
SPECIAL SECTION ON DATA MINING FOR INTERNET OF THINGS

Received January 4, 2020, accepted January 13, 2020, date of publication January 20, 2020, date of current version February 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2967629

Formal Verification of a Hybrid Machine
Learning-Based Fault Prediction Model in
Internet of Things Applications
ALIREZA SOURI 1, AMIN SALIH MOHAMMED2,3, MOAYAD YOUSIF POTRUS3,
MAZHAR HUSSAIN MALIK 4, FATEMEH SAFARA5, AND MEHDI HOSSEINZADEH 6
1Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
2Department of Computer Engineering, Lebanese French University, Erbil 44001, Iraq
3Department of Software and Informatics Engineering, Salahaddin University—Erbil, Erbil 44001, Iraq
4Department of Computing, Global College of Engineering and Technology—Muscat, Muscat 112, Oman
5Department of Computer Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr 8975143465, Iran
6Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran

Corresponding author: Mehdi Hosseinzadeh (hosseinzadeh.m@iums.ac.ir)

This work derives from the Research Project with code 98-2-37-15609 and Approval ID IR.IUMS.REC.1398.861.

ABSTRACT By increasing the complexity of the Internet of Things (IoT) applications, fault prediction
become an important challenge in interactions between human, and smart devices. Fault prediction is one of
the key factors to achieve better arranging the IoT applications. Most of the current research studies evaluated
the fault prediction methods using simulation environments. However, formal verification of the correctness
of a fault prediction method has not been reported yet. This paper presents a behavioral modeling and formal
verification of a hybrid machine learning-based fault prediction model with Multi-Layer Perceptron (MLP)
and Particle Swarm Optimization (PSO) algorithms. In particular, the PSO is used for feature selection.
Then, the fault prediction is considered as a behavior to be verified formally. The fault prediction behavior
is divided into two types of behaviors: dimension reduction behavior and prediction behavior. For each of
the behaviors, one formal model is designed. The behavioral models designed are mapped into the Labeled
Transition System (LTS). The Process Analysis Toolkit (PAT) model checker is employed to evaluate the
behavioral models. The accuracy of the fault prediction method is done by some existing specifications such
as deadlock-free and reachability properties in terms of linear temporal logic formulas. Also, the verification
of the fault prediction behaviors is used to detect the defect metrics of information-centric IoT applications.
Experimental results showed that our proposed verification method has minimum verification time and
memory usage for evaluating critical specification rules than other research studies.

INDEX TERMS Internet of Things applications, fault prediction, formal verification, process analysis
toolkit, multi-layer perceptron, particle swarm optimization.

I. INTRODUCTION
The quality of Internet of Things (IoT) applications [1] has
grown rapidly throughout recent years, and issues related
to that have gained more importance for software develop-
ers [2], [3]. A serious step for changing the testing procedure
is based on the capacity of assessing the fault prediction
process, evaluating the degree of a product module and then
testing [4], [5]. Fault prediction before testing helps the
developer to eliminate costs and fault detection after testing
provides feedbacks for procedures of maintenance [6], [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

Programming deficiencies can’t be straightforwardly mea-
sured at the programming phase [8]–[10]. Nonetheless,
to find relations between quantifiable software properties and
faults [11], [12] can help detecting faults.

Traditional methods, testing or simulation, cannot over-
come the challenges posed [13]–[15] in fault prediction.
Two important points in this regard are high cost and time
overhead. In addition, reenactment is not suitable for sup-
porting transient properties since all the possible states of
the framework doesn’t consider. To solve this problem for-
mal method can be employed. Formal methods are based
on mathematical logic. Generally, formal methods can be
divided into formal specification and formal verification [16].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 23863

https://orcid.org/0000-0001-8314-9051
https://orcid.org/0000-0001-8890-1310
https://orcid.org/0000-0003-1088-4551
https://orcid.org/0000-0002-3945-4363

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

Interaction behaviors between fault proneness and formal
verification are called formal specifications [17], [18]. Most
of the papers on fault prediction examine their proposed
method through simulation and experiments. Another way
to verifying an information-centric IoT application is model
checking [19]–[21].

In this paper, fault behaviors are separated into two
behaviors: dimension reduction behavior and fault predic-
tion behavior which can be showed by behavioral mod-
els [22], [23]. The PSO is employed for dimension reduction
and selection of an optimal solution. Then, theMLP is used to
predict faults in IoT applications. To verify the proposed fault
prediction method formally, logical problems are analyzed
and behavioral specifications are checked. Contributions of
this paper are as follow

• To propose a machine learning-based faults prediction
model using the MLP and PSO algorithms in IoT appli-
cations.

• To present a behavior model to separate dimension
reduction and prediction behaviors from each other.

• To enable the procedure of mapping two behaviors by
formal verification approach based on Binary Decision
Diagram (BDD).

• To guarantee and evaluate the logical problems such as
deadlock-free, fairness, and reachability of the proposed
fault prediction model.

The reminder of this paper is organized as follows.
Section 2 is dedicated to related work conducted on
fault prediction method and formal verification method.
Section 3 provides the verification method on behavioral
modeling, the approach proposed, and software metrics.
Section 4 illustrates the formal verification and model
checking process for the fault prediction method behaviors.
Section 5 gives the model checking method to deal with
some linear temporal logic specifications. Section 6 includes
conclusions and future works.

Table 1 shows a list of abbreviations in this paper.

II. RELATED WORK
In IoT based applications that are growing every day, finding
the faults and assigning them to the appropriate developer
to repair is very crucial. Three main directions followed
in the previous studies [24] on IoT based applications are:
1) defining and specifying metrics to calculate complexity
of software, 2) verifying correctness and validating thor-
oughness, 3) identifying and investigating models which try
to predict the faults with regard to the software metrics
defined [25], [26].

Fault prediction in software can be defined by software
metrics, which give quantitative imageries of program quali-
ties. Various reviews give clear proof that softwaremetrics are
related to fault-proneness [27]. A few techniques have been
investigated to create prescient models of fault prediction in
software. Statistical strategies [28] have been suggested as
well. Much work has focused on finding the best way to

TABLE 1. List of abbreviations.

choose the software metrics that will probably show the fault-
proneness [29].

Some metrics have been presented to describe software
quality in forms of static and dynamic platforms. In the
static platform, features of code structure are measured
as metrics [30]. Static measurements are a number of
supervisors [31], [32] and a number of bunches [33].
Dynamic platforms measure testing perfectionism. Basic ele-
ment measurements depend on auxiliary and information
stream scope [6]. The connection between product measure-
ments and blame inclination, and also numerous quantifiable
programming characteristics has been exactly demonstrated
by many researchers [22], [34]–[37].

Assurance of faults prediction modules is a vital procedure
since it distinguishes modules that need itemized testing and
reproduction [38]. Early fault prediction algorithms depend
on measurements [39]. A huge part of recent works has
focused on machine learning techniques [40] such as Sup-
port Vector Machine (SVM) [41], Naive Bayes algorithm
(NB) [22], and Artificial Neural Network (ANN) [42]. Multi-
Layer Perceptron (MLP) is a widely used machine learning
algorithmwith supervised learning. The Particle SwarmOpti-
mization (PSO) algorithm is an evolutionary algorithm for
optimization purposes. Rui et al. [43] proposed a method
of fault detection in a power IoT equipment. They pro-
posed a multi-spectral method to fuse images through deep
learning. A convolutional neural network with deep learn-
ing is designed to detect faults in images of power devices.
Their proposed method helps in locating the points of faults
accurately and quickly.

In [44] a hybrid approach of the Extreme Learning
Method (ELM) and Genetic Algorithm (GA) is proposed.
With extracting useful information from the fault reports,
a vector space model is constructed based on the information
and a minimal feature set is selected. The features are fed into

23864 VOLUME 8, 2020

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

an ensemble classifier that is a GA-based ELM training algo-
rithm. Their proposed algorithm outperformed KNN, Naïve
Bayes and SVM.

Another issue in IoT environments is occurring faults in
the result of software aging. Liu and Meng [45] proposed a
method to predict software aging. The method works based
on a neural network with Back Propagation (BP) error. The
weights and thresholds are determining using Artificial Bee
Colony (ABC) algorithm. In other words, ABC is used to
optimize the BP model. They showed that in compare with
the standard BP neural network, their proposed method con-
verges faster and predicts more accurate.

A part of research in the field of fault prediction in an
IoT environment is conducted on the prediction of faults in
industrial processes. As an instance, in [46] a cloud control
architecture is proposed. Deep learning analysis is performed
to detect faults in the manufacturing process. As another
example, Xenakis et al. [47] proposed a fault detection
method for an IoT environment. The method is introduced
for industrial automation.

In [48] a fault prediction and diagnosis solution are pre-
sented. IoT enabling technology offered by SAP is exploited
and a method is proposed to predict and detect a fault in
an Industry’s process of data collection. First, the device
sensor data is analyzed without having any knowledge of the
physical manufacturing system, and the causal relationship
of the physical devices are discovered. Therefore, faults of
certain devices can be predicted through monitoring of the
healthy index of these devices in real-time. In addition, possi-
ble faults of other devices could be predicted using the casual
relationship discovered in the steps before.

In [49], a fault prediction is proposed which works based
on key mechanical equipment groups to improve the effi-
ciency and intelligence level of fault prediction. A four-
layer functional architecture is designed for comprehensive
condition monitoring, reliable transmission, and intelligent
information processing to predict system faults. Moreover,
three canonical difficulties of the system are discussed includ-
ing difficulties of combining fault prediction and IoT, diffi-
culties of non-linearity of fault prediction, and difficulties of
processing massive data.

According to the above related works, most of the
researches evaluated their proposed method only by simula-
tion experiments and statistical analysis. The main defect of
these evaluations is that there is no complete and integrated
dataset for showing all of the data metrics. So, analyzing
the accuracy of an evolutionary approach in a fault predic-
tion method is considered in this paper as an essential and
important factor. Behavioral modeling for fault prediction
which is based on ANN and PSO approaches are proposed
and explained in the next section.

III. FAULT PREDICTION METHOD
In this section, the proposed hybrid of the MLP and PSO
for fault prediction presented in [8] is formally verified. The
behavior of the proposed fault prediction method is divided

into two separate behaviors: dimension reduction behavior
and fault prediction behavior. These two behaviors are mod-
eled first, and then the behavioral models are verified.

A. DIMENSION REDUCTION AND FAULT PREDICTION
The PSO is used as a part of fault prediction method,
the hybrid approach introduced in this paper for fault
prediction. In the PSO, particles, are sailed through
multi-dimensional space exploration. For each particle i
there is a location path Xi. Particles move in a group in a
d-dimensional problem space. Vi is the speed of each particle.
Equations 1 and 2 illustrate the particle speed and location
respectively [50]:

Vi(t + 1) = w · Vi(t)+ c1r1(Pi,best (t)− Xi(t))

+ c2r2(Pglobal(t)− Xi(t)) (1)

Xi(t + 1) = Xi(t)+ Vi(t + 1) (2)

where t is replication value, w is appropriate weight, c1 and
c2 are positive coefficients, r1 and r2 are random numbers
regularly distributed in the range [0, 1]. Pibest and Pglobal are
the best previously visited location of the particle i and the
finest cost of all particle location values, respectively. The
initial speeds of particles are limited to a range of [0, 1].
Equation 3 and 4 illustrate the moving of particles:

Xi(t + 1) = pi(t)+ α.|Gi,best − Xi(t)|ln1/ui(t), if s ≥ 0.5

(3)

Xi(t + 1) = pi(t)+ α.|Gi,best − Xi(t)|ln1/ui(t), if s < 0.5

(4)

where ui and s are random numbers uniformly distributed in
the range of [0, 1], and parameter α is called contraction-
expansion coefficient. The mean of best positions is shown
by Gi,best [6]. In the prediction phase, all input and pre-
ferred outputs of the MLP have been normalized in the range
[0, 1]. Metrics selected by the PSO are fed into the MLP for
iprediction.

B. BEHAVIORAL MODELING OF THE FAULT PREDICTION
APPROACH
We illustrate the fault prediction approach based on [8]. The
reduced dimensionality is performed using the PSO method.
Training and testing methods are applied using the MLP
mechanism. Figure 1 illustrates the reduced dimensionality
behavior. First, the specifiedmetrics are inputted to the mech-
anism. Reduced Dimensionality (RD) behavior normalizes
the metrics based on the data refinement method. Population
initialized, Xi checked and Vi computed. Greatest beforehand
stayed position of the particle i is considered. If Pi,best >max,
the mean of the best positions of all particles calculated and
then, Gi,best is updated. If Gi,best < max, Gi,best is selected
and the population is reduced. Finally, the minimum metrics
are reached.

Figure 2 describes the Prediction (PR) behavior. First,
in the minimized metrics, data are divided into test data and

VOLUME 8, 2020 23865

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 1. The reduced dimensionality behavior.

FIGURE 2. The prediction behavior.

train data. The MLP process is done in the train data, metrics
M is selected and Nneurons = Nnet is matched. By creating
the input layer, neurons become active and training data are
finished. If the training procedure reaches the best quality,
the test data will begin. By finishing the test process, spec-
ifications are checked and the final prediction results are
reached.

With respect to the presentation of the RD and PR mecha-
nisms, these behavioral models are mapped into the Labeled
Transition Systeme (LTS).
Definition 1: An LTS of FP is a multi-tuple LT =

(S, s,A,R) where [51]:
• S shows a set of existing states on the RD and PR
mechanisms.

• s depicts the the initial state of each mechanism, s ∈ S.
• A presents a set of actions on the RD and PR mecha-
nisms.

• R illustrates a set of transition relations on the RD and
PR mechanisms where R ⊆ S × A × S that shows the
relation s1

a
→ s2(s1, s2 ∈ S and a ∈ A) is applied for

transition relaion (s1, a, s2) ∈ T.
According to fault prediction behavioral models, a set of
states and events are as follow:

RD_States=(Begin, Input_metrics, Normalization,
Data_refi, PSO_refi, Pop_init, Initializing, Check_x, Com-
put_v, Calc_Pbest, Pbest_B_max, Calc_Mbest, Update_M,
Mbest_L_max, Mbest_selec, Redu_Pop, Min_metrics);
PR_States = (start, Mini_metrics, Data_divi, Rand_class,

Train, Test, MLP_proc, Select_metr_M, Matching_N,
Creat_layer, Activ_neur, Finaliz_train, Update_train,
Best_Q, MLP_test, Output, Pred_finalized, Check_spec,
Final_result);
A path on the RD and PR behavioral models of the fault

prediction mechanism is defined as follows:
Definition 2: A directed path DP is a set of the restricted

states and actions informs of transition relations with initial
state si and final state sj (si and sj ∈ S) that is shown an
example as follows:

DP (1)= Start
send
−→,Mini_metrics

check
−→ Data_divi

seperation
−→

Rand_class is a directed path in the PR model.

IV. MODEL CHECKING APPROACH FOR THE FAULT
PREDICTION BEHAVIORS
This section presents a model checking approach to the
proposed fault prediction behaviors. First, the Linear Tem-
poral Logic (LTL) properties are defined as a temporal logic

23866 VOLUME 8, 2020

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 3. The RD model in the PAT environment.

FIGURE 4. The PR model in the PAT environment.

language for the system behaviors in this section. Then,
the proposed fault prediction behaviors are modeled using
the LTS in the PAT1 model checker that includes reduced
dimensionality and prediction behaviors.

For showing the correctness of the proposed fault predic-
tion behaviors, some critical properties are defined as informs
of the LTL rules. We define LTL formulas to verify in the
model checker as follow:

ψ ::= True|P|¬ψ |ψ ∨ ψ ′|ψ ∧ ψ ′|Gψ |Xψ |Fψ |ψUψ ′

Let β = s0, s1, s2 . . . as a set of states and ψ as an LTL
property. Existing notions and operands of LTL are presented
as follows [36]–[38]:
• β |H >and β 2 ⊥;
• β |H ψ1 ∨ . . . ∨ ψn IFF for some j = 1 . . . n we have
β |H ψ j;

• β |H ¬ψ IFF β 2 ψ ;
• β |H Xψ IFF β 1 |H ψ ;
• β |H ψ U ψ/ IFF for some k = 0, 1 . . . we have
pk |H ψ/ and p0 |H ψ . . . pk−1 |H ψ ;

1http://patroot.com/

The timed operators in the LTL are shown as follows:
• X notation depicts ‘‘Next’’ timed operand: If β ∈ LTL
(property), then X (β) ∈ LTL (property).

• G notation shows ‘‘Globally’’ timed operator: If β ∈
LTL (property), then G (β) ∈ LTL (property).

• F notation shows ‘‘Future’’ timed operator: If α ∈ LTL
(property), then F (β) ∈ LTL (property).

• U notation illustrates ‘‘Until’’ timed operator: If α, β ∈
LTL (property), then α U β ∈ LTL (property).

In the PAT environment, all of the states are displayed as
nodes. Each action navigates a transition relation between
two states. If an action has a non-deterministic condition, then
a guard will perform for this action.

Figure 3 illustrates the RD behavioral model of the LTS
in the PAT environment. There are 17 states in this diagram,
which are connected to each other by edges. This shows the
modeling of reducing dimensionality. For example, in order
to transfer producing input metrics state to refinement state,
the normalization action must be acted.

Figure 4 shows the PR behavioral model of the LTS in the
PAT environment. There are 20 states in this diagram. In this
model train and test are demodulated. Figure 5 shows the state

VOLUME 8, 2020 23867

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 5. The state space of the LTS model in the simulation phase.

23868 VOLUME 8, 2020

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 6. Fullfilment of L1 property in the state machine.

FIGURE 7. The satisfaction of L2 property in the state machine.

space of the RD and PR behaviors in the PAT environment.
After generating this state space, the expected specification
rules will examine to rule’s satisfaction.

After describing the LTL structure, some critical properties
are defined as informs of the LTL rules for the fault prediction
model. Let -> as the consistency association between states
in each specification:
• L1 G(input_metrics -> X normalization);
X Globally, after input data metrics, the normalization

phase is coming.
Figure 6 shows the L1 property with state satisfaction
conditions.
• L2 G(normalization && refinement -> X

pso);

FIGURE 8. The satisfaction of L3 property in the state machine.

FIGURE 9. The satisfaction of L4 property in the state machine.

FIGURE 10. The satisfaction of L5 property in state machine.

FIGURE 11. The satisfaction of L6 property.

X Globally, when the normalization phase and data
refinement are checked, the next stage is the PSO
phase. Figure 7 displays the L2 property with state
satisfaction conditions.

• L3 G(pop && send -> check) -> F(comput_v
&& forward -> compute&& calcu_pbest);

X Globally, when initial population is done and the data
is checked, the V value is checked and computed for

FIGURE 12. The satisfaction of L7 property in the state machine.

VOLUME 8, 2020 23869

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 13. The satisfaction of L8 property in the state machine.

FIGURE 14. The satisfaction of L9 property in the state machine.

Pbest . Figure 8 displays the L3 property with state
satisfaction condition.

• L4 G(pbest_max&& yes -> calc_Gbest) -> X
!(check_x&& no);

FIGURE 15. The satisfaction of L10 property in the state machine.

X Globally, when Pbest is higher than max condition and
Gbest is calculated, in the next state checking X value
should not occur concurrently. Figure 9 displays the
L4 property with state satisfaction condition.

• L5 G(calcu_pbest&& update)->(gbest_max
&& yes) U(gbest_max && no ->
gbest_selec));

X Globally, when the Pbest value is updated and the Gbest
is higher than max condition, finally Gbest is selected.
Figure 10 displays the L5 property with state satisfac-
tion condition.

FIGURE 16. The automated verification analysis of the fault prediction approach.

23870 VOLUME 8, 2020

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 17. The model checking time for existing critical specifications in the PAT.

• L6 G(gbest_selec) -> X ((redu_pop &&
generate -> min_metrics) -> start);

X Globally, when the Gbest is selected, the next state
is reducing population and generating the minimum
metrics. Figure 11 displays the L6 property with state
satisfaction condition.

• L7 G((start -> check && data_divi)-
> F(train && forward->mlp_proc &&
selection));
Globally, when the prediction phase is started, the data
division is specified for training and testing operations.
Figure 12 displays the L7 property with state satisfac-
tion condition

• L8 G((finalization && update_train)
-> F((best_Q && yes) -> (test &&
prediction)));

X Globally, the finalization state and update training are
done, eventually if best quality is reachable then the test
operation is started. Figure 13 displays the L8 property
with state satisfaction condition.

• L9 G((prediction && ann_test ->
calculate) -> X ((pred_finalized &&
compute) -> (check&& final_result)));

X Globally, the prediction using the MLP is calculated,
the next state is finalized using train phase; after
that, the final result is sent to checking data metrics.
Figure 14 displays the L9 property with state satisfac-
tion condition.

• L10 G !(train&& mlp_proc -> selection) U
(gbest_max&& no -> min_metrics);

X Globally, the train operation using the MLP selection
has not performed until the Gbest generate minimum

metrics. Figure 15 displays the L10 property with state
satisfaction condition.

• L11 RD deadlock-free;
X The RD system is deadlock- free in everywhereto rec-

ognize reducing dimensionality method based on the
PSO.

• L12 PR deadlock-free;
X The PR system is deadlock -free in everywhere to

predict existing faults in the system.
• L13 reaches the train;
X The train state is potentially reachable always in the

generated state space.
• L14 reaches test;
X The test state is potentially reachable always in the

generated state space.
• L15 reaches PSO;
X The PSO state is potentially reachable always in the

generated state space.

V. EXPERIMENTAL RESULTS
This section shows the experimental results on the formal
verification of the fault prediction behaviors that are per-
formed by an Intel Core i5, 2.6 GHz, 8GBRAM,Windows 10
system and by PAT model checker 3.4.1. There are some
advantages to compare with the proposed approach and other
studies. Initially, the presented approach uses the MLP and
PSO methods for decreasing the dimensionality phase and
prediction approach. The Second advantage is using the PAT
model checker for proving the accuracy of system behavior.
The PAT model checker has some advantages such as graphi-
cal environment, graphical state space generation and simple
development language [13].

VOLUME 8, 2020 23871

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

FIGURE 18. The memory usage for existing specifications in the PAT.

To evaluate existing specification rules for the proposed
fault prediction approach, Figure 16 shows the automated
verification analysis in the PAT tool. Based on verifica-
tion results, all properties have been satisfied according
to state space exploration. Also, the proposed method is
reachable and deadlock free on all aspects of the proposed
approach.

To evaluate the proposed verification method on the
fault prediction approach with other prediction approaches,
we analyze our method with [52] and [28] research studies.
These studies have modeled using the LTS method that is
compared with our proposed verification method. In [28],
a hybrid approach using ANN and SVM algorithm was
applied to detect fault diagnosis in smart devices. Also,
in [52], the authors have applied an evolutionary algorithm
to evaluate failure prediction in smart evolving systems.

Figure 17 illustrates the model checking time for each LTL
specification using the PAT tool. The maximum time belongs
to the L12 specification ID by 230 millisecond that checks
the deadlock-free condition for the proposed PR model. The
proposed verificationmethod has aminimummodel checking
time for evaluating each LTL specification than other predic-
tion approaches.

Also, Figure 18 demonstrates the memory usage to verify
the specifications of the LTS model. The maximum memory
consumption belongs to the L11 specification ID by 310 MB
that checks the deadlock-free condition for the proposed
RD model. According to experimental results, the proposed
verification method for fault prediction approach has min-
imum memory usage for verifying each LTL specification
than other research studies. Based on verification results for
evaluating the correctness of the proposed fault prediction
approach, our verification method supports minimum model
checking time and memory usage for critical LTL specifica-
tion rules. To evaluate the existing critical specification rules,

the correctness of the proposed fault prediction approach is
proven based on the LTS method. Also, all functional prop-
erties as the LTL formulas on the proposed fault prediction
approach have been guaranteed.

VI. CONCLUSION AND FUTURE WORKS
This paper presented behavioral modeling on fault predic-
tion approach for IoT applications using MLP and PSO
algorithms. Fault detection behaviors are separated into
two types: reducing dimensionality behavior and prediction
behavior. The interactions between the two behaviors are
shaped using the LTS method. Analyzing logical problems
and checking behavioral specifications are the procedures
to verify the proposed fault prediction approach. The PAT
model checker is used to perform the behavioral models.
The accuracy of the fault prediction approach was proved
according to the deadlock-free and reachability properties
in terms of linear temporal logic formulas. The maximum
time belongs to the L12 specification ID by 229 millisec-
onds that checks the deadlock-free condition for the pro-
posed PR model. Also, the maximum memory consumption
belongs to the L11 specification ID by 310 MB that checks
the deadlock-free condition for the proposed RD model.
Finally, the model checking time and memory usage for for-
mal verification of the proposed fault prediction approach is
lower than existing research studies. In future work, a hybrid
analysis of fault prediction using meta-heuristic algorithms
will be researched using verification approaches. Also, other
functional properties of fault prediction approach such as
completeness, soundness, and fairness are analyzed in future
research.

ACKNOWLEDGMENT
This article derives from the Research Project with code
98-2-37-15609 and Approval ID IR.IUMS.REC.1398.861.

23872 VOLUME 8, 2020

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

REFERENCES
[1] A. Souri, A. Hussien, M. Hoseyninezhad, and M. Norouzi, ‘‘A systematic

review of IoT communication strategies for an efficient smart environ-
ment,’’ Trans. Emerg. Telecommun. Technol., Aug. 2019, Art. no. e3736.

[2] R. Mahajan, S. K. Gupta, and R. K. Bedi, ‘‘Design of software fault
prediction model using BR Technique,’’ Procedia Comput. Sci., vol. 46,
pp. 849–858, Jan. 2015.

[3] I. Umesh and G. N. Srinivasan, ‘‘Dynamic software aging detection-based
fault tolerant software rejuvenation model for virtualized environment,’’ in
Proc. Int. Conf. Data Eng. Commun. Technol., 2017, pp. 779–787.

[4] Y. Abdi, S. Parsa, and Y. Seyfari, ‘‘A hybrid one-class rule learning
approach based on swarm intelligence for software fault prediction,’’ Innov.
Syst. Softw. Eng, vol. 11, no. 4, pp. 289–301, Dec. 2015.

[5] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, ‘‘Reliability and
high availability in cloud computing environments: A reference roadmap,’’
Hum.-Centric Comput. Inf. Sci., vol. 8, no. 1, p. 20, Dec. 2018.

[6] I. Alsmadi and H. Najadat, ‘‘Evaluating the change of software fault
behavior with dataset attributes based on categorical correlation,’’ Adv.
Eng. Softw., vol. 42, no. 8, pp. 535–546, Aug. 2011.

[7] S. Chatterjee and A. Roy, ‘‘Web software fault prediction under fuzzy
environment usingMODULO-Mmultivariate overlapping fuzzy clustering
algorithm and newly proposed revised prediction algorithm,’’ Appl. Soft
Comput., vol. 22, pp. 372–396, Sep. 2014.

[8] C. Jin and S.-W. Jin, ‘‘Prediction approach of software fault-proneness
based on hybrid artificial neural network and quantum particle swarm
optimization,’’ Appl. Soft Comput., vol. 35, pp. 717–725, Oct. 2015.

[9] P. García Nieto, E. García-Gonzalo, F. S. Lasheras, and F. De Cos Juez,
‘‘Hybrid PSO–SVM-based method for forecasting of the remaining useful
life for aircraft engines and evaluation of its reliability,’’ Rel. Eng. Syst.
Saf., vol. 138, pp. 219–231, Jun. 2015.

[10] V. Balasubramanian, F. Zaman, M. Aloqaily, I. A. Ridhawi, Y. Jararweh,
and H. B. Salameh, ‘‘A mobility management architecture for seamless
delivery of 5G-IoT services,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1–7.

[11] Ö. Arar and K. Ayan, ‘‘Deriving thresholds of software metrics to predict
faults on open source software: Replicated case studies,’’ Expert Syst.
Appl., vol. 61, pp. 106–121, Nov. 2016.

[12] J. Hryszko and L. Madeyski, ‘‘Assessment of the software defect predic-
tion cost effectiveness in an industrial project,’’ in Software Engineering:
Challenges and Solutions. Cham, Switzerland: Springer, 2017, pp. 77–90.

[13] I. Kaur, G. S. Narula, and V. Jain, ‘‘Differential analysis of token metric
and object oriented metrics for fault prediction,’’ Int. J. Inf. Technol., vol. 9,
no. 1, pp. 93–100, Mar. 2017.

[14] S. Zafar, S. Jangsher, O. Bouachir, M. Aloqaily, and J. Ben Othman, ‘‘QoS
enhancement with deep learning-based interference prediction in mobile
IoT,’’ Comput. Commun., vol. 148, pp. 86–97, Dec. 2019.

[15] Y. Kotb, I. Al Ridhawi, M. Aloqaily, T. Baker, Y. Jararweh, and H. Tawfik,
‘‘Cloud-based multi-agent cooperation for IoT devices using workflow-
nets,’’ J. Grid Comput., vol. 17, no. 4, pp. 625–650, Dec. 2019.

[16] X. Wu and H. Zhu, ‘‘Formalization and analysis of the REST architec-
ture from the process algebra perspective,’’ Future Gener. Comput. Syst.,
vol. 56, pp. 153–168, Mar. 2016.

[17] G. Denaro, S. Morasca, andM. Pezzé, ‘‘Deriving models of software fault-
proneness,’’ presented at the 14th Int. Conf. Softw. Eng. Knowl. Eng.,
Ischia, Italy, 2002.

[18] A. Souri, ‘‘Formal specification and verification of a data replication
approach in distributed systems,’’ Int. J. Next-Gener. Comput., vol. 7, no. 1,
pp. 1–21, 2016.

[19] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). Cambridge, MA, USA: MIT Press, 2008.

[20] S. Razzaghzadeh, A. H. Navin, A. M. Rahmani, and M. Hosseinzadeh,
‘‘Probabilistic modeling to achieve load balancing in expert clouds,’’ Ad
Hoc Netw., vol. 59, pp. 12–23, May 2017.

[21] I. Al Ridhawi, M. Aloqaily, Y. Kotb, Y. Jararweh, and T. Baker, ‘‘A prof-
itable and energy-efficient cooperative fog solution for IoT services,’’ IEEE
Trans. Ind. Inf., to be published.

[22] C. Catal and B. Diri, ‘‘A systematic review of software fault prediction
studies,’’ Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, May 2009.

[23] Z.-W. Zhang, X.-Y. Jing, and T.-J. Wang, ‘‘Label propagation based semi-
supervised learning for software defect prediction,’’ Autom. Softw. Eng.,
vol. 24, no. 1, pp. 47–69, Mar. 2017.

[24] P. Singh, N. R. Pal, S. Verma, and O. P. Vyas, ‘‘Fuzzy rule-based approach
for software fault prediction,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 47, no. 5, pp. 826–837, May 2017.

[25] E. Erturk and E. A. Sezer, ‘‘A comparison of some soft computing meth-
ods for software fault prediction,’’ Expert Syst. Appl., vol. 42, no. 4,
pp. 1872–1879, Mar. 2015.

[26] L. Kumar, S.Misra, and S. K. Rath, ‘‘An empirical analysis of the effective-
ness of software metrics and fault prediction model for identifying faulty
classes,’’ Comput. Standards Interface, vol. 53, pp. 1–32, Aug. 2017.

[27] H. R. Sabohi and H. Iranmanesh, ‘‘Optimal nonlinear observer with PSO
approach in chaotic systems based on synchronization,’’ presented at the
11th Int. Conf. Appl. Elect. Comput. Eng., Athens, Greece, 2012.

[28] A. Azadeh, M. Saberi, A. Kazem, V. Ebrahimipour, A. Nourmoham-
madzadeh, and Z. Saberi, ‘‘A flexible algorithm for fault diagnosis in a
centrifugal pump with corrupted data and noise based on ANN and support
vector machine with hyper-parameters optimization,’’ Appl. Soft Comput.,
vol. 13, no. 3, pp. 1478–1485, Mar. 2013.

[29] S. Otoum, B. Kantarci, and H. T. Mouftah, ‘‘Mitigating false negative
intruder decisions in WSN-based smart grid monitoring,’’ in Proc. 13th
Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Jun. 2017,
pp. 153–158.

[30] B. Liu, S. Nejati, and L. C. Briand, ‘‘Improving fault localization for
Simulink models using search-based testing and prediction models,’’ in
Proc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2017,
pp. 359–370.

[31] P. Deng, G. Ren, W. Yuan, F. Chen, and Q. Hua, ‘‘An integrated framework
of formalmethods for interaction behaviors among industrial equipments,’’
Microprocessors Microsyst., vol. 39, no. 8, pp. 1296–1304, Nov. 2015.

[32] Y. Chen, Z. Zhen, H. Yu, and J. Xu, ‘‘Application of fault tree analysis and
fuzzy neural networks to fault diagnosis in the Internet of Things (IoT) for
Aquaculture,’’ Sensors, vol. 17, no. 12, p. 153, Jan. 2017.

[33] I. Arora, V. Tetarwal, and A. Saha, ‘‘Open issues in software defect
prediction,’’ Procedia Comput. Sci., vol. 46, pp. 906–912, Mar. 2015.

[34] F. Liu and Z. Zhou, ‘‘An improved QPSO algorithm and its application in
the high-dimensional complex problems,’’Chemometrics Intell. Lab. Syst.,
vol. 132, pp. 82–90, Mar. 2014.

[35] G. Czibula, Z. Marian, and I. G. Czibula, ‘‘Software defect prediction
using relational association rule mining,’’ Inf. Sci., vol. 264, pp. 260–278,
Apr. 2014.

[36] Y. Wu and R. Yang, ‘‘Software reliability modeling based on SVM
and virtual sample,’’ in Proc. Annu. Rel. Maintainability Symp. (RAMS),
Jan. 2013, pp. 1–6.

[37] G. Mauša and T. G. Grbac, ‘‘Co-evolutionary multi-population genetic
programming for classification in software defect prediction: An empirical
case study,’’ Appl. Soft Comput., vol. 55, pp. 331–351, Jun. 2017.

[38] D. Bowes, T. Hall, and J. Petrić, ‘‘Software defect prediction: Do different
classifiers find the same defects?’’ Softw. Qual. J., vol. 26, no. 2, pp. 525–
552, Jun. 2018.

[39] A. Monden, J. Keung, S. Morisaki, Y. Kamei, and K.-I. Matsumoto,
‘‘A heuristic rule reduction approach to software fault-proneness pre-
diction,’’ in Proc. 19th Asia–Pacific Softw. Eng. Conf., Dec. 2012,
pp. 838–847.

[40] M. Norouzi, A. Souri, andM. Samad Zamini, ‘‘A data mining classification
approach for behavioral malware detection,’’ J. Comput. Netw. Commun.,
vol. 2016, pp. 1–9, Mar. 2016.

[41] C. Catal, U. Sevim, andB.Diri, ‘‘Practical development of an eclipse-based
software fault prediction tool using naive Bayes algorithm,’’ Expert Syst.
Appl., vol. 38, no. 3, pp. 2347–2353, Mar. 2011.

[42] R. Malhotra, A. Kaur, and Y. Singh, ‘‘Empirical validation of object-
oriented metrics for predicting fault proneness at different severity levels
using support vector machines,’’ Int. J. Syst. Assur. Eng. Manag., vol. 1,
no. 3, pp. 269–281, Sep. 2010.

[43] H. Rui, Z. Yunhao, T. Shiming, Y. Yang, and Y.Wenhai, ‘‘Fault point detec-
tion of IOT using multi-spectral image fusion based on deep learning,’’
J. Vis. Commun. Image Represent., vol. 64, Oct. 2019, Art. no. 102600.

[44] Y. Yin, X. Dong, and T. Xu, ‘‘Rapid and efficient bug assignment using
ELM for IOT software,’’ IEEE Access, vol. 6, pp. 52713–52724, 2018.

[45] J. Liu and L. Meng, ‘‘Integrating artificial bee colony algorithm and BP
neural network for software aging prediction in IoT environment,’’ IEEE
Access, vol. 7, pp. 32941–32948, 2019.

[46] H. Lee, ‘‘Framework and development of fault detection classification
using IoT device and cloud environment,’’ J. Manuf. Syst., vol. 43,
pp. 257–270, Apr. 2017.

[47] A. Xenakis, A. Karageorgos, E. Lallas, A. E. Chis, and H. González-Vélez,
‘‘Towards distributed IoT/cloud based fault detection and maintenance in
industrial automation,’’ Procedia Comput. Sci., vol. 151, pp. 683–690,
Jan. 2019.

VOLUME 8, 2020 23873

A. Souri et al.: Formal Verification of a Hybrid Machine Learning-Based Fault Prediction Model in IoT Applications

[48] C. Wang, H. T. Vo, and P. Ni, ‘‘An IoT application for fault diagnosis
and prediction,’’ in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,
Dec. 2015, pp. 726–731.

[49] X. Xu, T. Chen, and M. Minami, ‘‘Intelligent fault prediction system based
on Internet of Things,’’ Comput. Math. Appl., vol. 64, no. 5, pp. 833–839,
Sep. 2012.

[50] B. Luitel and G. K. Venayagamoorthy, ‘‘Particle swarm optimization with
quantum infusion for the design of digital filters,’’ in Proc. IEEE Swarm
Intell. Symp., Sep. 2008, pp. 1–8.

[51] A. Souri, A. M. Rahmani, N. J. Navimipour, and R. Rezaei, ‘‘A symbolic
model checking approach in formal verification of distributed systems,’’
Hum.-Centric Comput. Inf. Sci., vol. 9, p. 4, Dec. 2019.

[52] F. De Angelis, M. R. Di Berardini, H. Muccini, and A. Polini, ‘‘CASSAN-
DRA: An online failure prediction strategy for dynamically evolving sys-
tems,’’ in Formal Methods and Software Engineering. Cham, Switzerland:
Springer, 2014, pp. 107–122.

ALIREZA SOURI received the B.S. degree in
software engineering from the University College
of Nabi Akram, Iran, and the M.Sc. and Ph.D.
degrees in computer engineering from the Sci-
ence and Research Branch, Islamic Azad Univer-
sity, Iran. Up to now, he has authored/coauthored
more than 50 academic articles. His research inter-
ests include formal specification and verification,
model checking, fog and cloud computing, and
the IoT, data mining, and social networks. He is

currently an Associate Editor ofHuman-Centric Computing and Information
Sciences (Springer), Cluster Computing (Springer), and IET Communica-
tions (IEEE) journals.

AMIN SALIH MOHAMMED received the bach-
elor’s and master’s degrees from the Kharkiv
National University of Radio Electronics, and the
Ph.D. degree from the Kharkiv National Univer-
sity of Radio Electronics, in 2012. He has nearly
15 years of experience in teaching both UG and
PG program. He is currently anAssistant Professor
with the Department of Computer Networking,
Lebanese French University, and the University of
Salahaddin—Erbil. He has published over 26 arti-

cles in international and national journals and conferences. His fields of inter-
ests include wireless networks, ad-hoc networks, and information security.

MOAYAD YOUSIF POTRUS received the
B.Sc. degree in electrical engineering and
the M.Sc. degree in computer engineering from
the University of Baghdad, Iraq, in 1997 and
2000, respectively, and the Ph.D. degree in com-
puter engineering fromUniversity Sains Malaysia,
in 2012. He is currently a full time Associate
Professor with the Department of Software and
Informatics Engineering, Salahaddin University–
Erbil, Iraq. His research interests are in the field

of machine learning, pattern recognition, global optimization, and software
testing.

MAZHAR HUSSAIN MALIK received the Ph.D.
degree in computer science with specialization in
computer networks. He worked in academic and
different industrial positions for various universi-
ties and companies, including institute of South-
ern Punjab, Multan Pakistan, SBE electronics,
U.K., NCR Corporation, USA, The University of
Lahore, Islamabad. Since September 2017, he has
been a Senior Lecturer with the Global College
of Engineering and Technology—Muscat,Muscat,

Oman. He is an Editorial Board Member of peer-reviewed journals and
Reviewer of IEEE ACCESS, the International Journal of Advanced Com-
puter Science and Applications (IJACSA), and the International Journal of
Computer Science and Information Security (IJCSIS). His research interests
include wireless communications, cloud computing, sensors networks, net-
work security and forensics, and artificial intelligence.

FATEMEH SAFARA received the B.Sc. degree
(Hons.) in applied mathematics from Islamic Azad
University, the M.Sc. degree in data warehousing
from the Tarbait Modaress University of Tehran,
and the Ph.D. degree in biological signal pro-
cessing from University Putra Malaysia, in 2014.
She was a Faculty Member with the Informa-
tion Technology Department, Iran Telecommuni-
cation Research Center, from 2000 to 2010, doing
research on image mining and biometric signals.

She joined Islamic Azad University Islamshahr Branch, in 2010, where she
is currently an Assistant Professor with the Computer Engineering Faculty.
Her current research interests include signal processing and in particular
biological signal processing, data mining, the IoT applications, and cloud
computing.

MEHDI HOSSEINZADEH received the B.S.
degree in computer hardware engineering from
Islamic Azad University Dezfol Branch, Iran,
in 2003, and the M.Sc. and Ph.D. degrees in
computer system architecture from the Science
and Research Branch, Islamic Azad University,
Tehran, Iran, in 2005 and 2008, respectively. He is
currently an Associate professor with the Iran Uni-
versity of Medical Sciences (IUMS), Tehran. His
research interests include SDN, information tech-

nology, data mining, big data analytics, e-commerce, e-marketing, and social
networks.

23874 VOLUME 8, 2020

