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ABSTRACT This study mainly presents the method for monitoring the surface dynamic subsidence
basin (SDSB) caused by underground coal mining and obtaining parameters of mining subsidence (PMS)
in the short term by using an unmanned aerial vehicle (UAV) Photogrammetry Technology. The basic ideas
and methods are proposed; that is, the two-stage surface digital elevation model (DEM) is obtained in the
short term by UAV; The SDSB is obtained through two phases of DEM subtraction; Based on the dynamic
inversion method established in this study, the PMS was obtained. The UAV method was used to monitor
the Wangjiata coal mine in Inner Mongolia of China three times in three months to obtain the three phases
of DEM; we obtained the two phases SDSB by the three phases of DEM subtraction. The accuracy of DEM
and SDSB were 118 mm and 121 mm respectively, Although the accuracy cannot fulfill the requirements of
mining subsidence, the PMS was obtained by dynamic inversion method of full subsidence basin fitting,
which has better resistance to errors; hence, the obtained PMS are reliable. Based on the engineering
application, this study concludes that as a new technology, UAV photogrammetry technology can obtain
the SDSB of coal mining areas in a short period with reliable PMS. Meanwhile, it has the advantages of low
cost, flexible maneuverability, and so on, and overcomes the shortages of traditional observation stations,
which has long observation time and high labor intensity, needs to bury fixed measuring points and easily
lose them, and just has a small amount of ‘‘spot-like’’ observation data that cannot reflect the deformation
characteristics of the whole subsidence basin. Furthermore, it is feasible to apply this method to mining
subsidence monitoring and parameter inversion, and it has a great application prospect for the mining area
purposes.

INDEX TERMS UAVphotogrammetry technology, surface dynamic subsidence basin, parameters of mining
subsidence, probability integration model, dynamic inversion method.

I. INTRODUCTION
The coal mining–induced surface subsidence is a complex
spatiotemporal process and causes ecological environment
damage. To study the complex process and assess the damage
degree of the surface subsidence, it is essential to obtain the

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Li.

surface subsidence value and the surface subsidence param-
eters. In addition, predicting mining subsidence is one of
the core contents of mining subsidence, which is of consid-
erable significance to the theoretical study and production
of mining subsidence, and can be used to ascertain whether
ground structures are affected by mining and determine the
corresponding extent [1], [2]. In addition, predicting mining
subsidence is the basis for repairing, reinforcing, rebuilding
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on-site, or taking underground measures. The PMS is crucial
to determine the accuracy of the prediction.

The determining method of prediction parameters on min-
ing subsidence is to establish observation stations for surface
subsidence to obtain the surface movement data, followed
by calculating the PMS based on the measured data [1], [3].
The process for determining prediction parameters of mining
subsidence include the following: (1) establishment of param-
eters acquisition model, and (2) measured data acquisition.

Currently, the probabilistic integral steady-state model
is the leading method to obtain prediction parame-
ters [1], [3]–[5]; that is, the model parameters are evalu-
ated using the final subsidence data after the mining-caused
surface movement deformation. Thus, the method needs
to acquire the surface-stable subsidence data for parameter
calculation. Nevertheless, based on the measured data and
the studies of domestic experts, it can be asserted that the
surface subsidence stabilization time caused by mining in
China’s major mining areas is usually ≥2 years [1], [3], [6];
this method requires, at least, 2 years of surface move-
ment observation to attain a set of surface subsidence
parameters.

Currently, the observation stations primarily adopt tra-
ditional observation stations, and the leading layout is the
section linear observation stations comprising two mutually
perpendicular observation lines on the main section of the
mining working face [1]–[3], [7]–[9]. The observation meth-
ods include leveling measurement and traverse measurement
(or the total station traverse measurement). The observed
data only includes the distribution and size of the movement
and deformation on the section where the observation line
is located. Of note, traditional observatories have several
disadvantages. The observation period is long (≥2 years),
and the field observation labor intensity is large. Mean-
while, it is essential to bury a fixed measuring point, which
would occupy land and be easily lost. Of note, elevation
measurements and plane measurements are often performed
separately so that the results do not entirely reflect the spa-
tiotemporal relationship of the measuring points. Moreover,
the observed data are only the information on themain section
and are dot data, which do not entirely reflect the limitations
of the entire basin. The traditional method to attain a set of
mining subsidence parameters has the disadvantages of time
and energy consumption and small amount of data. Thus,
new surveying and mapping technologies and methods are
warranted in monitoring the mining subsidence to overcome
the limitations of traditional observation stations mentioned
above.

With the rapid advancements of science and technology in
recent years, several new measuring techniques have been
applied in deformation monitoring, which can be summa-
rized as follows. (1) Compared with traditional measurement
methods, 3D laser scanning technology [8], [10] offers unique
advantages such as it does not need to bury fixed measuring
points, can execute planar scanning, and obtain deforma-
tion information in a large range with large data volume

and high precision. However, when using 3D laser scanning
for data acquisition, owing to the limited viewing angle or
other object occlusions, it is essential to properly arrange
the site for full-scale scanning. Thus, there are two com-
mon approaches to solve the problem of inconsistent cloud
coordinates for each site: (i) set up multiple public targets
between stations, and (ii) establish a control network first.
However, some problems exist in both methods as follows:
(i) the field labor is large; (ii) the observation efficiency is
low, making it unable to be used in a large area; and (iii) it is
difficult to layout the target uniformly and measure the center
coordinate of the target in mountainous areas with com-
plex topography. Consequently, these limitations restrict the
promotion and application of 3D laser scanning technology
in mining areas. (2) InSAR technology (synthetic aperture
radar interference)[10]–[20] can offer all-weather and all-day
imaging with large imaging areas, abundant information, and
high precision. Nevertheless, the large subsidence of mining
subsidence in the mining area accounts for phase unwrapping
errors. Hence, the monitoring results have a large deviation,
and even the large deformation of the mining area cannot be
monitored, which has become one of leading factors limiting
the application of InSAR technology in mining subsidence
monitoring.

Contrary to 3D laser scanning technology and InSAR
technology, unmanned aerial vehicle Photogrammetry tech-
nology (UAV) [21]–[24] offers multiple advantages such as
low cost, flexibility, and quickly obtaining a wide range
of high-quality surface subsidence information. UAV Pho-
togrammetry technology was adopted for mining subsidence
observation, which does not need fixed measuring points
or observation of the entire process from the beginning of
mining to the end of mining stability. In a short period
(months), some subsidence areas are selected to monitor two
to three times, and after data processing, digital elevation
model (DEM) is used to assess each mining area. However,
some subsidence areas are selected and monitored for two
or three periods within a short time (several months), and
DEM of each period is attained through data processing.
Then, the dynamic subsidence data of mining area can be
obtained by DEM subtraction of two periods. The subsidence
parameters of surface mining can be obtained by establish-
ing the basin dynamic parameters of the probability inte-
gral model. UAV Photogrammetry technology can not only
enhance the efficiency but also obtain rich observation data
of subsidence basin, which is equivalent to a high-density
planar observation station. Besides, this method provides
more comprehensive measured data and precise predicted
parameters for mining subsidence. Thus, UAV Photogram-
metry technology offers a broader application prospect in
the mining area because it can better predict surface sub-
sidence. In this study, taking Wangjiata Coal Mine as an
example, we examined the method of applying UAV Pho-
togrammetry Technology to monitor mining subsidence and
surfacemining subsidence parameters inversion in themining
area.
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FIGURE 1. Sketch of UAV Photogrammetry technology for monitoring SDSB.

II. BASIC IDEAS AND METHODS OF SDSB AND PMS
Figure 1 shows the schematic diagram of monitoring surface
subsidence caused by coal mining using UAV Photogram-
metry technology. When coal seam is excavated toward
position 1, observe the ground surface above the coal seam
using UAV, and then establish digital elevation model (DEM)
in the mining subsidence area by observed data (hereinafter
DEM1). While the coal seam is pushed to position 2, the new
DEM (hereinafter DEM2) is obtained by the second obser-
vation of the ground surface at the same surface position.
By deductingDEM2 fromDEM1,wemeasured SDSB during
a period between two mining processes (positions 1 and 2).
Combined with underground mining and dynamic inversion
method, PMS can be deduced.

III. DYNAMIC INVERSION METHOD OF PMS
A. DYNAMIC PREDICTION METHOD
The dynamic prediction method (referred to as DPM) of
probability integral considers the correlation between the
process of surface subsidence and the spatial position, as well
as time. The DPM is the final state of surface subsidence
caused by underground coal mining, namely probability inte-
gral steady-state prediction model (PIM), multiplied by the
time effect function.

1) PIM
The PIM is named for the probability integral in its predic-
tion formula, which is based on the random medium the-
ory [1]–[3], [5], [7]]; this model has been extensively used in
China. The PIM can be used to illustrate the prediction model
of an arbitrary point on the surface, and the formula of unit
mining surface subsidence basin can be obtained as follows:

We(x) =
1
r
eπ

x2

r2 (1)

FIGURE 2. Spatial coordinates (1 is the surface, and 2 is the underground
coal seam) [7].

Considering the 3D characteristics in Figure 2, the surface
subsidence of any point A(x, y) because of the unit mining
B(s, t) can be expressed as follows:

We(x, y) =
1
r2
eπ

(x−S)2+(y−t)2

r2 (2)

When the mining is O1CDE, the subsidence prediction for-
mula of point A caused by the whole mining is as follows:

W (x, y) = W0

∫ l

0

∫ L

0

1
r2
eπ

(x−S)2+(y−t)2

r2 dtds (3)

whereW0 is themaximum subsidence at supercritical mining,
W0 = mqcosa; r is the main influence radius, r = H0/tanβ;
l is strike length, l = D3 − S3 − S4; L is the dip length,
L = (D1-S1-S2)·sin(θ0 + a)/sin(θ0). Based on the subsidence
formula, other displacement deformation values of the sur-
face (X, Y) can be deduced.
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To use this model to obtain the full subsidence, it is essen-
tial to confirm the prediction parameters q, tanβ, S1, S2,
S3, S4, and θ0. Here, q is the subsidence coefficient; tanβ
is the tangent of the main influence angle; θ0 is the mining
transference angle; and (S1, S2, S3, S4) is the deviation of
the inflection point.

2) TIME EFFECT FUNCTION
The surface subsidence is a continuous spatiotemporal pro-
cess, which depends on the spatial location and time, as well
as on the mining speed and overburden property. Movement
and deformation are continuous spatiotemporal functions.
The dynamic prediction model is to establish the correlation
between subsidence and spatial position and time.

If a minuscule working face of the coal seam (or dividing
the working face into nminuscule working faces) is produced
instantaneously,We(x, y) andWeo(x, y, t) are the final subsi-
dence value of the surface point p(x,y) caused by the mining
working face and the subsidence value at time t , respectively.
The time effect function isf (t), then

Weo(x, y, t) = We(x, y) • f (t) (4)

Of note, We(x, y) is the steady-state prediction model of
probabilistic integral, and the time effect function is f (t) =
1 − e−ct , where t is the time interval between the estimated
time and the unit mining time; and C is the subsidence
velocity coefficient.

If oneworking face is divided into n small rectangular faces
and mining is just located in rectangular working face i at
time t , then, the subsidence value of pointp on the surface
at time tcaused by the mining areas (1 ∼ i small rectangular
working face) can be evaluated according to the superposition
principle.

W (x, y, t) =
n∑
i=1

(Wie(x, y) • f (ti)) (5)

The subsidence value of any point on the surface at any
time can be obtained by finding the subsidence velocity coef-
ficient C , while C is the time effect coefficient depending on
the rock properties, which is calculated as follows.

The following formula is to evaluate the subsidence veloc-
ity coefficient [3], [10]:

C = 2.0 • v • tanβ/H (6)

where, v is the average advance speed of the working face
(m/d); tanβ is the tangent of the main influence angle; and
H is the average mining depth.

B. INVERSION METHOD BASED ON DPM
Set n observation points on the ground movement observa-
tion station above coal mining working face, and the field
measured subsidence of an arbitrarily observation point i
(i = 1, 2, 3, ..., n) is marked as Wi−measured ; based on the
probability integral method [namely Eq. (5)], the predicted
subsidence marked as Wi−predicted of the arbitrarily point i

can be expressed as a function of the independent variable X
(x, y) (coordinates of observation points) and the subsidence
prediction parameters (q, β, S1, S2, S3, S4,θ0), so Eq. (5) can
be abbreviated to:

Wi−predicted = f (Xi, q, tanβ, S1, S2, S3, S4, θ0) (7)

To build an inversion calculation model of subsidence
parameters, we expanded Eq. (7) into the Taylor’s Series, take
the first derivative item, and substitute the initial subsidence
parameters and coordinates of observation points into the
equation, Eq. (7) can be rewritten as follows:

Wi−predicted

= f [Xi, (q)0, (tanβ)0, (S1)0, (S2)0, (S3)0, (S4)0, (θ0)0]

+
∂f
∂q
1q+

∂f
∂ tanβ

1 tanβ +
∂f
∂S1

1S1

+
∂f
∂S2

1S2 +
∂f
∂S3

1S3 +
∂f
∂S4

1S4 +
∂f
∂θ0

1θ0 (8)

where (q)0, (tanβ)0, (S1)0, (S2)0, (S3)0, (S4)0, (θ0)0 are
respectively the initial approximation subsidence parameters.

Based on the measured subsidence Wi−measured and the
predicted subsidence Wi−redicted , an error equation can be
obtained as follows:

Vi = Wi−predicted −Wi−measured = (Wi−predicted )0

+
∂f
∂q
1q+

∂f
∂ tanβ

1 tanβ +
∂f
∂S1

1S1 +
∂f
∂S2

1S2

+
∂f
∂S3

1S3 +
∂f
∂S4

1S4 +
∂f
∂θ0

1θ0 −Wi−measured (9)

where

(Wi−predicted )0
= f [Xi, (q)0, (tanβ)0, (S1)0, (S2)0, (S3)0, (S4)0, (θ0)0].

Assume li = (Wi−predicted )0 − Wi−measured (i = 1,2,
3,. . . . . . ,n), matrix form of Eq. (9) is as follows, (10), as shown
at the bottom of the next page. Based on the principle of
least squares, that is,V TV = min, we can obtain the normal
equation:

BTBZ + BTL = 0 (11)

Solving Eq. (11), we can obtain the parameters correction;
adding the correction to the initial approximation parameters,
we obtained the accurate parameters.

C. STEPS OF PMS ACQUISITION
The steps of the dynamic acquisition method of parameters
are as follows:

(1) Based on the overall monitoring area to generate the
predicted grid, it is normally essential to set a rectangular
range containing the monitoring area to generate the grid.

(2) Based on the DEM obtained by two observations,
the grid elevation value is obtained through interpolation.

(3) Input the working face information and dimension.
Then, input the time t1 and t2 when the mining location starts
mining of the working face.
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TABLE 1. The necessary information of the working face 2S201.

(4) Input the initial values and upper and lower bounds of
parameters.

(5) The subsidence value W1 and W2 of grid points at t1
and t2 are predicted, respectively, and the difference between
W2 andW1 is the subsidence in time t1to t2.
(6) The measured subsidence is obtained by subtracting

two measured elevations.
(7) The difference between measured subsidence and cal-

culated subsidence is the fitting error.
(8) Based on the fitting error, determine whether to con-

tinue the iteration. If the need is to continue iterating, reselect
the parameters and star from step (5).

Figure 3 displays the flowchart of dynamic parameter
acquisition.

Based on these steps, we can obtain the final parameters
of surface subsidence, including subsidence coefficient q,
the tangent of the main influence angle tanβ, the min-
ing transference angle θ , and the deviation of inflection
point S. However, it does not include horizontal displacement
coefficient.

IV. ENGINEERING APPLICATION ANALYSIS
A. GENERAL SITUATION OF THE STUDY AREA
Wangjiata coal mine is located in Ordos, Inner Mongolia
autonomous province of China. The characteristics of the
working face 2S201 are as follows: strike length, ∼1253 m;
dip length, ∼260 m; and the average dip angle of the
coal seam, 2◦. In addition, the mining depth is approxi-
mately 200 m, and the average mining thickness is 3.26 m.

Table 1 presents the detailed parameters. The mine started on
July 11, 2018, and stopped October 15, 2018. Figure 4 shows
the excavation view of the working face.

B. FIEDL DATA ACQUISITION USING UAV
1) FLIGHT DESIGN
In this study, UAV used was Trimble UX5 (Figure 5) to
acquire photography images, and images were taken directly
from SONY A5100 SLR camera. The flight scheme was
designed as follows:

(1) The ground resolution was 6 cm in this flight scheme.
The images were designed with an overlap of 80% and 60%
in the flight and side directions, respectively.

(2) Based on the focal length (15 mm) and pixel size of the
camera, the relative flight height was 230 m.

(3) Route planning and sortie division—the test course
direction was designed per the wind direction, and the
course direction was perpendicular to the wind direction.
The area was approximately 1.66 km2, and the flight time
was 35 min.

(4) The measurement of image control points. The layout
of image control points was marked on the ground by laying
lime powder. Based on the area and terrain variation, eight
image control points were evenly arranged in the survey area,
which were measured by the total station and GPS-RTK.

2) DATA ACQUISITION
We performed a total of three phases for UAV photography
to obtain 560 images in each phase (seen from Table 2);

V
n×1
= B

n×7
Z

7×1
+ L
n×1

V =


V1
V2
...

Vn

 , Z =



1q
1 tanβ
1S1
1S2
1S3
1S4
1θ0


, L =


l1
l2
...

ln



B =



(
∂f
∂q

)
1

(
∂f

∂ tanβ

)
1

(
∂f
∂S1

)
1

(
∂f
∂S2

)
1

(
∂f
∂S3

)
1

(
∂f
∂S4

)
1

(
∂f
∂θ0

)
1(

∂f
∂q

)
2

(
∂f

∂ tanβ

)
2

(
∂f
∂S1

)
2

(
∂f
∂S2

)
2

(
∂f
∂S3

)
2

(
∂f
∂S4

)
2

(
∂f
∂θ0

)
2

...
...

...
...

...
...

...(
∂f
∂q

)
n

(
∂f

∂ tanβ

)
n

(
∂f
∂S1

)
n

(
∂f
∂S2

)
n

(
∂f
∂S3

)
n

(
∂f
∂S4

)
n

(
∂f
∂θ0

)
n


(10)
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FIGURE 3. The flowchart of dynamic parameter acquisition.

The three phases of UAV photography were as follows:
June 9, 2018; September 3, 2018; and October 15, 2018;
Figure 4 shows the layout of flight strips of each phase, there
are 28 east–west flight strips in the first and second phase,
and 20 photos were taken for each flight strip. In the third
phase, there are 14 north–south flight strips, each of which
took 40 photos. The average flight height was nearly 230 m.
In the flight area, 13 control points were set [Figure 4 and
Figure 5(c)], we take total station to measure the 3D coordi-
nate of these control points.

C. SDSB AND ITS ACCURACY ANALYSIS
1) DEM AND ITS ACCURACY ANALYSIS
The UAV photogrammetry technology needs to process
a large number of images [25], [26]. However, there
are already powerful and mature software for processing

UAV photogrammetry image data, such as Inpho, Pix4D
and PhotoScan. We generated DEM in this study using the
PIX4D software. PIX4D is a professional UAV mapping and
photogrammetry software, which can convert images taken
by UAV, handheld device or aircraft, generate high-precision
2D maps and 3D models with geographic coordinates, and
generate a broad range of customizable results, which are
compatible with various software.

The three phases of UAV data were imported into the
PIX4D software. The coordinate of control points was
imported, the center position of the image control points was
edited, and the DEM was generated through aerial triangula-
tion (Figure 6).

Based on the high-precision testing requirements in the
specifications of quality inspection and acceptance of sur-
veying and mapping products, we evaluated the mean square

VOLUME 8, 2020 16377



Z. Dawei et al.: UAV Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion

FIGURE 4. The excavation view of the working face 2S201 and layout of image control points.

TABLE 2. Data acquisition achieved over the study areas.

error (M ) as follows:

M =

√∑n
i=11

2
i

n
(12)

The DEM precision of UAV was obtained by comparing
the total station data collected by the ground point and the
corresponding elevation of the DEM generated by the UAV.
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FIGURE 5. UAV photogrammetry flight scene, (a) the flight scene, (b) the UAV of Trimble UX5, and (c) markers of control
points.

FIGURE 6. The DEM generated by UAV image processing.

Using formula (12), the mean square error in DEM of UAV
was evaluated as follows (Tables 3−5).

Compared with the data of the total station in each
period, on June 9, 2018, the DEM data of UAV in the
first phase displayed the lowest precision, with an eleva-
tion mean square error of 148 mm. Conversely, the data
in the third phase had the highest precision, with an ele-
vation mean square error of 96 mm. Furthermore, the
DEM average elevation mean square error of UAV data
was 118 mm.

TABLE 3. DEM accuracy in the first phase on June 9, 2018.

2) DYNAMIC SUBSIDENCE BASIN AND ITS ACCURACY
ANALYSIS
a: SUBSIDENCE BASIN ACQUISITION
We subtracted DEM observed in phases 2 and 3 from DEM
observed in phase 1 to obtain the surface subsidence basin
caused by mining in the working face 2S201 (Figure 7).
During June 9 to September 3, 2018, when the coal seam was
excavated to 640 m, it reached supercritical mining, and the
maximum subsidence value was 2135 mm. By October 15,
2018, coal seam was excavated to 780 m, and the correspond-
ing maximum subsidence value was 2670 mm, suggesting
that the maximum subsidence value was basically stable.
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TABLE 4. DEM accuracy in the second phase of September 3, 2018.

TABLE 5. DEM accuracy in the third phase on October 15, 2018.

b: ACCURACY ANALYSIS OF SUBSIDENCE BASIN
The mean square errors in the data of subsidence basin using
UAV can be calculated by subtracting the elevation of the
total station at corresponding points in the two periods from
that of corresponding DEM of UAV (refer Table 6 for more
details). According to the calculation results, the maximum
mean square error of the subsidence value was 0.140 m,
theminimumwas 0.101m, and the averagemean square error
was 0.121 m (121 mm).

c: ERROR SOURCES AND ANALYSIS
(1) Influencing factors of UAV photogrammetry accuracy

¬ UAV flight control technology: When performing aerial
photography, UAV is highly affected by airflow, wind force,
and wind direction. The UAV is unstable in flight, which
affects the image quality and photogrammetry accuracy.

 Photographic camera quality:
Camera objective lens has significant chromatic aberration

and distortion: The camera objective lens produces lateral
and vertical chromatic aberrations in the focal plane because
of the different refractive index of the light, resulting in the

blurred and unclear images. Some residuals exist in the pro-
duction, installation, and debugging of the camera objective.
The distortion difference cannot retain the exact similarity
between the image and the object, resulting in the geometric
deformation of the image.

Chip size of CCD and Resolution: Resolution implies the
analytical ability of a CCD chip of a digital camera to the
object. The number of pixels is a crucial factor in measuring
the resolution of a digital camera. In the same area, the more
pixels are (namely the unit pixels are smaller), the higher
resolution of the image is, the better detail performance of
the image is, and the more realistic color restoration is. Else,
the image quality is worse.

® Measurement technical scheme
Image overlap, ratio of baseline and height: A majority

of small digital cameras used by UAV are rectangular array
CCD, not traditional square. The larger the image overlap
is, the smaller the ratio of the baseline and height is. In the
3D model, the intersection angle of the same objects can
be smaller, which decreases the 3D observation effect and
directly affects the accuracy of the elevation measurement.

Image control point target selection: When image control
points are measured, the richness of the image texture (such
as rough image texture and curved surface features) directly
affects the accuracy of the points selection. Moreover, indoor
operation exerts a significant impact on puncturing image
control points, which decreases the accuracy.

(2) The main methods to enhance the UAV photogramme-
try accuracy are as follows:

¬ Enhance the accuracy of image control points: Improv-
ing the accuracy of image control points includes the mea-
surement accuracy of image control points and the accu-
racy of image control point target selection such as using
high-precisionGPS tomeasure image control points; enhance
the distribution density and uniformity of image control
points.

 Improve the accuracy of camera distortion parameters:
First, detect the camera distortion parameters before and after
UAV aerial photogrammetry; second, fix the camera lens to
decrease the impact caused by camera distortion parameter
changes on the measurement results.

® Improve image clarity: The UAV aerial image clarity
is affected by flight speed, camera shutter speed, and flight
turbulence. UAVfly at uniform speed asmuch as possible (the
speed is controlled within 80 km/h), adjust the appropriate
camera shutter speed, camera exposure time, and ISO value
of the camera to decrease image noise.

¯Choose the appropriate flight altitude: The flight altitude
primarily affects the GSD (ground sampling resolution) in
the flight image, and the change of flight altitude inevitably
affects the size of the aerial image. The closer the UAV is to
the ground, the smaller the GSD value is, and the higher the
accuracy is. The design of aerial height could be as follows:

H =
f × GSD

α
(13)
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TABLE 6. Mean square error of subsidence obtained by UAV.

TABLE 7. The PMS obtained by the data of September, 2018.

where H is the height of the photography row (m); f is the
lens focal length (mm); a is the pixel size (mm); and GSD is
ground sampling resolution (m).

D. SUBSIDENCE PARAMETERS INVERSION
In this study, we used the measured subsidence value of UAV
to inverse the probability integral parameters. The SDSB
[Figure 7(a)] can be obtained by subtracting DEM data of
UAV in phases 2 (September 3, 2018) and 1 (June 9, 2018).
Furthermore, we obtained the PMS by using the DPM estab-
lished in Section III of this paper, Table 7 shows the measured
PMS. As shown in Figure 8(a), making a profile along the
centerline of the subsidence basin along the strike (A–A′ )/dip
(B–B′ ) main section, the tangents were extracted and com-
pared with the predicted values. During June 9−September 3,
2018, when the coal seam was excavated to 640 m, the max-
imum measured subsidence value was 2135 mm, and the
predicted subsidence value was 2198 mm. Based on the com-
parison between themeasured and predicted results, the mean
square error of the subsidence in the entire area was 124 mm,
accounting for 5.8% of the maximum subsidence value
[Figure 8(a)]. As shown in Figure 8(b)and (c), the two sec-
tions fit well. The error of the strike profile fitting was
112 mm, accounting for 5.2% of the maximum strike subsi-
dence value. The error of the dip profile fitting was 136 mm,
accounting for 6.3% of the maximum dip subsidence
value.

E. SIMULATION ANALYSIS OF PMS RELIABILITY
As mentioned earlier, the average mean square error of the
subsidence value obtained by UAV was 121 mm, and the
maximum mean square error was 142 mm. The monitoring
precision of a single point did not meet the requirements
of the relevant specification. Simulation analysis was used
to study the reliability of PMS. By adding random error to
the subsidence value, the PMS is calculated by using the
subsidence value after adding error, we analyzed the effect
of measurement error on the PMS, and then received the
reliability of PMS.

Taking the observation station of a working face as an
example, we illustrated the impact of the observation error on
PMS. Figure 9(a) shows the layout of the observation station;
for this observation station, traditional leveling method was
adopted for observation, the measured subsidence value of
the observation station is presented in Table 8. The PMS is
presented in the first row of Table 9, and Figure 9(b) and (c)
show subsidence fitting.

The measured subsidence value of the observation sta-
tion was considered as the true value, and the calculated
parameters were regarded as the true value of the parameters.
Then, the random error was added to the subsidence value,
and the parameters were calculated by the subsidence value
after adding error. Through comparative analysis, the impact
of errors on the PMS of mining was obtained, as shown
in Table 9.
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FIGURE 7. The SDSB from phase I (2018.06.09) to phase II (2018.09.03) and the SDSB from phase I to phase III (2018.10.15).

FIGURE 8. The comparison between predicted subsidence and measured dynamic subsidence during
June 9-September 3, 2018. (a) The comparison of the whole subsidence basin; (b)the profile of the strike
direction main section (A-A’); (c) the profile of the dip direction main section (B–B′ ).

As revealed in Table 9, when the mean square error is
within the range of (1%–10%)W0(W0 is the maximum mea-
sured subsidence value), namely 10–60 mm, the subsidence
coefficient remained stable. When out of range, the subsi-

dence coefficient deviated from the true value. When the
mean square error was within the range of (1%–7%) W0,
namely 10–40 mm, the calculated parameters were reliable.
When the mean square error was >7%, the deviation of
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FIGURE 9. The surface subsidence observation station and the subsidence fitting; (a) the top and bottom view of the
observation station; (b) Subsidence fitting in the strike direction (c) subsidence fitting in the dip direction.

TABLE 8. Field subsidence value of the observation station.

inflection point deviated markedly from the true value (when
the mean square error was 40, S1 = 41, deviated 11 m from
the true value). Table 9 also shows that the effect of the
mean square error on the tangent of the main influence angle
and the mining transference angle was not significant. When
the mean square error was within the range of (1%–10%),
fittingmean square error fulfilled the requirement of<0.1W0.
If the mean square error was out of this range (1%–10%),
fitting mean square error was larger than 0.1W0(in the table,
when mean square error is 70 mm, the fitting mean square
error is 72 mm, which is larger than 0.1W0 = 57.5 mm; at
this time, the calculated parameters are not reliable).

As analyzed above, when the ratio of the mean square error
to the maximum measured subsidence value was <7%, all
of the PMS were reliable. When the ratio of the observation
mean square error to the maximum measured subsidence

value was 7%–10%, the calculated subsidence coefficient,
the tangent of the main influence angle, and the mining
transference angle were reliable. Conversely, the deviation of
the inflection point deviated markedly from the true value.
When the ratio of the error to the maximum subsidence value
was >10%, all of the PMS was not reliable.
Based on the analysis explained above, Table 10 shows the

effect of observation errors on the reliability of the calculated
parameters using the PIM. Thus, when the ratio of the mean
square error to the maximum subsidence value was <7%,
all the parameters obtained were reliable. When the ratio
of the mean square error to the maximum subsidence value
was 7%–10%, some parameters obtained were reliable, while
those >10% were unreliable.

From the perspective of parameters acquisition, the surface
subsidence observed byUAV inWangjiata coal mine could be
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TABLE 9. The PMS after adding random error.

TABLE 10. The effect of measurement errors on the reliability of the PMS.

used to monitoring subsidence deformation if the following
conditions were fulfilled:

121mm
W0

= 7%⇒ W0 = 1729mm

121mm
W0

= 10%⇒ W0 = 1210mm

Specifically, the application of UAV in mining subsidence
monitoring needs to fulfill one requirement. The maximum
surface subsidence in the observation area was>1729 mm; if
the maximum subsidence was 1210–1729 mm, some param-
eters were reliable.

Based on the comparison between the measured and pre-
dicted results in Sections of IV-C and D of this paper,
the observed maximum subsidence value of Wangjiata coal
mine was 2135 mm by September 3, 2018 and 2670 mm by
October 15, 2018, the mean square error of the subsidence
in the entire area was 124 mm, accounting for 5.8% of the
maximum subsidence value by September 3, 2018, the ratio
of the mean square error to the maximum subsidence value
was <7%, based on the analysis presented above, it can
be concluded that the PMS obtained by inversion of the
measured subsidence value by UAV Photogrammetry tech-
nology in the Wangjiata coal mine are reliable. In addition,

UAV monitoring was used to obtain the subsidence value of
the entire area. Although the monitoring precision of a single
point was not high, the PMS could be obtained by using a
large number of entire subsidence basin data in the area that
has better resistance to errors, and the calculated parameters
can also obtain high precision.

Thus, we used 3 months (2018.06.09 -2018.09.03),
the working face 2S201 of the Wangjiata coal mine were
selected to monitor two to three times, DEM of each period
was attained through data processing. Then, the information
data on the entire basin of the dynamic subsidence area was
obtained by DEM subtraction of two periods. The reliable
PMS were obtained quickly. Therefore, UAV Photogramme-
try technology can not only enhance the efficiency but also
obtain comprehensive measured data of subsidence basin.
Besides, this method provides precise predicted parameters
for mining subsidence. Hence, UAV Photogrammetry tech-
nology offers a broader application prospect in the mining
area because it can better predict surface subsidence.

V. CONCLUSIONS
The research findings of this study are as follows:

(1) As a new monitoring technology for mining sub-
sidence, UAV Photogrammetry technology overcomes the
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limitations, including a long observation period, high labor
intensity, burying fixed measuring points, and difficult pro-
tection in traditional observation stations. UAV Photogram-
metry technology can be used to obtain ground dynamic
subsidence basin data in mining area in a short time. In addi-
tion, the ground subsidence parameters are calculated reliably
by the probability integral dynamic prediction model and
dynamic parameters acquisition method. Besides improving
the efficiency, UAV Photogrammetry technology offers rich
subsidence data, which provides crucial data support for
environmental assessment, land reclamation, and ecological
restoration in the mining area.

(2) The research results suggest that the average mean
square error of DEM obtained by UAV is 118 mm, and the
averagemean square error of the subsidence value is 121mm.
UAV photogrammetry technology monitoring is used to
obtain the subsidence value of the entire area. Although the
monitoring precision of a single point is not high, the PMS
can be obtained by using a large number of the entire subsi-
dence basin data which has a better resistance to errors, and
the calculated parameters can also obtain high precision.

(3) Through systematic studies, a set of complete tech-
nical system for monitoring surface subsidence in the min-
ing area by UAV Photogrammetry technology and quickly
obtaining the parameters of mining subsidence is formed.
As the method has been successfully applied in Wangjiata
coal mine of Inner Mongolia of China, it merits promotion
and application.
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