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ABSTRACT Performing the correct pen-holding gesture plays an important role in handwriting efficiency
and quality, especially for early education. In this paper, a detailed design and evaluation of the system,
called SmartGe, is presented, which can identify the pen-holding gesture with smartwatch when writing
Chinese and English. We firstly analyze the hand movement and propose a novel handwriting detection
algorithm to segment each stroke or letter. Thenwe recognize the pen-holding gesture using deep convolution
neural network(DCNN). To improve system performance in Chinese writing, we connect a vertical stroke
and a horizontal stroke for pen-holding gesture recognition. SmartGe provides a convenient and natural
way to improve users’ writing habits, which is a lightweight system, and extensive experiments confirm its
effectiveness and robustness.

INDEX TERMS Smartwatch, handwriting detection, pen-holding gesture, combined signal, deep convolu-
tion neural network.

I. INTRODUCTION
As we know, English and Chinese are two of the most com-
monly spoken languages in the world. How to write these two
languages with the correct pen-holding gesture is an impor-
tant topic. As shown in Fig. 1, there are 9 typical pen-holding
gestures: correct, close grip, fold grip, tuck grip, squeeze grip,
hook grip, wrap grip, mount grip and tripod grip [1]. There are
fine-grained differences between correct gestures and eight
wrong gestures. The thumb, the index finger and the middle
finger form an open triangle, and the pen rests on the middle
finger, which constructs the correct pen-holding gesture. The
ideal distance between the tip of the pen and the thumb
with correct gesture is around 1 inch [2], which requires less
efforts in the process of writing. The correct pen-holding
gesture makes users feel a stable and flexible way to write [3].
And incorrect gestures will lead to excessive forces, reducing
the writing speed and even arthritic conditions and myopia
[1]–[4]. Therefore, it can yield sustained benefit by taking up
the right pen-holding gesture early in life.

People often find out whether the words are spelled cor-
rectly, but it’s difficult to find out whether they hold the
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pen correctly. Existing techniques to help people correct their
pen-holding gestures often need auxiliary systems. These
systems force people to fix their hands in a plastic tool in
a certain way [5]. It leads to uncomfortable in the process of
writing and can not detect the original pen-holding gesture.
Once these auxiliary devices are removed, it is easy for
people to return to the wrong pen-holding gesture. There is
also a recognition system that can detect pen-holding gesture
by installing sensors on the pen, such as MTPen [6]. But
this invisibly increases the weight of the pen and affects
users’experience.Moreover, it is mainly used to achieve inter-
action with the device rather than to correct the pen-holding
posture in writing. Therefore, none of the existing works are
readily available and focus on detecting pen-holding gesture.

Smartwatches are worn on the wrist and can run a variety of
applications. It is often equipped with numerous built-in sen-
sors, and can communicate wirelessly with nearby devices.
The pen-holding gesture detection based on the smartwatch
can provide a prompt function to real-time monitor the pen-
holding gesture. People only need to install an app on their
smartwatches to effectively recognize the pen-holding ges-
ture, making it more convenient and easy to use. Recent
research also reveals that the smartwatches are becoming
more and more popular. It is estimated that smartwatch
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volumes will reach a total of 46.2 million units shipped
in 2018, up to 38.9% from the 33.3 million units shipped
in 2017 [7]. These favorable conditions overcome the short-
comings of previous technologies. So it is valuable to
develop a pen-holding gesture recognition system based on
smartwatch.

In this paper, we present the design, implementation and
evaluation of SmartGe, which can detect pen-holding gesture
leveraging built-in sensors of smartwatches when writing.
Considering the huge number of English words and Chinese
characters (more than 5,000 commonly used), it is difficult to
construct a classification system based on each word or char-
acter to recognize the pen-holding gesture. Fortunately, all
words are composed of 26 letters. Similarly, all Chinese
characters are composed of 32 strokes. For English words,
we can detect the gesture by extracting any of the 26 letters
written. However, due to complex two-dimensional structure,
the same stroke signal may produce different signals in dif-
ferent locations of the Chinese character. The accuracy of
detecting the pen-holding gesture based on 32 strokes is very
low. After further study and observation, we found that more
than 90% of Chinese characters contain the horizontal and
vertical strokes. And a novel technique of combined strokes
to address this difficulty is proposed. Recognizing different
pen-holding gestures based on the combination of these two
kinds of strokes is practicable.

A fully functional prototype of SmartGe has been imple-
mented, and extensive experiments with 12 volunteers have
been conducted for performance evaluating. The handwrit-
ing detection algorithm is designed to extract stroke or let-
ter. Then we use the data augmentation technology and
DCNN technology to construct the first classifier to distin-
guish strokes and letters. Specially, after detecting strokes,
we assembles the signals of one vertical stroke and one
horizontal stroke head-to-tail in sequence as input for next
step classification (the order of horizontal stroke and vertical
strokes is arbitrary). Finally, we construct the second classi-
fier to recognize the pen-holding gestures based on the com-
bination strokes and letters. According to the experimental
results, SmartGe can identify pen-holding gesture as up to
98.3%. It’s very useful for people to provide a lightweight
system for monitoring the writing quality and habits contin-
uously. With the design of SmartGe, we make the following
key contributions.
• We propose an SmartGe model based on commodity
smartwatches, which can detect pen-holding gestures on
the paper.

• We design a handwriting detection algorithm to avoid
incomplete or redundant signal detection, which can
correctly shape the window that contains the complete
signal of stroke/letter.

• With limited training samples, we use data augmentation
to avoid over-fitting, which can improve the perfor-
mance compared with none data augmentation process-
ing. And we realize the model using the DCNN method
and conduct extensive experiments to evaluate the

performance of SmartGe. The average recognition accu-
racy of pen-holding gestures is 98.3%, which validates
the effectiveness and robustness of SmartGe.

The rest of the paper is organized as follows. In Section II,
we briefly introduce the related works. We present the
overview of the architecture of SmartGe in Section III. The
design and architecture of SmartGewith detailed descriptions
in Section IV. Experimental results are given in Section V,
and we discuss the limitations and summarize our work
in Section VI.

II. RELATED WORK
A. INERTIAL SENSOR BASED WRITING RECOGNITION
Some wearable devices, such as smartpen and smartwatch,
can be used to detect handwriting. In [8], a system is proposed
that six surface EMG sensors are attached to the forearm
for handwriting recognition. In [9], a sensor attached on the
fingertips can be used to recognize 36 handwriting vocabular-
ies including 10 digits and 26 English lower-case characters.
In [10], a system shows the danger of handwriting content
leakage from smartwatches’ motion sensors by recording
the motions and extracting handwriting-specific features.
Previous handwriting gesture recognition systems utilizing
inertial sensors focus on simple text recognition, such as
English letters and numbers. However, there is no existing
work based on smartwatch to recognize the pen-holding
gesture.

B. WIRELESS SIGNAL BASED WRITING RECOGNITION
Due to the pervasiveness of Wi-Fi access points, Wi-Fi sig-
nals have been widely exploited for recognizing gestures
and tracking motions. In [11], the Wi-Wri system utilizes
Channel State Information (CSI) extracted from Wi-Fi sig-
nals reflected from the hand movement to identify 26 English
Letters gestures of mid-air handwriting. In [12], the Writing-
Hacker system is designed to recognize handwritten English
words based on acoustic signals and acceleration signals in
mobile devices. Wireless signals, though having no visual
range limit and can bypass obstacles, are easily interfered
by other signals on the same unlicensed band, which signifi-
cantly affects the performance of the system.

C. VISUAL BASED WRITING RECOGNITION
Other existing pen-holding gesture system using image
processing techniques is also sensitive to lighting condi-
tions [13]. Moreover, the computation complexity of imaging
processing is usually high. And vision-based systems require
augmentation of the environment to identify pen-holding ges-
ture using specialized sensing devices, which adds cost to
their deployment.

Our proposed SmartGe system proves that people can
leverage the inertial sensors built-in smartwatch to recognize
pen-holding gesture, which is robust to lighting conditions
and can avoid interference of wireless signals compared with
existing works. It is convenient for users just to wear a smart-
watch and implant an app, which is a common habit for most
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FIGURE 1. Correct and incorrect pen-holding gestures.

FIGURE 2. SmartGe system overview.

users and makes it promising for both academic research and
industrial application.

III. OVERVIEW
In this section, we will outline the system design of
SmartGe. The system is designed for recognizing pen-
holding gesture in both English and Chinese writing only
relying on the smartwatch, which can distinguish 9 differ-
ent types of pen-holding gestures, including one correct and
eight incorrect [14]. Fig. 2 illustrates the architecture of
SmartGe.
• Data Collection.We collect data from the accelerometer
and the gyroscope, the two most common built-in sen-
sors in the smartwatch, with a sampling rate of 100Hz.

• Handwriting Detection. To build a more accurate clas-
sification model for recognizing handwriting gestures,
we develop a handwriting detection algorithm to identify
the event of writing by using the signals of strokes or let-
ters as input to avoid detecting incomplete or redundant
signals.

• Pen-holding Gesture Recognition. To enhance model
generalization and improve accuracy, we increase sam-
ple size using data augmentation method for extracted
signals. We construct two-level serial classifiers to rec-
ognize the pen-holding gesture. The first level is used to

distinguish letters in English and strokes in Chinese. The
detected handwriting data (angular velocity and acceler-
ation) serves as the input of the first level classifier, and
set the output labels as letters, horizontal strokes, vertical
strokes and other strokes. Then we connect the data of
a horizontal stroke and a vertical stroke in an arbitrary
order. We set the merging strokes and letters as input
to the second level classifier for pen-holding gesture
recognition, which can realize the fusion recognition
of strokes and letters. Two classifiers are both trained
using DCNN. In conclusion, if the handwriting signal
is recognized as a letter, the pen-holding gesture can
be detected directly. If the signal belongs to horizontal
stroke or vertical stroke, the two signals are retained and
combined for the pen-holding gesture detection. If the
signal belongs to other strokes, the signal will be aban-
doned. Therefore, SmartGe is independent of character
and word independence. That is to say, no matter what
characters or words we write, the pen-holding gesture
can be detected by us normally.

IV. SMARTGE: DESIGN DETAILS
In this section, the detailed design of SmartGe is presented.
We describe the process of writing detection, based on which
the pen-holding gesture recognition model is build.
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A. HANDWRITING DETECTION
Before performing the pen-holding gesture recognizition,
we need to extract the signal of a stroke or letter. As shown
in Fig. 3(a)(b), the influence of handwriting gesture on angu-
lar velocity is more obvious than acceleration, so we design
handwriting detection algorithm based only on the angular
velocity.

FIGURE 3. Signal of stroke/letter.

1) SIGNAL AMPLIFICATION
Due to the hand-shaking and internal noises of sensors, some
signals with low energy are easily confused with random
noise. To increase the signal-to-noise ratio (SNR), the signal
of angular velocity is conversed to time-frequency domain
by wavelet de-noising method [15]. We also design a signal
amplification method to increase the SNR further. Morever,
the wrist will slightly lift up and then fall down to com-
plete a stroke/letter, which can be captured by the z-axis of
gyroscope. Therefore, we amplify the signal of z-axis and
then find the handwriting signal accurately through the peak
detection. This can avoid the phenomenon that the larger
noise is detected as pen-holding gesture only through the
window function.

SAF[i] = (
i−1∑
j=i−5

∣∣zj∣∣+ i+6∑
j=i+1

∣∣zj∣∣).2. (1)

where SAF[i] is signal amplification function of the z axis
of angular velocity zi. We use the signal with a macro frame
size of 12 samples (120ms) for each term in the product and
produce high magnitude peaks at shot impact points [16].
The Fig. 3(c) shows the calculation result. The magnitude
changes of the gyroscope after signal amplification are much
larger than the signal of noise. Therefore, we can find the
handwriting signals more effectively with peak detection.

2) SUB-WINDOW MERGER ALGORITHM
After locating the pen-holding gesture, we define the bound-
ary of the amplified signal with the window function for
covering with the complete pen-holding gesture. The tradi-
tional fixed sliding window usually judges whether the signal
energy within the window is larger than the threshold (the
average energy of random noise) to determine whether the
event occurs, such as handwriting events [17]. Considering
different people’s writing habits, the writing time of strokes
and letters is different and the choice of window size is
essential. A large window may cover redundant noise signals
while a small window may extract incomplete event signals.
Therefore, we need to design a novel sliding sub-window
merging algorithm for solving this problem. The main idea
is to detect signals by using small-sized sub-windows and
then merge these sub-windows into a parent window that the
complete signals should be contained. We set 50% overlap-
ping rate for a window ofN sampling points. Considering that
the amplified signal has a higher SNR, it is more obvious to
distinguish the noise by window detection, and the amplified
signal does not change the boundary of the acceleration and
angular velocity signals. So we determine the stroke/letter
boundaries with the help of SAF signals and calculate the
energy of the SAF signals in sub-window I as follows.

EnergyI =
∑
i∈I

(SAF[i]2), (2)

The EnergyI represents the energy values of the ampli-
fied signal and i ∈ I reflects data at a point of SAF
in sub-window I . We use EnergyI values to determine the
boundary of the parent window. Every time the EnergyI of
a sub-window is lagerer than the threshold of noise energy,
we consider that writing initiation has completed and the
signals in the sub-window are kept as the beginning of par-
ent window. When the signal duration exceeds 0.4 seconds,
we no longer monitor the sub-window signal1 and we regard
the last sub-window as the end boundary of parent window.
Then we save the first N/2 sampling points in each sub-
window with the overlapping rate of 50% [14].

D = D ∪ {SAF I1 , SAF
I
2 , · · · , SAF

I
N/2}. (3)

A parent windowD, which contains the complete SAF sig-
nal, consists of the sub-windows from beginning to end. The
two sides boundary of SAF signal are also the signal boundary
of one letter/stroke. Therefore, both signal of acceleration and
angular velocity of the letter/stroke are saved within the par-
ent window. The problem detecting incomplete or redundant
signals can be avoided by the proposed sliding sub-window
merging algorithm shown in Alg. 1, which contributes to
more accurate classification performance.

B. PEN-HOLDING GESTURE RECOGNITION
After the signal detection is completed, we perform the fol-
lowing two processes to identify the pen-holding gesture.

1The response time of a normal person is about between 0.15 second and
0.4 second [18].
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Algorithm 1 Handwriting Detection Algorithm
Require: zi. // The value of the z axis from the gyroscope.
Ensure: D. // The parent window.
1: SAF calculation:

SAF[i] = (
i−1∑
j=i−5

∣∣zj∣∣+ i+6∑
j=i+1

∣∣zj∣∣).2. (4)

2: Setting the sub-window size as N sampling points, and
the overlapping rate as 50%.

3: t0 := 50% Time duration of a sub-window.
4: I = 0. // Index of the current sub-window.
5: flag = 0. // No writing event.
6: while The detection module is active do
7: I = I + 1.
8: The energy calculation of SAF signals in

sub-window i:

EnergyI =
∑
i∈I

(SAF2
i ).

9: if EnergyI > threshold&flag = 0 then
10: flag = 1. // The start of the boundary detection.
11: SAF = 8.
12: else
13: if EnergyI < threshold &flag = 1 then
14: if EnergyI−1 > threshold then
15: t = t0. // The possible end of the boundary.
16: else
17: t = t + t0.
18: end if
19: if t > 0.4 then
20: flag = 0. // The definite end of the boundary.
21: end if
22: end if
23: end if
24: if flag = 1 then
25: Saving the first N/2 sampling points in

sub-window I :

D = D ∪ {SAF I1 , SAF
I
2 , · · · , SAF

I
N/2}.

26: end if
27: end while

Firstly, we build the first classifier to differentiate strokes and
letters and then combine one horizontal stroke and one ver-
tical stroke without order. Secondly, the pen-holding gesture
recognitionmodel can be build based on the combined strokes
and letters. We use the traditional classification method based
on generic features and the deep learning respectively to train
classification model, which are described in detail in the
following sections.

1) DATA AUGMENTATION
To overcome the deficiency of training data, we use data
augmentation method on raw data of acceleration and angular

velocity to enlarge our training dataset, which can avoid over-
fitting and improve recognition accuracy effectively. Since
the variation of writing habits and deviation when placing
the sensor result in different patterns of the signal, we adopt
several methods to stimulate the variations to cover the unde-
tected input space. For example, time-warping is one way to
perturb the temporal location. By distorting the time intervals
of the samples smoothly, we stimulate the changing pace
among strokes when writing a character. Magnitude-warping
changes the magnitude of each sample randomly around one,
which stimulates the differences of strength of strokes or let-
ters. Scaling changes the magnitude of all data in a sample
by multiplying by a random scalar. Therefore, we transform
the data using time-wraping, magnitude-warping and scaling
respectively and add these new datasets to our sample for
enhancing the robustness of our model and ensuring a good
generalization ability [19].

2) CONSTRUCTING CLASSIFICATION MODEL WITH DCNN
a: DATA MAPPING
We transform the time-series data of six-axis sensors
(including gravitational acceleration and gyroscope angular
velocity) to a feature map with H × W tensor as input to
the DCNN network, where H represents the signal length
in the time domain, W represents the number of axes
(H = 6) [20], [21]. Since different strokes or letters have dif-
ferent signal lengths in the parent window, i.e., the size of W
is not uniform, we need to unify the size of the feature map for
the input layer in a suitable way for subsequent convolutional
processing. We set the signal lengthW as 320 points, because
most strokes or letters can be written within 3.2 seconds.
Longer signals will be truncated equally at the front and the
end, and shorter signals will be patched with zeros at the end.
We normalize the six-axis data using deviation standardiza-
tion to eliminate the influence of dimensions on handwriting
recognition.

b: ARCHITECTURE OF DCNN
The structure of the DCNN used in this paper is shown
in Fig. 4, which consists of an input layer, two convolutional
layers, each followed by a Relus layer, two maximum pool
layers and a fully connected layer followed by a softmax layer
that outputs the probability for each class. All labels are coded
using one-hot method [21], [22].

The input to our DCNN has a fixed size of 320 × 6.
Each convolutional layer has 800 convolutional kernels. The
parameters of each convolutional kernel are optimized by the
backpropagation algorithm, the purpose of which is to extract
different characteristics of the input. Each convolutional layer
has a kernel size of 16 samples with a moving step of 1.
The output of the convolutional layer is the input to the max-
pooling layer that selects the maximum value of each feature
map to reduce dimension and avoid over-fitting. Each max-
pooling layer uses a moving pooling window with a length
of 16 samples and a moving step of 4 for dimensionality
reduction. All feature maps are automatically zero-padded
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FIGURE 4. Architecture of DCNN framework. (The number of feature maps and the dimensions of a feature
map in each layer is shown before and after ‘‘@’’.)

after the layer. The output of the second max-pooling layer
is transformed into 1-dimensional data by flattening, as the
input to the last fully connected layer. The fully connected
layer uses the dropout method with a probability (p = 0.5)
to avoid over-fitting. To obtain a probabilistic prediction,
the softmax method is used in the last layer to get the proba-
bility distribution of each class. We optimize the parameters
using the root mean square loss and the Adam Gradient
Descent method. The learning rate is set as 0.0001.

3) CONSTRUCTING CLASSIFICATION MODEL
WITH GENERIC FEATURES
a: FEATURE EXTRACTION
We extract features from the time domain, the frequency
domain, and the time-frequency domain, in order to cover a
wide range of relevant features across different frequency and
time resolutions. In the time domain, we calculate the cross-
correlation coefficients between each pair of axes of each
sensor. We also derive typical temporal statistics including
mean, variance, standard deviation (STD), maximum energy
in the window (E imax), minimum energy in the window (E imin),
autoregressive, kurtosis, skewness and deviation, which can
characterize the unique temporal patterns of strokes. We also
add the number of peaks obtained through a peak detection
algorithm as our another feature. We transform the signals
from the time domain to the frequency domain through Fast
Fourier Transform (FFT), obtaining the frequency compo-
nents, frequency distribution range, and the energy in every
frequency component. Since different strokes generate dif-
ferent frequency distributions and the stroke signals mainly
concentrate on low frequencies, we select the first 20 FFT
coefficients as features [23]. We also add frequency domain
statistics including median, energy and variance to the feature
set. We attain features in the time-frequency domain through
the Discrete Wavelet Transform (DWT). We compute low-
frequency coefficients and high-frequency coefficients at dif-
ferent scales using the Daubechies wavelet decomposition
as the time-frequency features. We also add time-frequency
domain statistics including the mean square root, variance
and the mean of the wavelet coefficients to our feature set.
Finally, we have extracted 728 features from the three axes

of both the accelerometer and the gyroscope data, which can
capture the characteristics of unique gesture-related patterns.

b: CLASSIFICATION
With the features learned above, we use a supervised learning
method to train the model. Finally, we build a stroke-direction
classifier for distinguishing the stroke and letter. After identi-
fying these two types of signals, a pen-holding classifier will
identify the pen-holding types.

V. EVALUATION
A. DATA COLLECTION
We recruit 12 volunteers with HUAWEI Watch on their right
wrists, including 8 males and 4 females aged 19 ∼ 26.
An in-depth analysis is performed by recording the video of
all experiments. We ask volunteers to write 8 Chinese char-
acters include horizontal stroke and vertical stroke randomly
and two English sentences: ‘‘the quick brown fox jumps over
the lazy dog’’ and ‘‘THE QUICK BROWN FOX JUMPS
OVER THE LAZY DOG’’ that contain all lower-case
English letters and upper-case English letters, each charac-
ter or word for 20 times, with 9 kinds of pen-holding gestures
(1 correct gesture and 8 incorrect gestures) respectively.
In total, we have collected 17, 280(12 ∗ 9 ∗ 8 ∗ 20) Chinese
characters and 38, 880(12∗9∗18∗20) words for pen-holding
gesture detection.

B. PARAMETER SELECTION
As mentioned above, we propose the handwriting detection
algorithm to identify signals of letters/strokes. The signal
amplification method is used to detect handwriting gesture
signal and the sub-window merger algorithm is used to deter-
mine the signal boundary. Considering that the size of the sub-
window directly affects the accuracy of pen-holding gesture
recognition, it is necessary to choose a suitable sub-window
size.We evaluate relative detection errors under different sub-
window sizes. We define Sd as the number of detected signals
while St represents the real number of signals. The relative
error can be defined as follows.

δ =
|Sd − St |

St
. (5)
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FIGURE 5. Relative error with different sub-window sizes.

Fig. 5 shows that the relative error maintains stability in a
relatively low error range as the sub-window size increases
to 32. And we can find that when the sub-window size is
4 (0.04s), the detection performance is the best with the
standard deviation of 0.56%. The sub-window size can be set
as 4 in all following experiments. When the sub-window size
is larger than 32 (0.32s), the relative error increases evidently.
The reason for this phenomenon is that the large sub-window
would merge multiple adjacent gesture signals into the same
parent window.

C. PEN-HOLDING GESTURE RECOGNITION
In this section, we introduce the evaluation metrics of the
system firstly. Then we compare the effects of different clas-
sification models and different combinations of strokes and
letters on the recognition accuracy. Finally, we verify the
robustness of the system.

1) EVALUATION METRICS
We randomly divide the dataset into the training set, the vali-
dation set and the test set according to the 80-10-10 split prin-
ciple to avoid introducing bias. We train the classifier using
the training set, tune the parameters using the validation set
and evaluate the performance using the test set. The precision,
recall and F1-score is used for the performance evaluating
from different aspects [14], [24].

2) RECOGNITION PERFORMANCE
a: PARAMETERS CONFIGURATION
Four different machine learning classifiers, i.e., random for-
est (RF), support vector machine (SVM), k-nearest neigh-
bor (KNN) and DCNN are used for comparison. The opti-
mal values of the parameters for SVM (parameter cost
and γ ) and KNN (parameter K ) are determined via grid
search through the range cost ∈ {1, 10, 100, 1000}, γ ∈
{0.0001, 0.01, 0.1, 1} and K ∈ {1, 2, 3, 4, 5}. For RF,
grid search is performed on the number of iterations
(n_estimators ∈ {10, 20, 30, 40, 50}), the maximum depth
of the decision tree (max_depth ∈ {1, 2, 3, 4, 5}) and
the minimum number of samples (min_samples_split ∈
{50, 70, 90, 110, 130}) to find the optimal parameter values.

As a result, for SVM, the optimal cost and γ are 1000 and
0.1 respectively; for KNN, the optimal K is 5; the optimal
n_estimators, max_depth and min_samples_split are 30, 2
and 50 respectively [21].

ForDCNN,we observe that the size of the kernel& pooling
and the number of layers have an important influence on
the recognition performance. As shown in Fig. 7, when the
kernel & pooling size is 16, the recognition performance is
the best. The DCNN’s two-layer model (one convolutional
layer and one pooling layer), the four-layer model and the
six-layer model have recognition rates of 92.4%, 98.3%
and 98.6% respectively. The results show that with a larger
kernel & pooling size and more layers, more meaningful
information can be learned. Considering the training cost and
energy consumption, we finally choose the four-layer model
(2 convolutional layers and 2 pooling layers) with a kernel &
pooling size of 16 [25].

b: STROKE/LETTER CLASSIFICATION MODEL
The trials with four types of classifiers, i.e., random forest
(RF), support vector machine (SVM), k-nearest neighbor
(KNN) and DCNN are conducted and compared. The first
layer classifier is used to distinguish letters, vertical strokes,
horizontal strokes and other strokes. As shown in Fig. 6(a),
the recognition precision, recall and F1-score of DCNN are
93.1%,93.1% and 93.2% respectively, which has the maxi-
mum recognition rate. Therefore, we build the classifier using
the DCNN. We also evaluate the performance of the DCNN
model without data augmentation, themean recognition accu-
racy of which is about 91% and is about 2% lower than
that with data augmentation. It is proved that after data aug-
mentation, including magnitude-warping, scaling and time
warping, our dataset can cover some of the undected input
space and improve the performance of the model.

c: PEN-HOLDING GESTURE CLASSIFICATION MODEL
Based on the collected letters and strokes, we construct
the second layer classification model for pen-holding gesture
recognition. Similarly, we compare the performance of these
four classifiers. From the Fig. 6(b) we can see, the DCNN
with augmentation has the best performance with the recog-
nition precision, recall and F1-score being 98.2%, 98.2%
and 98.3% respectively. The recognition accuracy without
data augmentation is about 97%, which is lower than the
accuracy with data agumentation. This further evidences that
the recognition performance of our system can be improved
using data augmentation method.

Fig. 6(c) shows the recognition accuracy with different
strokes and letters. The detection accuracies relying on the
horizontal stroke and letter (H&L) and the vertical stroke and
letter (V&L) are 87% and 89% respectively, while the con-
nected stroke of horizontal and vertical and letter ((H-V)&L))
has a much higher accuracy of 98.3%. We also add the
left-falling stroke (LF), a common stroke in many Chinese
characters, to connected stroke for comparison. The recog-
nition accuracy of ((H-V-LF)&L) is up to 98.5%, where
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FIGURE 6. Performance evaluation of the model.

FIGURE 7. Accuracy with different parameters configuration of DCNN.

the improvement is not very significant. All other strokes
and letters (O&L) have a much less presence and may even
degrade the recognition accuracy as low as 84.3%. The pos-
sible reason is that some different complicated strokes may
exhibit consistent patterns when writing with different pen-
holding gestures. Therefore, three types of data include the
combination of horizontal stroke and vertical stroke, and the
letters can be used to improve the performance of the system.

Fig. 8 shows the confusion matrix of the 9 types of pen-
holding gestures. It shows that the correct gesture is misclas-
sified as the close grip gesturewith a probability of 2.3%.And
the mount grip gesture can be recognized with a possibility of
100%. From Fig. 1 we can see, the correct gesture and close

FIGURE 8. Confusion matrix of 9 kinds of pen-holding gestures.

grip gesture are similar, which makes it’s hard to distinguish
accurately. The back of the hand of the mount grip gesture is
upward, different with other gestures, which can be identified
precisely. To summarise, the accuracy of misclassification of
all pen-holding gestures is very low, which can help us to
recognize the pen-holding gesture well.
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FIGURE 9. Different influence factors of the model.

3) ROBUSTNESS
To verify the effectiveness and robustness of the model,
we have asked the same 12 participants to conduct each
experiment to evaluate the factors from different aspects that
influence model, including sampling frequency, training size,
pen type, writing posture and wearing method.

a: IMPACT OF SAMPLING FREQUENCY
The influence of different sampling frequencies (20Hz,
50Hz,100Hz) on the recognition accuracy of pen-holding
gestures for all participants are also compared in detail. It can
be seen from Fig. 9(a) that with the increase of sampling
frequency, the recognition accuracy of pen-holding gesture
has a slight improvement. The accuracy is 91.8% with 20Hz
of sampling frequency while the accuracy is up to 98.3%
with 100Hz of sampling frequency. Therefore, the higher the
frequency, the richer the captured information is, the better
the recognition performance is. However, more energy is lost.

b: IMPACT OF TRAINING SIZES
We also evaluate the SmartGe under different training
sizes [26]. As shown in Fig. 9(b), with the training instances
increasing from 5 to 20, the performance improves gradually.
When there are 5 instances per pen-holding gesture, the detec-
tion accuracy is 92.8% while 20 instances is up to 98.3%.
Therefore, the user experience will be improved with the
accumulation of personal data. It also shows that SmartGe
has a relatively good performance with limited training
data.

c: IMPACT OF PEN TYPES
Considering that different types of pens may affect the recog-
nition performance of the pen-holding gesture, we find three
types of pens to carry out experiments and compare their
recognition accuracy, including a diameter of 10mm, a gel-
ink penwith a diameter of 8.5mm and a pencil with a diameter
of 7mm. As shown in Fig. 9(c), the recognition accuracies of
all types of pens are over 95%. It confirms that SmartGe is
robust under different kinds of pens.

d: IMPACT OF WRITING POSTURES
We evaluate the performance of the model with different pos-
tures including stand, half-lying and sit in a chair respectively,

which commonly occurs in the process of writing. As shown
in Fig. 9(d), the mean accuracy when stand, half-lying and
sit in a chair is 96.4%, 97% and 98.3% respectively, which
verifies that our system is robust with different postures.

TABLE 1. Impact of wearing method.

e: IMPACT OF WEARING METHOD
We also evaluate the robustness based on different wear-
ing methods, including tightness and distance from wrist.
When the smartwatch is worn loosely/tightly, the random
noise will occur. Similarly, when the smartwatch is far from
wrist, it may lose some gesture information. The tightness
of the system is evaluated in two way: Loose( circumference
of 17.6 cm) and Tight( circumference of 16.2 cm), where
perimete of the selected user’s wrist is 16 cm. We also
evaluate the influence of distance from smartwatch to wrist,
including Far distance (distance = 8cm) and Near distance
(distance = 1cm). We ask all participants to wear a smart-
watch according to our instructions to write with nine dif-
ferent pen-holding gestures respectively. And the extracted
data is used to train and evaluate. Table. 1 shows the aver-
age recognition accuracy on four different combinations of
methods. The tighter the wear is and the closer the distance is,
the higher the recognition accuracy of the pen-holding gesture
is. Nevertheless, the recognition accuracy of the pen-holding
gesture can achieve good performance in different wearing
methods. It shows that our system have robustness to wearing
method [25].

D. DELAY AND ENERGY CONSUMPTION
We evaluate the average delay of SmartGe. As listed
in Table. 2, the average delay for the model is 116 ms, which
indicates that the algorithm is effective and the delay of the
system is satisfied.

We also analyze the power consumption of SmartGe using
the battery drain rate (%/h) of the smartwatch [27] for
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FIGURE 10. User questionnaire.

TABLE 2. Delay and energy consumption.

all participants. The battery drain rate measures the aver-
age hourly decrease in battery levels. We compare the aver-
age battery drain rate with and without (standby mode)
SmartGe running on the smartwatch for five hours. As shown
in Table 2, the average battery drain rate with SmartGe is
40%, which implies that a fully-charged smartwatch can
last about 2.5 hours for users to continuously use SmartGe.
We compare the energy consumption of SmartGe with two
other common functions of the smartwatch, i.e., heart rate
measurement and vibration-based caller ID. We measure the
battery drain rate of these two functions separately and con-
tinuously for five hours. As shown in Table 2, SmartGe has
a comparable energy consumption to that of the heart rate
application. Considering that users rarely write strokes or let-
ters continuously for hours, we modify the code such that the
SmartGe application sleeps when it detects no handwriting
and wakes up when handwriting is detected. The average
battery drain rate of the optimized SmartGe is 28%, which
is similar to that of the vibration-based caller ID.

In conclusion, smartwatch-based SmartGe can realize an
ideal recognition performance. Therefore, the SmartGe may
be used to assist people in writing.

E. USER FRIENDLINESS
We also ask these participants to answer our questionnaires
on their experience with SmartGe. Each participant wears a
smartwatch and writes for thirty minutes. Based on the scale
of 1 to 5 corresponding to ‘Very dislike/ difficult/ uncomfort-
able’ to ‘Very like/easy/comfortable’, the results are showed

in Fig. 10(a)(b)(c) confirm that users strongly support us
the SmartGe system. All participants agree that the they are
comfortable with the smartwatch on the right for pen-holding
gesture recognition. This helps us further improve our design
of SmartGe.

In conclusion, smartwatch-based SmartGe can realize an
ideal recognition performance, which may be used to assist
people in pen-holding gesture recognition.

VI. LIMITATIONS AND CONCLUSION
A. LIMITATIONS
The number of volunteers and the number of samples from
each volunteer are relatively small due to time and budget
limitations, more volunteers can be recruited and more data
can be collected to improve the performance of SmartGe.
Our experiments only involve right-handed users, and it is
interesting to see how SmartGe performs on left-handed
users or even ambidextrous users. Moreover, the SmartGe
needs to write slowly with stroke by stroke. Therefore, our
system is more suitable for beginners in Chinese such as
young kids. For other people whowrite cursives, the SmartGe
doesn’t work well. And we will further study it in the
future.

B. CONCLUSION
In this paper, we present SmartGe, a commercially available
system based on smartwatch, which can identify pen-holding
gesture in both English and Chinese. The result shows an
average accuracy of 98.3%, which is high enough to recog-
nize the pen-holding gesture. Extensively experiments also
confirm that the SmartGe system is effectiveness and robust-
ness. As SmartGe is well portable and easy-to-use, it will
become an ideal tool to improve the habits and quality of
handwriting, especially for early education.

REFERENCES
[1] (2018). [Online]. Available: http://www.sohu.com/a/241820740

_497957
[2] (2018). How to Hold a Pen. [Online]. Available: https://www.wikihow

.com/Hold-a-Pen
[3] A. Murata and K. Gotoh, ‘‘Effects of pen holding posture on hand-

writing motion,’’ in Proc. Adv. Social Org. Factors, vol. 12 2014,
p. 469.

VOLUME 8, 2020 28829



H. Bi et al.: SmartGe: Identifying Pen-Holding Gesture With Smartwatch

[4] H. Schwellnus, H. Carnahan, A. Kushki, H. Polatajko, C. Missiuna, and
T. Chau, ‘‘Effect of pencil grasp on the speed and legibility of handwriting
in children,’’ Amer. J. Occupational Therapy, vol. 66, no. 6, pp. 718–726,
Nov. 2012.

[5] (2012). Writing Instrument Gripping Aid and Writing Instrument Hav-
ing the Same. [Online]. Available: https://patents.google.com/patent
/US8926203B1/en

[6] H. Song, H. Benko, F. Guimbretiere, S. Izadi, X. Cao, and K. Hinckley,
‘‘Grips and gestures on a multi-touch pen,’’ in Proc. Annu. Conf. Human
Factors Comput. Syst. (CHI), 2011, pp. 1323–1332.

[7] U. Jitesh, L. Ramon, and S.Michael. (2018). IDCForecasts Slower Growth
for Wearables in 2018 Before Ramping Up Again Through 2022. [Online].
Available: https://www.idc.com/getdoc.jsp?containerId=prUS44276818

[8] S. Tan, Y. An, Y. Wu, and D. Zhang, ‘‘Electromyography based handwrit-
ing recognition system using LM-BP neural network,’’ in Proc. 9th Int.
Conf. Hum. Syst. Interact. (HSI), Jul. 2016, pp. 83–88.

[9] L. Jing, Z. Dai, and Y. Zhou, ‘‘Wearable handwriting recognition with an
inertial sensor on a finger nail,’’ in Proc. 14th IAPR Int. Conf. Document
Anal. Recognit. (ICDAR), Nov. 2017, pp. 1330–1337.

[10] Q. Xia, F. Hong, Y. Feng, and Z. Guo, ‘‘MotionHacker: Motion sensor
based eavesdropping on handwriting via smartwatch,’’ in Proc. IEEE Conf.
Comput. Commun. Workshops, Apr. 2018, pp. 468–473.

[11] X. Cao, B. Chen, and Y. Zhao, ‘‘Wi-Wri: Fine-grained writing recog-
nition using Wi-Fi signals,’’ in Proc. IEEE Trustcom/BigDataSE/ISPA,
Aug. 2016, pp. 1366–1373.

[12] T. Yu, H. Jin, and K. Nahrstedt, ‘‘WritingHacker: Audio based eavesdrop-
ping of handwriting via mobile devices,’’ in Proc. Int. Joint Conf. Pervas.
Ubiquitous Comput., 2016, pp. 463–473.

[13] H.-Y. Cheng, C.-C. Yu, V. Gau, and C.-L. Lin, ‘‘Video-based signature
verification and pen-grasping posture analysis for user-dependent iden-
tification authentication,’’ IET Comput. Vis., vol. 6, no. 5, pp. 388–396,
Sep. 2012.

[14] J. Zhang, H. Bi, Y. Chen, J. Chen, and Z.Wei, ‘‘SmartWriting: Pen-holding
gesture recognition with smartwatch,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), May 2019, pp. 1–6.

[15] S. Hadji, M. Salleh, M. Rohani, and M. Kamat, ‘‘Wavelet-based Perfor-
mance in Denoising ECG Signal,’’ in Proc. 8th Int. Conf. Signal Process.
Syst. (ICSPS), 2016, pp. 148–153.

[16] M. Sharma, A. Anand, R. Srivastava, and L. Kaligounder,
‘‘Wearable audio and IMU based shot detection in racquet sports,’’
May 2018,arXiv:1805.05456. [Online]. Available: https://arxiv.org/
abs/1805.05456

[17] J. Bandy, J. Knighten, and J. Payton, ‘‘Demonstrating highfivelive:
A mobile application for recognizing symbolic gestures,’’ in Proc. IEEE
Int. Conf. Pervas. Comput. Commun. Workshops, Mar. 2016, pp. 1–3.

[18] Y. He, Y. Wang, L. Zhang, Q. Liu, and X. Wang, The Design and Imple-
mentation of Intelligent Electronic Timer. 2015, pp. 151–154.

[19] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche,
U. Fietzek, and D. Kulić, ‘‘Data augmentation of wearable sensor
data for parkinson’ disease monitoring using convolutional neural net-
works,’’ in Proc. 19th ACM Int. Conf. Multimodal Interact. (ICMI), 2017,
pp. 216–220.

[20] H. Brock, Y. Ohgi, and J. Lee, ‘‘Learning to judge like a human: Convo-
lutional networks for classification of ski jumping errors,’’ in Proc. ACM
Int. Symp. Wearable Comput. (ISWC), 2017, pp. 106–113.

[21] T. Kautz, B. H. Groh, J. Hannink, U. Jensen, H. Strubberg, and
B. M. Eskofier, ‘‘Activity recognition in beach volleyball using a deep
convolutional neural network,’’ Data Mining Knowl. Discovey, vol. 31,
no. 6, pp. 1678–1705, Nov. 2017.

[22] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy,
‘‘Deep convolutional neural networks on multichannel time series for
human activity recognition,’’ in Proc. Int. Joint Conf. Artif. Intell., 2015,
pp. 3995–4001.

[23] F. Kerber, P. Schardt, and M. Löchtefeld, ‘‘WristRotate: A personalized
motion gesture delimiter for wrist-worn devices,’’ in Proc. 14th Int. Conf.
Mobile Ubiquitous Multimedia, 2015, pp. 218–222.

[24] D. Iyer, F. Mohammad, Y. Guo, E. Al Safadi, B. J. Smiley, Z. Liang, and
N. K. Jain, ‘‘Generalized hand gesture recognition for wearable devices
in IOT: Application and implementation challenges,’’ in Proc. Int. Conf.
Mach. Learn. Data Mining Pattern Recognit. Springer, 2016, pp. 346–355.

[25] J. Hou, X.-Y. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and P. Yang,
‘‘SignSpeaker: A real-time, high-precision smartwatch-based sign lan-
guage translator,’’ in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw.,
2019, pp. 1–15.

[26] C. Zhang, A. Bedri, G. Reyes, B. Bercik, O. T. Inan, T. E. Starner, and
G. D. Abowd, ‘‘TapSkin: Recognizing on-skin input for smartwatches,’’ in
Proc. ACM Interact. Surfaces Spaces (ISS), 2016, pp. 13–22.

[27] C. Min, S. Kang, C. Yoo, J. Cha, S. Choi, Y. Oh, and J. Song, ‘‘Exploring
current practices for battery use and management of smartwatches,’’ in
Proc. ACM Int. Symp. Wearable Comput. (ISWC), 2015, pp. 11–18.

HONGLIANG BI received the M.S. degree in
electronic and communication engineering from
the Soochow University of China, in 2015. He is
currently pursuing the Ph.D. degree with the Com-
puter School, Wuhan University. His research
interests include the Internet of Things and smart
sensing.

JIAN ZHANG received the B.S., M.S., and Ph.D.
degrees in computer architecture fromWuhanUni-
versity, in 1998, 2001, and 2006, respectively. He
is currently a Professor with the Computer School,
Wuhan University. His research interests include
cloud computing, the Internet of Things, and big
data.

YANJIAO CHEN (Member, IEEE) received
the B.E. degree in electronic engineering from
Tsinghua University, in 2010, and the Ph.D. degree
in computer science and engineering from The
Hong Kong University of Science and Technol-
ogy, in 2015. She is currently a Professor with
Wuhan University, China. Her research inter-
ests include spectrum management for Femtocell
networks, network economics, network security,
and Quality of Experience (QoE) of multimedia
delivery/distribution.

28830 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	INERTIAL SENSOR BASED WRITING RECOGNITION
	WIRELESS SIGNAL BASED WRITING RECOGNITION
	VISUAL BASED WRITING RECOGNITION

	OVERVIEW
	SMARTGE: DESIGN DETAILS
	HANDWRITING DETECTION
	SIGNAL AMPLIFICATION
	SUB-WINDOW MERGER ALGORITHM

	PEN-HOLDING GESTURE RECOGNITION
	DATA AUGMENTATION
	CONSTRUCTING CLASSIFICATION MODEL WITH DCNN
	CONSTRUCTING CLASSIFICATION MODEL WITH GENERIC FEATURES


	EVALUATION
	DATA COLLECTION
	PARAMETER SELECTION
	PEN-HOLDING GESTURE RECOGNITION
	EVALUATION METRICS
	RECOGNITION PERFORMANCE
	ROBUSTNESS

	DELAY AND ENERGY CONSUMPTION
	USER FRIENDLINESS

	LIMITATIONS AND CONCLUSION
	LIMITATIONS
	CONCLUSION

	REFERENCES
	Biographies
	HONGLIANG BI
	JIAN ZHANG
	YANJIAO CHEN


