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ABSTRACT By increasing the complexity of the Internet of Things (IoT) applications, fault prediction
become an important challenge in interactions between human, and smart devices. Fault prediction is one of
the key factors to achieve better arranging the IoT applications. Most of the current research studies evaluated
the fault prediction methods using simulation environments. However, formal verification of the correctness
of a fault prediction method has not been reported yet. This paper presents a behavioral modeling and formal
verification of a hybrid machine learning-based fault prediction model with Multi-Layer Perceptron (MLP)
and Particle Swarm Optimization (PSO) algorithms. In particular, the PSO is used for feature selection.
Then, the fault prediction is considered as a behavior to be verified formally. The fault prediction behavior
is divided into two types of behaviors: dimension reduction behavior and prediction behavior. For each of
the behaviors, one formal model is designed. The behavioral models designed are mapped into the Labeled
Transition System (LTS). The Process Analysis Toolkit (PAT) model checker is employed to evaluate the
behavioral models. The accuracy of the fault prediction method is done by some existing specifications such
as deadlock-free and reachability properties in terms of linear temporal logic formulas. Also, the verification
of the fault prediction behaviors is used to detect the defect metrics of information-centric IoT applications.
Experimental results showed that our proposed verification method has minimum verification time and
memory usage for evaluating critical specification rules than other research studies.

INDEX TERMS Internet of Things applications, fault prediction, formal verification, process analysis
toolkit, multi-layer perceptron, particle swarm optimization.

I. INTRODUCTION
The quality of Internet of Things (IoT) applications [1] has
grown rapidly throughout recent years, and issues related
to that have gained more importance for software develop-
ers [2], [3]. A serious step for changing the testing procedure
is based on the capacity of assessing the fault prediction
process, evaluating the degree of a product module and then
testing [4], [5]. Fault prediction before testing helps the
developer to eliminate costs and fault detection after testing
provides feedbacks for procedures of maintenance [6], [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

Programming deficiencies can’t be straightforwardly mea-
sured at the programming phase [8]–[10]. Nonetheless,
to find relations between quantifiable software properties and
faults [11], [12] can help detecting faults.

Traditional methods, testing or simulation, cannot over-
come the challenges posed [13]–[15] in fault prediction.
Two important points in this regard are high cost and time
overhead. In addition, reenactment is not suitable for sup-
porting transient properties since all the possible states of
the framework doesn’t consider. To solve this problem for-
mal method can be employed. Formal methods are based
on mathematical logic. Generally, formal methods can be
divided into formal specification and formal verification [16].
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Interaction behaviors between fault proneness and formal
verification are called formal specifications [17], [18]. Most
of the papers on fault prediction examine their proposed
method through simulation and experiments. Another way
to verifying an information-centric IoT application is model
checking [19]–[21].

In this paper, fault behaviors are separated into two
behaviors: dimension reduction behavior and fault predic-
tion behavior which can be showed by behavioral mod-
els [22], [23]. The PSO is employed for dimension reduction
and selection of an optimal solution. Then, theMLP is used to
predict faults in IoT applications. To verify the proposed fault
prediction method formally, logical problems are analyzed
and behavioral specifications are checked. Contributions of
this paper are as follow

• To propose a machine learning-based faults prediction
model using the MLP and PSO algorithms in IoT appli-
cations.

• To present a behavior model to separate dimension
reduction and prediction behaviors from each other.

• To enable the procedure of mapping two behaviors by
formal verification approach based on Binary Decision
Diagram (BDD).

• To guarantee and evaluate the logical problems such as
deadlock-free, fairness, and reachability of the proposed
fault prediction model.

The reminder of this paper is organized as follows.
Section 2 is dedicated to related work conducted on
fault prediction method and formal verification method.
Section 3 provides the verification method on behavioral
modeling, the approach proposed, and software metrics.
Section 4 illustrates the formal verification and model
checking process for the fault prediction method behaviors.
Section 5 gives the model checking method to deal with
some linear temporal logic specifications. Section 6 includes
conclusions and future works.

Table 1 shows a list of abbreviations in this paper.

II. RELATED WORK
In IoT based applications that are growing every day, finding
the faults and assigning them to the appropriate developer
to repair is very crucial. Three main directions followed
in the previous studies [24] on IoT based applications are:
1) defining and specifying metrics to calculate complexity
of software, 2) verifying correctness and validating thor-
oughness, 3) identifying and investigating models which try
to predict the faults with regard to the software metrics
defined [25], [26].

Fault prediction in software can be defined by software
metrics, which give quantitative imageries of program quali-
ties. Various reviews give clear proof that softwaremetrics are
related to fault-proneness [27]. A few techniques have been
investigated to create prescient models of fault prediction in
software. Statistical strategies [28] have been suggested as
well. Much work has focused on finding the best way to

TABLE 1. List of abbreviations.

choose the software metrics that will probably show the fault-
proneness [29].

Some metrics have been presented to describe software
quality in forms of static and dynamic platforms. In the
static platform, features of code structure are measured
as metrics [30]. Static measurements are a number of
supervisors [31], [32] and a number of bunches [33].
Dynamic platforms measure testing perfectionism. Basic ele-
ment measurements depend on auxiliary and information
stream scope [6]. The connection between product measure-
ments and blame inclination, and also numerous quantifiable
programming characteristics has been exactly demonstrated
by many researchers [22], [34]–[37].

Assurance of faults prediction modules is a vital procedure
since it distinguishes modules that need itemized testing and
reproduction [38]. Early fault prediction algorithms depend
on measurements [39]. A huge part of recent works has
focused on machine learning techniques [40] such as Sup-
port Vector Machine (SVM) [41], Naive Bayes algorithm
(NB) [22], and Artificial Neural Network (ANN) [42]. Multi-
Layer Perceptron (MLP) is a widely used machine learning
algorithmwith supervised learning. The Particle SwarmOpti-
mization (PSO) algorithm is an evolutionary algorithm for
optimization purposes. Rui et al. [43] proposed a method
of fault detection in a power IoT equipment. They pro-
posed a multi-spectral method to fuse images through deep
learning. A convolutional neural network with deep learn-
ing is designed to detect faults in images of power devices.
Their proposed method helps in locating the points of faults
accurately and quickly.

In [44] a hybrid approach of the Extreme Learning
Method (ELM) and Genetic Algorithm (GA) is proposed.
With extracting useful information from the fault reports,
a vector space model is constructed based on the information
and a minimal feature set is selected. The features are fed into
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an ensemble classifier that is a GA-based ELM training algo-
rithm. Their proposed algorithm outperformed KNN, Naïve
Bayes and SVM.

Another issue in IoT environments is occurring faults in
the result of software aging. Liu and Meng [45] proposed a
method to predict software aging. The method works based
on a neural network with Back Propagation (BP) error. The
weights and thresholds are determining using Artificial Bee
Colony (ABC) algorithm. In other words, ABC is used to
optimize the BP model. They showed that in compare with
the standard BP neural network, their proposed method con-
verges faster and predicts more accurate.

A part of research in the field of fault prediction in an
IoT environment is conducted on the prediction of faults in
industrial processes. As an instance, in [46] a cloud control
architecture is proposed. Deep learning analysis is performed
to detect faults in the manufacturing process. As another
example, Xenakis et al. [47] proposed a fault detection
method for an IoT environment. The method is introduced
for industrial automation.

In [48] a fault prediction and diagnosis solution are pre-
sented. IoT enabling technology offered by SAP is exploited
and a method is proposed to predict and detect a fault in
an Industry’s process of data collection. First, the device
sensor data is analyzed without having any knowledge of the
physical manufacturing system, and the causal relationship
of the physical devices are discovered. Therefore, faults of
certain devices can be predicted through monitoring of the
healthy index of these devices in real-time. In addition, possi-
ble faults of other devices could be predicted using the casual
relationship discovered in the steps before.

In [49], a fault prediction is proposed which works based
on key mechanical equipment groups to improve the effi-
ciency and intelligence level of fault prediction. A four-
layer functional architecture is designed for comprehensive
condition monitoring, reliable transmission, and intelligent
information processing to predict system faults. Moreover,
three canonical difficulties of the system are discussed includ-
ing difficulties of combining fault prediction and IoT, diffi-
culties of non-linearity of fault prediction, and difficulties of
processing massive data.

According to the above related works, most of the
researches evaluated their proposed method only by simula-
tion experiments and statistical analysis. The main defect of
these evaluations is that there is no complete and integrated
dataset for showing all of the data metrics. So, analyzing
the accuracy of an evolutionary approach in a fault predic-
tion method is considered in this paper as an essential and
important factor. Behavioral modeling for fault prediction
which is based on ANN and PSO approaches are proposed
and explained in the next section.

III. FAULT PREDICTION METHOD
In this section, the proposed hybrid of the MLP and PSO
for fault prediction presented in [8] is formally verified. The
behavior of the proposed fault prediction method is divided

into two separate behaviors: dimension reduction behavior
and fault prediction behavior. These two behaviors are mod-
eled first, and then the behavioral models are verified.

A. DIMENSION REDUCTION AND FAULT PREDICTION
The PSO is used as a part of fault prediction method,
the hybrid approach introduced in this paper for fault
prediction. In the PSO, particles, are sailed through
multi-dimensional space exploration. For each particle i
there is a location path Xi. Particles move in a group in a
d-dimensional problem space. Vi is the speed of each particle.
Equations 1 and 2 illustrate the particle speed and location
respectively [50]:

Vi(t + 1) = w · Vi(t)+ c1r1(Pi,best (t)− Xi(t))

+ c2r2(Pglobal(t)− Xi(t)) (1)

Xi(t + 1) = Xi(t)+ Vi(t + 1) (2)

where t is replication value, w is appropriate weight, c1 and
c2 are positive coefficients, r1 and r2 are random numbers
regularly distributed in the range [0, 1]. Pibest and Pglobal are
the best previously visited location of the particle i and the
finest cost of all particle location values, respectively. The
initial speeds of particles are limited to a range of [0, 1].
Equation 3 and 4 illustrate the moving of particles:

Xi(t + 1) = pi(t)+ α.|Gi,best − Xi(t)|ln1/ui(t), if s ≥ 0.5

(3)

Xi(t + 1) = pi(t)+ α.|Gi,best − Xi(t)|ln1/ui(t), if s < 0.5

(4)

where ui and s are random numbers uniformly distributed in
the range of [0, 1], and parameter α is called contraction-
expansion coefficient. The mean of best positions is shown
by Gi,best [6]. In the prediction phase, all input and pre-
ferred outputs of the MLP have been normalized in the range
[0, 1]. Metrics selected by the PSO are fed into the MLP for
iprediction.

B. BEHAVIORAL MODELING OF THE FAULT PREDICTION
APPROACH
We illustrate the fault prediction approach based on [8]. The
reduced dimensionality is performed using the PSO method.
Training and testing methods are applied using the MLP
mechanism. Figure 1 illustrates the reduced dimensionality
behavior. First, the specifiedmetrics are inputted to the mech-
anism. Reduced Dimensionality (RD) behavior normalizes
the metrics based on the data refinement method. Population
initialized, Xi checked and Vi computed. Greatest beforehand
stayed position of the particle i is considered. If Pi,best >max,
the mean of the best positions of all particles calculated and
then, Gi,best is updated. If Gi,best < max, Gi,best is selected
and the population is reduced. Finally, the minimum metrics
are reached.

Figure 2 describes the Prediction (PR) behavior. First,
in the minimized metrics, data are divided into test data and
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FIGURE 1. The reduced dimensionality behavior.

FIGURE 2. The prediction behavior.

train data. The MLP process is done in the train data, metrics
M is selected and Nneurons = Nnet is matched. By creating
the input layer, neurons become active and training data are
finished. If the training procedure reaches the best quality,
the test data will begin. By finishing the test process, spec-
ifications are checked and the final prediction results are
reached.

With respect to the presentation of the RD and PR mecha-
nisms, these behavioral models are mapped into the Labeled
Transition Systeme (LTS).
Definition 1: An LTS of FP is a multi-tuple LT =

(S, s,A,R) where [51]:
• S shows a set of existing states on the RD and PR
mechanisms.

• s depicts the the initial state of each mechanism, s ∈ S.
• A presents a set of actions on the RD and PR mecha-
nisms.

• R illustrates a set of transition relations on the RD and
PR mechanisms where R ⊆ S × A × S that shows the
relation s1

a
→ s2(s1, s2 ∈ S and a ∈ A) is applied for

transition relaion (s1, a, s2) ∈ T.
According to fault prediction behavioral models, a set of
states and events are as follow:

RD_States=(Begin, Input_metrics, Normalization,
Data_refi, PSO_refi, Pop_init, Initializing, Check_x, Com-
put_v, Calc_Pbest, Pbest_B_max, Calc_Mbest, Update_M,
Mbest_L_max, Mbest_selec, Redu_Pop, Min_metrics);
PR_States = (start, Mini_metrics, Data_divi, Rand_class,

Train, Test, MLP_proc, Select_metr_M, Matching_N,
Creat_layer, Activ_neur, Finaliz_train, Update_train,
Best_Q, MLP_test, Output, Pred_finalized, Check_spec,
Final_result);
A path on the RD and PR behavioral models of the fault

prediction mechanism is defined as follows:
Definition 2: A directed path DP is a set of the restricted

states and actions informs of transition relations with initial
state si and final state sj (si and sj ∈ S) that is shown an
example as follows:

DP (1)= Start
send
−→,Mini_metrics

check
−→ Data_divi

seperation
−→

Rand_class is a directed path in the PR model.

IV. MODEL CHECKING APPROACH FOR THE FAULT
PREDICTION BEHAVIORS
This section presents a model checking approach to the
proposed fault prediction behaviors. First, the Linear Tem-
poral Logic (LTL) properties are defined as a temporal logic
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FIGURE 3. The RD model in the PAT environment.

FIGURE 4. The PR model in the PAT environment.

language for the system behaviors in this section. Then,
the proposed fault prediction behaviors are modeled using
the LTS in the PAT1 model checker that includes reduced
dimensionality and prediction behaviors.

For showing the correctness of the proposed fault predic-
tion behaviors, some critical properties are defined as informs
of the LTL rules. We define LTL formulas to verify in the
model checker as follow:

ψ ::= True|P|¬ψ |ψ ∨ ψ ′|ψ ∧ ψ ′|Gψ |Xψ |Fψ |ψUψ ′

Let β = s0, s1, s2 . . . as a set of states and ψ as an LTL
property. Existing notions and operands of LTL are presented
as follows [36]–[38]:
• β |H >and β 2 ⊥;
• β |H ψ1 ∨ . . . ∨ ψn IFF for some j = 1 . . . n we have
β |H ψ j;

• β |H ¬ψ IFF β 2 ψ ;
• β |H Xψ IFF β 1 |H ψ ;
• β |H ψ U ψ/ IFF for some k = 0, 1 . . . we have
pk |H ψ/ and p0 |H ψ . . . pk−1 |H ψ ;

1http://patroot.com/

The timed operators in the LTL are shown as follows:
• X notation depicts ‘‘Next’’ timed operand: If β ∈ LTL
(property), then X (β) ∈ LTL (property).

• G notation shows ‘‘Globally’’ timed operator: If β ∈
LTL (property), then G (β) ∈ LTL (property).

• F notation shows ‘‘Future’’ timed operator: If α ∈ LTL
(property), then F (β) ∈ LTL (property).

• U notation illustrates ‘‘Until’’ timed operator: If α, β ∈
LTL (property), then α U β ∈ LTL (property).

In the PAT environment, all of the states are displayed as
nodes. Each action navigates a transition relation between
two states. If an action has a non-deterministic condition, then
a guard will perform for this action.

Figure 3 illustrates the RD behavioral model of the LTS
in the PAT environment. There are 17 states in this diagram,
which are connected to each other by edges. This shows the
modeling of reducing dimensionality. For example, in order
to transfer producing input metrics state to refinement state,
the normalization action must be acted.

Figure 4 shows the PR behavioral model of the LTS in the
PAT environment. There are 20 states in this diagram. In this
model train and test are demodulated. Figure 5 shows the state
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FIGURE 5. The state space of the LTS model in the simulation phase.
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FIGURE 6. Fullfilment of L1 property in the state machine.

FIGURE 7. The satisfaction of L2 property in the state machine.

space of the RD and PR behaviors in the PAT environment.
After generating this state space, the expected specification
rules will examine to rule’s satisfaction.

After describing the LTL structure, some critical properties
are defined as informs of the LTL rules for the fault prediction
model. Let -> as the consistency association between states
in each specification:
• L1 G(input_metrics -> X normalization);
X Globally, after input data metrics, the normalization

phase is coming.
Figure 6 shows the L1 property with state satisfaction
conditions.
• L2 G(normalization && refinement -> X

pso);

FIGURE 8. The satisfaction of L3 property in the state machine.

FIGURE 9. The satisfaction of L4 property in the state machine.

FIGURE 10. The satisfaction of L5 property in state machine.

FIGURE 11. The satisfaction of L6 property.

X Globally, when the normalization phase and data
refinement are checked, the next stage is the PSO
phase. Figure 7 displays the L2 property with state
satisfaction conditions.

• L3 G(pop && send -> check) -> F(comput_v
&& forward -> compute&& calcu_pbest);

X Globally, when initial population is done and the data
is checked, the V value is checked and computed for

FIGURE 12. The satisfaction of L7 property in the state machine.
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FIGURE 13. The satisfaction of L8 property in the state machine.

FIGURE 14. The satisfaction of L9 property in the state machine.

Pbest . Figure 8 displays the L3 property with state
satisfaction condition.

• L4 G(pbest_max&& yes -> calc_Gbest) -> X
!(check_x&& no);

FIGURE 15. The satisfaction of L10 property in the state machine.

X Globally, when Pbest is higher than max condition and
Gbest is calculated, in the next state checking X value
should not occur concurrently. Figure 9 displays the
L4 property with state satisfaction condition.

• L5 G(calcu_pbest&& update)->(gbest_max
&& yes) U(gbest_max && no ->
gbest_selec));

X Globally, when the Pbest value is updated and the Gbest
is higher than max condition, finally Gbest is selected.
Figure 10 displays the L5 property with state satisfac-
tion condition.

FIGURE 16. The automated verification analysis of the fault prediction approach.
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FIGURE 17. The model checking time for existing critical specifications in the PAT.

• L6 G(gbest_selec) -> X ((redu_pop &&
generate -> min_metrics) -> start);

X Globally, when the Gbest is selected, the next state
is reducing population and generating the minimum
metrics. Figure 11 displays the L6 property with state
satisfaction condition.

• L7 G((start -> check && data_divi)-
> F(train && forward->mlp_proc &&
selection));
Globally, when the prediction phase is started, the data
division is specified for training and testing operations.
Figure 12 displays the L7 property with state satisfac-
tion condition

• L8 G((finalization && update_train)
-> F((best_Q && yes) -> (test &&
prediction)));

X Globally, the finalization state and update training are
done, eventually if best quality is reachable then the test
operation is started. Figure 13 displays the L8 property
with state satisfaction condition.

• L9 G((prediction && ann_test ->
calculate) -> X ((pred_finalized &&
compute) -> (check&& final_result)));

X Globally, the prediction using the MLP is calculated,
the next state is finalized using train phase; after
that, the final result is sent to checking data metrics.
Figure 14 displays the L9 property with state satisfac-
tion condition.

• L10 G !(train&& mlp_proc -> selection) U
(gbest_max&& no -> min_metrics);

X Globally, the train operation using the MLP selection
has not performed until the Gbest generate minimum

metrics. Figure 15 displays the L10 property with state
satisfaction condition.

• L11 RD deadlock-free;
X The RD system is deadlock- free in everywhereto rec-

ognize reducing dimensionality method based on the
PSO.

• L12 PR deadlock-free;
X The PR system is deadlock -free in everywhere to

predict existing faults in the system.
• L13 reaches the train;
X The train state is potentially reachable always in the

generated state space.
• L14 reaches test;
X The test state is potentially reachable always in the

generated state space.
• L15 reaches PSO;
X The PSO state is potentially reachable always in the

generated state space.

V. EXPERIMENTAL RESULTS
This section shows the experimental results on the formal
verification of the fault prediction behaviors that are per-
formed by an Intel Core i5, 2.6 GHz, 8GBRAM,Windows 10
system and by PAT model checker 3.4.1. There are some
advantages to compare with the proposed approach and other
studies. Initially, the presented approach uses the MLP and
PSO methods for decreasing the dimensionality phase and
prediction approach. The Second advantage is using the PAT
model checker for proving the accuracy of system behavior.
The PAT model checker has some advantages such as graphi-
cal environment, graphical state space generation and simple
development language [13].
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FIGURE 18. The memory usage for existing specifications in the PAT.

To evaluate existing specification rules for the proposed
fault prediction approach, Figure 16 shows the automated
verification analysis in the PAT tool. Based on verifica-
tion results, all properties have been satisfied according
to state space exploration. Also, the proposed method is
reachable and deadlock free on all aspects of the proposed
approach.

To evaluate the proposed verification method on the
fault prediction approach with other prediction approaches,
we analyze our method with [52] and [28] research studies.
These studies have modeled using the LTS method that is
compared with our proposed verification method. In [28],
a hybrid approach using ANN and SVM algorithm was
applied to detect fault diagnosis in smart devices. Also,
in [52], the authors have applied an evolutionary algorithm
to evaluate failure prediction in smart evolving systems.

Figure 17 illustrates the model checking time for each LTL
specification using the PAT tool. The maximum time belongs
to the L12 specification ID by 230 millisecond that checks
the deadlock-free condition for the proposed PR model. The
proposed verificationmethod has aminimummodel checking
time for evaluating each LTL specification than other predic-
tion approaches.

Also, Figure 18 demonstrates the memory usage to verify
the specifications of the LTS model. The maximum memory
consumption belongs to the L11 specification ID by 310 MB
that checks the deadlock-free condition for the proposed
RD model. According to experimental results, the proposed
verification method for fault prediction approach has min-
imum memory usage for verifying each LTL specification
than other research studies. Based on verification results for
evaluating the correctness of the proposed fault prediction
approach, our verification method supports minimum model
checking time and memory usage for critical LTL specifica-
tion rules. To evaluate the existing critical specification rules,

the correctness of the proposed fault prediction approach is
proven based on the LTS method. Also, all functional prop-
erties as the LTL formulas on the proposed fault prediction
approach have been guaranteed.

VI. CONCLUSION AND FUTURE WORKS
This paper presented behavioral modeling on fault predic-
tion approach for IoT applications using MLP and PSO
algorithms. Fault detection behaviors are separated into
two types: reducing dimensionality behavior and prediction
behavior. The interactions between the two behaviors are
shaped using the LTS method. Analyzing logical problems
and checking behavioral specifications are the procedures
to verify the proposed fault prediction approach. The PAT
model checker is used to perform the behavioral models.
The accuracy of the fault prediction approach was proved
according to the deadlock-free and reachability properties
in terms of linear temporal logic formulas. The maximum
time belongs to the L12 specification ID by 229 millisec-
onds that checks the deadlock-free condition for the pro-
posed PR model. Also, the maximum memory consumption
belongs to the L11 specification ID by 310 MB that checks
the deadlock-free condition for the proposed RD model.
Finally, the model checking time and memory usage for for-
mal verification of the proposed fault prediction approach is
lower than existing research studies. In future work, a hybrid
analysis of fault prediction using meta-heuristic algorithms
will be researched using verification approaches. Also, other
functional properties of fault prediction approach such as
completeness, soundness, and fairness are analyzed in future
research.
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