
180

10e3
R0

10e3
R0

10e3
R0

]. (48)

The iterative convergence tolerance vector is

δ = [
2

√
g0R0

π

180
π

180
50
R0

50
R0

50
R0

]. (49)

The specified tolerances for flight time step size are
δt = 0.01s and cψ = 0.01.

To explore the robustness and stability of the proposed
method, two cases with different initial/final positions of each
member and target, and boundary constraint values are con-
sidered. In Case 1, the missiles are aggregated from the initial
positions firstly, as listed in Table 2, to form the formation
of the specified positions listed in Table 4. Then, the mem-
bers continue flying in formation; the missiles immediately
initiate maneuvering avoidance, once a member detects the
interceptor missiles. After all the formation members have
successfully penetrated the interceptor missiles, the genetic
method is employed to construct the optimal target allocation
model, according to the geometric advantage of the position
of each member to each target. Three ground targets that
are located at (210,0,70), (214,0,60), and (220,0,80) km are
attacked, and each target is attacked by at least two members
simultaneously, to ensure the greatest damage effect. The ini-
tial position of each member and the final position allocated
by the target assignment model are listed in Table 2. The
positions and the radii of the no-fly zones are summarized
in Table 3. The initial nominal trajectory for each member is
selected as the straight line connecting its specified initial and
final positions. The number of discrete points in each stage is
set as 50, 10, 20, and 30.

In the simulation of Case 1, when the members have
been aggregated, eight interceptor missiles are immedi-
ately launched from the ground with the x-axis coordinate
of 140km, with a common launch angle of 80◦ to intercept
each member of the formation according to the proportional
guidance law. If the formation does not take the maneuvering
avoidance, each member will be successfully intercepted,
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FIGURE 7. Optimized flight states of all members (Case 1).

as shown in Fig. 5. To avoid interceptor missiles, the for-
mation proceed to initiate maneuvering avoidance once a
member detect the interceptor missile within the detection

range, Rd . The multistage cooperative trajectory optimiza-
tion is solved by using the proposed Bil-SCP method, and
the obtained optimal trajectories for the formulation are
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TABLE 2. Initial position and final position of each member and
target allocated (Case 1).

TABLE 3. Positions and radii of the no-fly zones.

TABLE 4. Boundary constraints (Case 1).

TABLE 5. Final time of each stage (Case 1).

illustrated in Fig. 6, in which the junctions between the
adjacent stages are marked as black dots. It is obvious that
the formation is successfully aggregated to the specified alti-
tude, as listed in Table 4. After the maintenance stage of the
formation, maneuvering avoidance is performed. Once the
missiles avoided the interception of the interceptor missiles,
the targets are successfully attacked and the no-fly zones are
successfully avoided as well. The trajectories could obviously
consider the different task requirements of each stage, and
the trajectory connections between the adjacent stages are
continuous and smooth.

The final time of each stage is listed in Table 5, which
reveals that each stage has a free flight time.

The optimal states of all eight members of Case 1 are
shown in Fig. 7, from which it is observed that the states of
the members all satisfy the state constraints. From Fig. 7 (a),
it is observed that the velocity increases gradually at the end

FIGURE 8. Optimal controls of all members (Case 1).

of the flight to achieve the maximum-velocity attack on the
targets. The path constraints of the dynamic pressure and
normal overload are also satisfied.
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FIGURE 9. Optimal trajectories by GPOPS (Case 1).

The obtained optimal controls of Case 1 are shown
in Fig. 8. From Figs. 8(a) and (b), at the early stage of
formation aggregation (0s to 117.1 s), the magnitude of the
bank angle of the members are greater than 90◦; therefore,
negative lift is produced to reduce the flight height of the
members with the purpose of aggregating to the designated
airspace. At a later stage of formation aggregation, the angles
of attack decrease and the bank angles gradually converge
to 0◦ to satisfy the boundary constraints of the flight path
angle and heading angle, as listed in Table 4. At the for-
mation maintenance stage (117.1s to 139.2 s), only slight
lateral maneuvers are required. Therefore, the bank angle
is 0◦ each, and the angles of attack are small for the mere
purpose of maintaining the flight altitude. Once entering
the formation penetration stage (139.2s to 242.5s), the bank
angles rapidly increase to generate rapid lateral maneuvers
to avoid interceptor missiles. At the cooperative attack stage
(242.5s to 536.3 s), the angles of attack gradually increase to
first generate positive lift to increase the flight height of the
members; and thus, the maximum velocity of attack on the
targets can be achieved.

Fig. 8(c) shows that constraints (u∗1i)
2
+ (u∗2i)

2
= u∗3i of

all members are valid within [t0, t4], which indicates that
Lemma 1 has been proven. Therefore, P4 realizes the exact

FIGURE 10. Minimum distance between missile members and interceptor
missiles (Case 1).

convex relaxation to P2; the optimal solution of P4 is the
approximate optimal solution of problem P1.

To investigate the efficiency of the proposed Bil-SCP
method, the Gauss pseudospectral method implemented in
the generation optimal control software (GPOPS) toolbox
is also employed to solve the cooperative trajectory opti-
mization problem with the same simulation scenario and
constraints. Here, the Gauss pseudospectral method is used
at the individual level as a replacement of the SCP to solve
the trajectory optimization sub-problems for all members,
sequentially. At the system level, there is no detection of
cooperative constraints. The number of discrete points at each
stage is set as the same to that of the Bil-SCP. The optimal
trajectories obtained by GPOPS are shown in Fig. 9. It can
be seen that the formation is successfully aggregated to the
specified altitude, as listed in Table 4. After the formation
maintenance stage, maneuvering avoidance is performed to
avoid the interception of the interceptor missiles. The targets
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FIGURE 11. Minimum distance between members (Case 1).

are successfully attacked and the no-fly zones are success-
fully avoided as well.

To clearly show that whether the interceptor missiles
avoidance constraints and the collision-avoidance constraints
have been satisfied for Bil-SCP and GPOPS, the minimum
distance between the missile members and the interceptor
missiles at the penetration stage and the minimum distance
between themissile members at the first three flight stages are
shown in Figs. 10 and 11, respectively. It may be noticed that
both types of minimum distances are always above the lower
bounds (depicted by the red solid line). These results demon-
strate the effectiveness of the proposed Bil-SCP method and
the GPOPS in solving multimissile formation cooperative
trajectory planning problems.

To further investigate the advantage in the efficiency of
the proposed method, simulations with different number of
missile members (Nm = 4, 5, 6, 7, 8) are conducted for Bil-
SCP and GPOPS. The dimensionless optimal performance

index of the first three stages, i.e., (
Nm∑
i=1

∫ t3
t0
u3idt) and the

FIGURE 12. Performance index of different methods (Case 1).

magnitude of the dimensionless optimal performance index
of the fourth stage, i.e., (Vi(t4)), of the two methods are
shown in Figs. 12 (a) (b), respectively. As can be seen from
Fig. 12, the optimal performance indices produced by each
of the two methods are remarkably close to one another. The
maximum difference (Fig. 12(a), eight members) is approx-
imately 8%, and the difference in most simulation scenarios
is approximately 6%. These results further demonstrate the
effectiveness of the proposed Bil-SCPmethod for cooperative
trajectory planning.

The computational time of Bil-SCP and GPOPS is com-
pared and is shown in Fig. 13. It can be seen that with the
increase in the formation size (Nm), the computational time
of Bil-SCP and GPOPS increases approximately linearly and
exponentially, respectively. Clearly, Bil-SCP is significantly
more efficient than GPOPS, which becomes more obvious
with the increase in formation size. The gain in the efficiency
of Bil-SCP is attributed to the employment of the highly
efficient SCP. The average computational time for each opti-
mization iteration in SCP of Bil-SCP is shown in Fig. 14.
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FIGURE 13. Time cost.

FIGURE 14. Time cost per iteration of Bil-SCP (Case 1).

FIGURE 15. Convergence process at the formation aggregation stage with
exclusion strategy (Case 1).

It can be seen that the average computational time is almost
the same with that of a different formation size, which indi-
cates that the increase in computational time is caused by the
increase in the number of members. The interpretation is that
with the increase in the number of members, more iterations
are required by Bil-SCP; and thus, a higher computational

FIGURE 16. Convergence process at the formation aggregation stage
without exclusion strategy (Case 1).

FIGURE 17. Planned trajectories by Bil-SCP (Case 2).

cost is required. These results indicate that the proposed Bil-
SCP method has good adaptability to the expansion of the
formation size.

The proposed Bil-SCP method applies the exclusion strat-
egy: when the flight time consensus constraint of the for-
mation is satisfied, the members who have completed the
trajectory optimization are removed from the optimization
sequence. In order to test whether the exclusion strategy has
an impact on the solution of consistent flight time, a contrast
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FIGURE 18. Optimized flight states of all members (Case 2).

simulation of Bil-SCP method without exclusion strategy is
performed at the formation aggregation stage of Case 1.

The numerical matrix of members’ flight time step size in
the iterative process is established to observe the convergence
process. And the numerical matrix of the two methods with

or without the exclusion strategy are shown in Fig. 15 and
Fig. 16, respectively. The horizontal axis represents the mem-
ber number, and the vertical axis represents the number of
iterations. Each non-zero value in the matrix represents the
missile’s flight time step solved by a convex optimization in
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FIGURE 19. Optimal controls of all members (Case 2).

the iterative process. Zero in the matrix means that the missile
has converged to get the optimal trajectory. The values in the
red boxes are the flight time step of the missiles’ convergent
solutions.

FIGURE 20. Minimum distance between missile members and interceptor
missiles (Case 2).

It can be seen from Fig. 15 that starting from the 6th iter-
ation, some converged missile members are excluded from
the optimization sequence, and after 8 iterations, the optimal
solution of the formation is obtained, and a total of 51 convex
optimization solutions are performed. Fig. 15 also shows
that the flight time step of each missile’s converged solu-
tion is within [2.3976, 2.3978] seconds, obviously satisfy-
ing the flight time consensus constraint shown in Eq. (38).
Fig. 16 shows the convergence process without the exclusion
strategy. As can be seen from the figure, after 7 iterations,
the optimal solution of the formation is obtained, and a total
of 56 convex optimization solutions are performed, which is
more than 51 times when the exclusion strategy is applied.
The flight time step size of each missile’s optimal solution
is within [2.3976, 2.3978] seconds, which obviously satisfies
the flight time consensus constraint shown in Eq. (38) and
is the same with the flight time step obtained by using the
exclusion strategy. According to the comparison simulation
above, it can be seen that applying the exclusion strategy in
the Bil-SCP method does not affect the optimization of the
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TABLE 6. Initial position and final position of each member and
target allocated (Case 2).

TABLE 7. Boundary constraints (Case 2).

consistent flight time. And the Bil-SCP method using the
exclusion strategy can obtain the same solution with lower
computational cost, which is beneficial to the expansion of
formation size.

To verify the adaptability of the proposed method to dif-
ferent constraints [27], in Case 2, the initial positions of all
the missiles and the corresponding assigned targets are as
shown in Table 6, and the boundary constraints of each flight
stage are as shown in Table 7. Other simulation parameters
are consistent with those of Case 1.

The obtained optimal trajectories for the formulation in
Case 2 are illustrated in Fig. 17. It is obvious that the for-
mation is successfully aggregated to the specified altitude,
as listed in Table 7. And the targets are successfully attacked
and the no-fly zones are successfully avoided as well.

The optimized states of all eight members in Case 2 are
shown in Fig. 18, from which it is observed that the states
of the members all satisfy the state constraints. Meanwhile,
the path constraints of the dynamic pressure and normal
overload are also satisfied.

The obtained optimal controls in Case 2 are shown
in Fig. 19, from which it is observed that the control con-
straints are satisfied, and (u∗1i)

2
+ (u∗2i)

2
= u∗3i of all mem-

bers are valid within [t0, t4], indicating that Lemma 1 has
also been proven in Case 2. Fig. 20 clearly shows that the
interceptor missiles avoidance constraints and the collision-
avoidance constraints have been satisfied for Bil-SCP in

Case 2, which demonstrates the effectiveness of the proposed
Bil-SCP method in solving multimissile formation coopera-
tive trajectory planning problems.

The simulation results of Case 1 and Case 2 show that
under different initial conditions and boundary constraints,
the proposed Bil-SCP method can achieve the target attack
and meet the given state constraints, and constraints on the
dynamic pressure and overload are also satisfied, which indi-
cates that the Bil-SCP method has robustness and can solve
multistage cooperative trajectory planning problem of multi-
missile formation under different conditions and constraints.

VI. CONCLUSION
To improve the convergence property and computational
efficiency, a Bil-SCP method is developed to solve the multi-
stage cooperative trajectory planning of multimissile forma-
tion considering multiple complex constraints; meanwhile,
the efficient sequential convex programming technique is
extended. By decomposing the multistage cooperative trajec-
tory planning problem to a system coordination level and an
individual SCP-based trajectory optimization level, the con-
vergence property and computational efficiency could greatly
improve, and this is beneficial to the extension of the forma-
tion size. The results of two numerical simulations showed
that the proposed method could generate effective optimal
trajectories with good convergence property, high compu-
tational efficiency, and robustness, and good scalability to
formation size; and it is shown that it is significantly more
efficient than the GPOPS-based approach. The proposed Bil-
SCP method has great application prospects in trajectory
planning of large-scale multimissile formation.

APPENDIX
PROOF OF LEMMA 1
Firstly, we prove Lemma1 when the performance index is
−V (t4)+ cψ

∫ t4
t3
ψdt:

The necessary optimality conditions of problem are intro-
duced. Applying the maximum principle yields the following
Hamiltonian H . Define the Hamiltonian and Lagrangian as

H = pv(a11V + a12θ + a15y+ b13u3 + c1)

+ pθ (a21V + a22θ + a25y+ b21u1 + c2)

+ pψ (a31V+a32θ+a35y+b32u2+c3)

+ px(a41V+a42θ+a43ψ+c4)+py(a51V+a52θ+c5)

+ pz(a61V + a62θ + a63ψ + c6)+ p0cψψ (50)

L = H + µu(u3 − u21 − u
2
2)+ µ

−

3 u3
+µ+3 (ũ3 − u3)+ µv(Ṽ − V ) (51)

where aij, bij,and ci are the nonzero elements inA(xm),B(xm),
and c(xm), respectively; p = [pvpθpψpxpypz]T ∈ R6 is the
costate vector; and µu, µ

−

3 , µ
+

3 and µv are the Lagrangian
multipliers. According to the direct adjoining approach in
optimal control theory, a constant p0 ≤ 0 exists such that the
following necessary optimality conditions hold for {x∗,u∗}:
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1) The nontriviality condition

[p0 pTµv]T 6= 0 (52)

2) The costate equations

p′v = −∂vL = −a11pv − a21pθ − a31pψ
− a41px − a51py − a61pz + µv (53)

p′θ = −∂θL = −a12pv − a22pθ − a32pψ
− a42px − a52py − a62pz (54)

p′ψ = −∂ψL = −a43px − a63pz − cψp0 (55)

p′x = −∂xL = 0 (56)

p′y = −∂yL = −a15pv − a25pθ − a35pψ (57)

p′z = −∂zL = 0 (58)

3) The stationary conditions

∂u1L = pθb21 − 2µuu1 = 0 (59)

∂u2L = pψb32 − 2µuu2 = 0 (60)

∂u3L = pvb13 + µu + µ
−

3 − µ
+

3 = 0 (61)

4) The complementary slack conditions

µu ≥ 0, µu[u∗3 − (u∗1)
2
− (u∗2)

2] = 0 (62)

µ−3 , µ+3 ≥ 0, µ−3 u
∗

3 = 0, µ+3 (ũ3 − u
∗

3) = 0 (63)

µv ≥ 0, µv(Ṽ − V ∗) = 0 (64)

5) The transversality conditions

pv(t4) = p0 − λf (65)

where λf ≥ 0 is a constant and satisfies

λf [Ṽ (t4)− V ∗(t4)] = 0 (66)

Now we prove by counter-evidence. Specifically, suppose
that there exists a finite interval [ta, tb] ⊂ [t3, t4] where holds
for [u∗1(t)]

2
+ [u∗2(t)]

2 < u∗3(t). We will then attempt to
counteract (52) in the following.

Under the supposition above, (62) implies µu = 0, which
can be substituted into (59) and (60) to get pθ = pψ = 0
whenever u1, u2 6= 0 (note that b21, b32 6= 0). When pψ = 0,
(55) becomes

p0 = (−a43px − a63pz)/cψ (67)

It can be seen from (67) that p0 (which is a constant) cannot
be a constant unless px and pz are all zero. Hence, (67) implies
that

px = pz = p0 = 0 (68)

Substituting (68) into (54)(57), and we can get pv = py =
0(a15, a52, a12 are time-variant), thus p = 0. Substitute p = 0
into(53), and we have µv = 0.
we have proven p = µv = p0 = 0, which yields

the contradiction to (52). Therefore, we get the conclusion
that [u∗1(t)]

2
+ [u∗2(t)]

2
= u∗3(t) holds almost everywhere

on [t3, t4].

In the same way, we can get the same conclusion
through similar derivation when the performance index is∫ t3
t0
u3dt, t ∈ [t0, t3]. In sum, we get the conclusion that

[u∗1(t)]
2
+ [u∗2(t)]

2
= u∗3(t) holds almost everywhere on

[t0, t4], as claimed.
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