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ABSTRACT In order to facilitate massive connectivity in fifth-generation (5G) systems and make full use
of advanced coding schemes, designing effective multiuser detection algorithms is necessary for mitigating
the interference in multiple access systems. To evaluate the performance of different detection algorithms,
the conventional method is implementing the Monte Carlo (MC) simulation to estimate the detection
error rate. In this paper, we present a novel simulation scheme based on adaptive importance-sampling
(AIS) theory, which accelerates the simulation speed for estimating the extremely low detection error rate
in multiple access systems. Specifically, by restricting the generation of random codewords to the joint
Gaussian distribution biased with scaling parameters, two algorithms are proposed to determine the optimal
biased parameters such that the estimated variance or the cross-entropy resulted in the AIS simulation is
minimized respectively. Our proposed simulation scheme is compared with the standard MC simulation in
the performance evaluation of message passing algorithm (MPA) for uplink sparse code multiple access
(SCMA) system. Numerical results show that our proposed scheme provides a feasible estimation of
extremely low detection error rate and achieves significant performance gain with reduced simulation
overhead.

INDEX TERMS Multiple access, multiuser detection, low-overhead simulation, adaptive importance-
sampling.

I. INTRODUCTION
The Internet of Things (IoT) has emerged as an intelligent
network for the fifth-generation (5G) wireless communica-
tions, which supports connections among a large number of
users and/or smart devices [1]–[3]. To meet the increasing
demand for low-latency and high-reliability transmission in
multiple access systems, enhanced physical-layer coding and
modulation schemes have been highly expected to accommo-
date massive connectivity and satisfy diverse service require-
ments [4], [5].

Recently, several non-orthogonal multiple access (NOMA)
schemes have attracted a lot of attention, which can
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approving it for publication was Kezhi Wang.

provide a good tradeoff between employing the limited
spectral resources and mitigating the co-channel interference
[6]–[9]. Among them, the sparse code multiple access
(SCMA) induced in [10] has demonstrated its advantages
in terms of multidimensional constellation gain and over-
loaded reception as a novel code-domain non-orthogonal
multiple access scheme. Moreover, to achieve effective mul-
tiuser detection, message passing algorithm (MPA) has been
proposed as a dominant detection scheme with near-optimal
performance [11] in SCMA systems. However, the high
complexity of existing multiuser detection algorithms poses
an obstacle to the hardware implementation especially with
massive users accessing. In this regard, seeking the low-
complexity detection algorithms with superior performance
is necessary for deploying multiple access systems [12], [13].
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The performance evaluation of different multiuser detec-
tion algorithms is usually carried out by observing the
resulted bit error rate (BER) or symbol error rate (SER)
[14]. Due to the inherent complexity in multiple access
systems, the analytical solutions of the detection error rate
is mathematically intractable. To facilitate efficient evalua-
tion among different multiuser detection algorithms, Monte
Carlo (MC) simulations have been widely utilized. However,
the conventional MC scheme often requires generating a
large number of random simulation samples to reach specific
accuracy, and will lead to prohibitive computational com-
plexity when the estimated detection error rate is extremely
low [15]. Toward this end, a more efficient simulation scheme
(with low complexity and high accuracy) to evaluate the
performance of different multiuser detection algorithms is
expected.

It is well known that the complexity of MC scheme is
mainly related to the estimated variance caused by random
events [16]. Such variance can be large or even infinite when
the target event is rare, e.g., the extremely rare detection
error., for which the required number ofMC trials may be pro-
hibitively high to maintain specific accuracy for estimating
the error rate [17], [18]. To deal with such issue, importance-
sampling (IS) scheme has been proposed to reduce the esti-
mated variance to an acceptable level [19]. The basic idea
of IS scheme is to design a biased distribution for event
generation such that the occurrence frequency of rare event
is enhanced. Although the zero-variance IS biased distri-
bution has theoretically existed with simple representation,
it involves a priori knowledge of the value to be estimated
[20]. Therefore, a large body of related work [21]–[23] have
been devoted to searching for the implementable and subop-
timal biased distribution, that facilitates both fast simulation
and acceptable accuracy compared with the conventional MC
scheme.

One of the commonly used approaches for designing the
biased distributions is to restrict them to a selected family
of density functions indexed by one or more parameters.
Such selection can be carried out by identifying a density
distribution that closely resembles the zero-variance IS biased
distribution [24]. In addition, it could also refer to the direct
transformation, e.g., scaling, translation, or exponential twist-
ing, of the original density distribution used for generating the
random event [25], [26]. Once the selection is made, the rest
procedure is mainly about determining the optimal biased
parameters with minimized estimated variance or the other
metrics, such as the cross-entropy [27]. Work [28] proposed
to restrict the biased distribution to Bernoulli distribution
for generating random linear block codewords over binary
symmetric channels, based on which the optimal IS biased
distribution was analytically proved. To estimate the low
error rate of low-density parity-check (LDPC) codes over
fading channels, [29] regarded the IS biased distribution as a
mean-shifted version of the original noise density, where the
involved parameters were approximately derived in closed-
form solutions.

However, the aforementioned optimization procedure can-
not always proceed directly and sometimes may lead to
numerically tedious exercise. According to Bayesian theory,
the unknown posterior can be approximated by employing
the generated samples from the prior. In this way, the adap-
tive importance-sampling (AIS) scheme has been emerged
recently [30]–[32], which suggests to iteratively improve
the selected biased distribution as the simulations proceed
simultaneously.More explicitly, by generating random events
according to an initial biased distribution, the correspond-
ing estimation results can be collected to produce a better
biased distribution. Thus, the learning process takes place
from events obtained in previous iterations and the selection
of biased distributions keeps adapting, which provides meth-
ods to effectively optimize the biased parameters with lower
complexity.Works [33], [34] have investigated the superiority
of AIS for dealing with the infeasible optimization of biased
parameters. By delicately designing the biased distributions,
the simulation overhead for evaluating the performance of
different coding or decoding algorithms can be significantly
saved.

Unfortunately, most of the existing work have assumed
to apply the IS-based simulations into the point-to-point
communication system, which is not extended to more
general cases of 5G wireless networks, i.e., the physical-
layer transmission is realized among a large number of
users or devices [35]. Therefore, how to exploit the potential
benefits of the IS scheme in more complex systems is chal-
lenging and necessary.

In this paper, we will discuss the AIS-aided fast simula-
tion scheme for performance evaluation of multiuser detec-
tion algorithms in the physical-layer multiple access sys-
tem. Specifically, we focus on the uplink SCMA system
detected through the low-complexity MPA algorithm. Since
the detection error rate is mainly caused by the background
noise and since the co-channel interference can be effectively
eliminated throughmultiuser detection, we regard the random
noise as the random event and consider to restrict its biased
distribution to the Gaussian distribution with alterable noise
variance. Then, two algorithms are proposed to determine
the suboptimal biased parameters, which are aimed at min-
imizing the estimated variance and the cross-entropy, respec-
tively. Simulation results show that our proposed scheme will
significantly reduce the simulation overhead compared with
the conventional MC scheme, especially for estimating the
extremely low detection error rate.

II. SYSTEM MODEL
We consider an uplink sparse code multiple access (SCMA)
system, where J single-antenna users transmit signal simul-
taneously to the base station in K orthogonal resources (J >
K ). For each user j, every L incoming bits are mapped into
a K -dimensional complex codeword xj = (x1,j, · · ·, xK ,j)T

selected from a K -dimensional complex codebook Xj of size
Q = 2L . In order to accommodate the demand of massive
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connectivity in 5G system, the overloading factor is defined
as λ = J/K and λ > 1 in general.
The K -dimensional received signal y = (y1, · · ·, yK )T at

the base station can be expressed as

y =
J∑
j=1

diag(hj)xj + n, (1)

where hj = (h1,j, · · · , hK ,j)T denotes the channel vector
between the base station and user j, whose elements obey
the complex Gaussian distributions CN (0, 1). n denotes the
Gaussian noise vector, and follows the complex Gaussian
distribution CN (0, σ 2I).
Given the observed y, the base station needs to choose a

specific multiuser detection algorithm (e.g., message pass-
ing algorithm (MPA)) to recover the transmitted codewords
X = (x1, x2, · · · , xJ ). The performance of different detection
algorithms can be measured by calculating the probability of
detection error, i.e., the probability that the detected code-
words is different from the transmitted codewords, which is
mathematically given by

P(e) = E
[c(y)
J

]
= E[g(y)], (2)

where c(y) denotes the sum of codewords detected erro-
neously given each observation y; g(y) denotes the average
number of codewords detected erroneously for each individ-
ual user; and E[·] represents the expectation operation among
all potential observations. For ease of notation, we refer P(e)
as the symbol error rate (SER) hereinafter.

Since the detection error induced by most detection algo-
rithms is mainly related to the background noise, we can
regard that E[g(y)] equals to E[g(n)] given the same trans-
mitted codewordsX, where g(n) denotes the number of code-
words detected erroneously under noise n. Then, we have the
following transformation for P(e) as,

P(e) = E[g(y)] = E[g(n)] =
∫
n
g(n)p(n)dn, (3)

where p(n) =
∏K

k=1 p(nk ) denotes the joint PMF of the
occurrence of noise vector n.

Due to the unknown background noise and the inherent
complexity of detection algorithms in SCMA systems, g(n)
has no explicit form and thus the SER defined in (3) can not
be solved analytically. Therefore, to evaluate and compare the
performance of different detection algorithms, employing the
simulation scheme to generate random samples and estimate
the SERs has been widely utilized.

A. MONTE–CARLO (MC) SIMULATION
MC simulation is one of the commonly used approaches for
estimating SERs in SCMA systems, which is executed upon
averaging the detection error over the input space via naive
event generation.More specifically, theMC estimator P̂MC (e)

for SER is given by

P̂MC (e) =
1

NMC

NMC∑
i=1

g(ni), (4)

where ni denotes the i-th random noise event and NMC rep-
resents the number of simulation trails for obtaining the MC
estimator.

As discussed in [16], [17], the MC estimator defined in (4)
is an unbiased estimator for SER whose variance is given by

Var
[
P̂MC (e)

]
=

1
NMC

(
E[g2(n)]− P2(e)

)
, (5)

based on which the relative error of the MC estimator can be
further defined as

κMC ,

√
Var

[
P̂MC (e)

]
P(e)

=
1
P(e)

√
E[g2(n)]− P2(e)

NMC
, (6)

from which we observe that the relative error of the MC
estimator is inversely proportional to NMC and can be made
arbitrarily small by increasing the number of simulation trials.
Therefore, for the conventional MC scheme, the number of
simulation trials NMC may turn to be prohibitively large to
maintain a fixed level of relative accuracy, especially when
the estimated SER is sufficiently small.

Take the uplink SCMA systems considered in this paper as
an example. If we adopt MPA as the multiuser detection algo-
rithm and assume the system operates at high SNR regimes
with low detection error rate, e.g., P(e) ≤ 1× 10−6, then the
MC estimator requires more than 108/J independent trials to
achieve a relative accuracy of κMC = 0.1.

B. IMPORTANCE-SAMPLING (IS) SIMULATION
IS simulation is in essence a variance-reduction scheme
employed to increase the occurrence frequency of the rare
event such that the low SER performance can be efficiently
estimated. Before proceeding to introduce the IS scheme,
we rewrite the mathematical expression of P(e) in (3) as

P(e) =
∫
n
g(n)p(n)dn

=

∫
n
g(n)

p(n)
p∗(n)

p∗(n)dn, (7)

where p∗(n) denotes the biased distribution and is exactly the
main part to be designed for employing the IS scheme. Then,
similar as the MC estimator defined in (4), the IS estimator
P̂IS (e) for SER is given by

P̂IS (e) =
1
NIS

NIS∑
i=1

g(ni)
p(ni)
p∗(ni)
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=
1
NIS

NIS∑
i=1

g(ni)ω(ni), (8)

where ω(·) is called the weight function given by

ω(n) =
p(n)
p∗(n)

. (9)

Note that for obtaining the IS estimator in (8), we restrict
the generation of random noise to a newly designed biased
distribution, i.e., ni ∼ p∗(n), instead of following the original
noise density distribution as in the MC scheme, i.e., ni ∼
p(n). And to ensure the equivalence between the two estima-
tors, we introduce the weight function ω(·) for coordination.

Then, according to the relations (5) and (6), the variance
and the relative error for the IS estimator can be respectively
expressed as

Var
[
P̂IS (e)

]
=

1
NIS

(
E∗[g2(n)ω2(n)]− P2(e)

)
, (10)

and

κIS ,

√
Var

[
P̂IS (e)

]
P(e)

=
1
P(e)

√
E∗[g2(n)ω2(n)]− P2(e)

NIS
, (11)

where E∗[·] represents the expectation with respect to the
biased distribution p∗(·).
The main objective in designing the IS scheme is to find a

biased distribution that makes Var[P̂IS (e)] as small as possi-
ble. Obviously, the optimal biased distribution is theoretically
existed that contributes to zero variance as

p∗opt(n) =
g(n)p(n)
P(e)

. (12)

However, such zero-variance biased distribution is not feasi-
ble in practical simulations, since it requires the prior knowl-
edge of P(e), which is exactly the value to be estimated.
Therefore, we need to search for the biased distribution that

can be implemented easily, and at the same time, requires as
fewer simulation trials as possible. In the following sections,
we will provide two algorithms to determine the suboptimal
biased distributions, which aim at minimizing the estimated
variance and the cross-entropy for the IS estimator, respec-
tively.

III. STOCHASTIC APPROXIMATION BASED ALGORITHM
In this section, we will propose an adaptive importance-
sampling algorithm based on stochastic approximation (SA)
theory, which can solve a wide range of suboptimal biased
distributions for the IS scheme to estimate the SER in uplink
SCMA systems.

A. PROBLEM FORMULATION
As illustrated in Section II.B, the superiority of the IS esti-
mator reflects in the lower variance and thus we hope to find
the biased distribution with minimized estimated variance.
Motivated by [28], [29], such problem can be simplified if
the biased distribution is restricted to a selected family of
density functions and is parameterized by several scalars.
To this end, we assume that the biased distribution p∗(n) is
parameterized by a single scalar θ and denoted by p∗(n; θ ).
Then, the optimization problem can be formulated as

θopt = argmin
θ

Var
[
P̂IS (e)

]
. (13)

From (8), the biased distribution is used to change the
original distribution of random events (i.e., random noise).
Recall the assumption of complex Gaussian noise for the con-
sidered uplink SCMA systems as indicated in Section II. If the
biased distribution is restricted to the Gaussian distribution
with alterable noise variance, the new distribution for noise
generation will be easily implemented through simulation
trials and the parameters to be designed are only related to
the noise variance. In this way, we declare that p∗(n; θ ) has
the following form

p∗(n; θ ) = p(n; σ∗)

=

K∏
k=1

1
√
2πσ∗

exp
(
−
|nk |2

2σ 2
∗

)
, (14)

where σ∗ denotes the altered variance and corresponds to the
variable to be solved for determining the biased distribution.

Then, by denoting p(n; σ ) and p(n; σ∗) as the original and
biased distributions for random noise, respectively. The IS
estimator defined in (8) can be transformed as

P̂IS (e) =
1
NIS

NIS∑
i=1

g(ni)
p(ni; σ )
p(ni; σ∗)

=
1
NIS

NIS∑
i=1

g(ni)
1

(
√
2πσ )K

exp(− ‖ni‖
2

2σ 2
)

1
(
√
2πσ∗)K

exp(− ‖ni‖
2

2σ 2∗
)

=
1
NIS

NIS∑
i=1

g(ni)
(σ∗
σ

)K
exp

(
‖ni‖2

2σ 2
∗

−
‖ni‖2

2σ 2

)

=
1
NIS

NIS∑
i=1

g(ni)ω(ni; σ, σ∗), (15)

where the weight function is given by

ω(ni; σ, σ∗) =
(σ∗
σ

)K
exp

(
‖ni‖2

2σ 2
∗

−
‖ni‖2

2σ 2

)
. (16)

Based on the above discussions, the optimization problem
in (13) can be further reformulated as

σ
opt
∗ = arg min

σ∗∈R+
Var

[
P̂IS (e)

]
20540 VOLUME 8, 2020
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= arg min
σ∗∈R+

I (σ∗), (17)

where

I (σ∗) = E∗[g2(n)ω2(n; σ, σ∗)]. (18)

In the following, we will discuss how to deal with the
problem (17) and obtain the suboptimal biased parameters σ∗.

B. STOCHASTIC APPROXIMATION (SA) BASED
ALGORITHM
Before proceeding to deal with the problem (17), we assume
the function I (σ∗) defined in (18) can be uniquely minimized.
Then, the optimal solution to (17) is determined by I ′(σ opt

∗ ) =
0. Inspired by [20], [23], a stochastic approximation pro-
cedure can be used to gradually approximate such optimal
solution through limited recursions, i.e.,

σ (t+1)
∗ = σ (t)

∗ − δ
I ′(σ (t)
∗ )

I ′′(σ (t)
∗ )

, t = 1, 2, · · · ,T , (19)

where t denotes the t-th recursion step; δ denotes the rate
factor used to control the convergence speed; and the first
and second derivatives of I (σ∗) are respectively given by

I ′(σ∗) = E∗[g2(n)ω(n; σ, σ∗)ω′(n; σ, σ∗)], (20)

and

I ′′(σ∗) = E∗[g2(n)ω(n; σ, σ∗)ω′′(n; σ, σ∗)]. (21)

According to the derived weight function for employ-
ing the IS scheme in (16), we can obtain ω′(n; σ, σ∗) and
ω′′(n; σ, σ∗) as

ω′(n; σ, σ∗) =
( K
σK

σK−1∗ −
‖ni‖22
σK

σK−3∗

)
× exp

(
‖ni‖22
2σ 2
∗

−
‖ni‖22
2σ 2

)
, (22)

and

ω′′(n; σ, σ∗) =
(K 2
− K
σK

σK−2∗

−
(2K − 3) · ‖ni‖22

σK
σK−4∗ +

‖ni‖42
σK

σK−6∗

)
× exp

(
‖ni‖22
2σ 2
∗

−
‖ni‖22
2σ 2

)
. (23)

Then, to facilitate the recursions in (19) and gradually
converge to the optimal solution, the distribution of g(n)
involved in I ′(σ∗) and I ′′(σ∗) need to be further figured out,
which is intractable as illustrated in Section II without prior
knowledge. Thus, we consider estimating the value of I ′(σ∗)
and I ′′(σ∗) through naive trials. More specifically, by gen-
erating some additional random samples and collecting the
corresponding results, we can obtain the sample estimator to
approximate I (σ∗) as

Î (σ∗) =
1
N

N∑
i=1

g2(ni)ω2(ni; σ, σ∗), (24)

where ni ∼ p(n; σ∗) and N denotes the pre-set number of
simulation trials for obtaining the sample estimator Î (σ∗).
Accordingly, by differentiating Î (σ∗), the sample estimator

of I ′(σ∗) and I ′′(σ∗) can be respectively given by

Î ′(σ∗) =
1
N

N∑
i=1

g2(ni)ω(ni; σ, σ∗)ω′(ni; σ, σ∗), (25)

and

ˆI ′′(σ∗) =
1
N

N∑
i=1

g2(ni)ω(ni; σ, σ∗)ω′′(ni; σ, σ∗), (26)

where ni ∼ p(n; σ∗) and N denotes the number of trials for
estimating I ′(σ∗) and I ′′(σ∗) at each recursion step. Based on
(25) and (26), the recursions in (19) can be then replaced by
the following procedure as

σ (t+1)
∗ = σ (t)

∗ − δ
Î ′(σ (t)
∗ )

ˆI ′′(σ (t)
∗ )

, t = 1, 2, · · · ,T . (27)

Note that the initial value of σ (0)
∗ should be carefully

selected. To make such issue more explicit, assume the con-
sidered SCMA system operates in high SNR regime and
makes a large amount of random events with g(n) = 0.
Then, without a reasonable biased distribution, there may

exist intermediate values of Î ′(σ (t)∗ )
ˆI ′′(σ (t)∗ )

=
0
0 . To guarantee the

sustained feasibility of (27), we propose to initialize σ (0)
∗ =

σ̃ , based on which the following is satisfied, i.e.,

P̂(e) =
1

Ñ

Ñ∑
i=1

g(ni) ≥ γ, ni ∼ p(n; σ̃ ), (28)

where P̂(e) represents the estimated SER through Ñ naive
simulations; and γ denotes the desired level for SER and is
usually set to be 10−2 ≤ γ ≤ 10−1.

In summary, for the proposed SA-based algorithm,
we firstly initialize the biased parameter σ (0)

∗ = σ̃ through
Ñ MC trials following (28). Then, by properly selecting the
number of recursion steps T , the number of simulation trials
N for approximating I ′(σ∗) and I ′′(σ∗) in each recursion
step, and the rate factor δ, we can adaptively update the
biased parameter σ∗ as the recursion procedure (27) proceeds.
The original problem (17) can be finally solved once such
recursion terminates.

IV. CROSS-ENTROPY BASED ALGORITHM
In this section, we will provide another adaptive importance-
sampling approach to estimate the low detection error rate
for the uplink SCMA system based on cross-entropy (CE)
theory, which has been shown to perform well when the
biased distribution belongs to an exponential family [27].

A. PROBLEM FORMULATION
Different from the SA-based approach invoked in the pre-
vious section that aims at finding the biased distribution
with minimized estimated variance, the essential idea of the
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CE-based approach is to select a biased distribution with min-
imized CE distance from the zero-variance biased distribution
given in (12). In specific, the CE distance of distribution p1(n)
from distribution p2(n) is defined as

D
[
p2(n), p1(n)

]
= Ep2

[
ln
p2(n)
p1(n)

]
=

∫
ln
p2(n)
p1(n)

p2(n)dn

=

∫
ln p2(n)p2(n)dn

−

∫
ln p1(n)p2(n)dn, (29)

where Ep2 [·] denotes the expectation with respect to the
distribution p2(n) and D[p2(n), p1(n)] ≥ 0.
Based on the above definition, the CE distance of the

biased distribution p∗(n) from the optimal biased distribution
p∗opt(n) can be expressed as

D
[
p∗opt(n), p

∗(n)
]
=

∫
ln p∗opt(n)p

∗
opt(n)dn

−

∫
ln p∗(n)p∗opt(n)dn, (30)

where D[p∗opt(n), p
∗(n)] = 0 leads to the optimal solution,

i.e., p∗(n) = p∗opt(n). Since p
∗(n) has no analytical form and∫

ln p∗opt(n)p
∗
opt(n)dn is constant, the main objective becomes

to search for the biased distribution satisfying:

p∗(n) = argmax
p∗

∫
ln p∗(n)p∗opt(n)dn. (31)

As mentioned in Section III.A, for ease of exposition and
to maintain the simplicity of event generation, we extend
the idea of restricting the biased distributions to Gaussian
distributions parameterized by noise variance, i.e., p∗(n) =
p(n; σ∗). Then, referring to (12), we have

p∗opt =
g(n)p(n; σ )

P(e)
, (32)

where σ denotes the original noise variance in the considered
uplink SCMA system.

From (31) and (32), the problem for determining the opti-
mal biased distribution can be formulated as:

σ
opt
∗ = arg max

σ∗∈R+

∫
g(n)p(n; σ ) ln p(n; σ∗)dn

= arg max
σ∗∈R+

Eσ
[
g(n) ln p(n; σ∗)

]
, (33)

where Eσ [·] denotes the expectation with respect to noise
variance σ . In the following, we will discuss the method of
solving the problem (33).

B. CROSS-ENTROPY (CE) BASED ALGORITHM
Since the objective in (33) also contains the unknown knowl-
edge of g(n), we consider to approximate it by taking the
averaged results over additional random samples, i.e.,

Eσ
[
g(n) ln p(n; σ∗)

]
'

1
N

N∑
i=1

g(ni) ln p(ni; σ∗), (34)

where ni ∼ p(n; σ ) andN denotes the pre-set number of trials
for obtaining the sample estimator.

Upon obtaining the above sample estimator, the original
optimization problem (33) can be transformed as

σ̂
opt
∗ = arg max

σ∗∈R+
1
N

N∑
i=1

g(ni) ln p(ni; σ∗), (35)

where σ̂ opt
∗ represents the approximation of σ opt

∗ .
Recall the expression for p(n; σ∗) in (14), we observe

that ln p(ni; σ∗) is a concave function with respect to σ∗.
Therefore, the optimal solution to the problem (35) can be
achieved by solving the following equation:

1
N

N∑
i=1

g(ni) ln′ p(ni; σ̂
opt
∗ ) = 0, (36)

where ln′ p(ni; σ∗) denotes the first derivative of function
ln p(ni; σ∗).

By further substituting (14) into (36), the optimal value of
σ̂
opt
∗ can be mathematically derived in the closed form given

by

σ̂
opt
∗ =

√√√√∑N
i=1 g(ni)‖ni‖

2
2

K
∑N

i=1 g(ni)
, (37)

where K represents the number of available orthogonal
resources as defined in Section II.

However, as discussed in Section III.B, when the consid-
ered system operates in high SNR regimes, the detection
output of

∑N
i=1 g(ni) may always equal to zero even with

large N . Therefore, (37) is not always feasible especially
when the target event is rare. To avoid the infeasibility caused
by the denominator in (37), we consider to introduce a tilt-
ing parameter σ̃ , which corresponds to a biased distribution
p(n; σ̃ ) that satisfies

P̂(e) =
1

Ñ

Ñ∑
i=1

g(ni) ≥ γ, ni ∼ p(n; σ̃ ), (38)

where Ñ denotes the pre-set number of trials for obtaining the
tilting biased parameter σ̃ to guarantee (38); and γ is set to
be a not too small number, e.g., 10−2 ≤ γ ≤ 10−1.

Given the tilting parameter and extend the idea from (8),
it is readily seen that (34) is equivalent to the following:

Eσ̃
[
g(n)ω(n; σ, σ̃ ) ln p(n; σ∗)

]
, (39)
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TABLE 1. Simulation parameters for different algorithms.

where ω(n; σ, σ̃ ) is given by

ω(n; σ, σ̃ ) =
p(n; σ )
p(n; σ̃ )

. (40)

Then, combining (35) and (39), we have

σ̂
opt
∗ = arg max

σ∗∈R+
1
N

N∑
i=1

g(ni)ω(ni; σ, σ̃ ) ln p(ni; σ∗), (41)

where ni ∼ p(n; σ̃ ).
Similar as the solutions in (36), the sample-based optimal

solution to the problem (41) is given by

σ̂
opt
∗ =

√√√√∑N
i=1 g(ni)ω(ni; σ, σ̃ )‖ni‖

2
2

K
∑N

i=1 g(ni)ω(ni; σ, σ̃ )
. (42)

For more accurate approximation, we propose to repeat-
edly implement the procedure (42) until T sample solutions
are collected. Finally, the biased parameter σ opt

∗ for the orig-
inal problem (33) can be approximated as

σ
opt
∗ '

1
T

T∑
t=1

√√√√∑N
i=1 g(ni)ω(ni; σ, σ̃ )‖ni‖

2
2

K
∑N

i=1 g(ni)ω(ni; σ, σ̃ )
. (43)

In summary, for the proposed CE-based algorithm,
we firstly choose a tilting biased parameter σ̃ by carrying
out Ñ trials following (38). Then, based on the current SNR
scenarios and the potential level of SER, we select the proper
number of iterations T and the number of trials N for each
sample solution. The suboptimal biased parameter based on
CE theory can be finally determined from (43).

V. NUMERICAL RESULTS
In this section, simulations were carried out to investigate the
performance of our proposed fast simulation schemes for the
uplink SCMA systems. Assume the number of users J = 16
and the number of orthogonal resources K = 12. Further
assume the 12 × 16 LDS signature matrix is designed for
SCMA codebooks and binary phase-shift keying modulation
(BPSK) is employed. Then, in an additive white Gaussian
noise (AWGN) channel with σ = 1, the performance of MPA
detection algorithm can be measured using SER. The other
related parameters are consistent with [11].

To begin with, we compare the suboptimal biased param-
eters obtained from the stochastic approximation (SA) based
algorithm and the cross-entropy (CE) based algorithm.
As summarized in Section III.B and Section IV.B, both
algorithms consist of two stages, i.e., the initialization of a
tilting parameter σ̃ through Ñ standard MC trials and the

FIGURE 1. SER performance for the uplink SCMA system estimated by the
MC and the proposed scheme.

FIGURE 2. Relative error vs number of trials obtained by the MC and the
proposed scheme.

approximation of the optimal biased parameter σ opt
∗ . For the

initialization stage, we assume Ñ = 100 and γ = 0.1. For the
approximation stage, let T1 = T ,M1 = N replace the related
parameters in (27) for implementing the SA-based algorithm;
and let T2 = T ,M2 = N replace the related parameters
in (43) for implementing the CE-based algorithm. For fair
comparison, their detailed values under different SNRs are
set as in Table 1. Then, the corresponding resulted biased
parameters σ opt

∗ under different SNRs are given in Table 2.
It can be observed that the biased parameters obtained by two
algorithms are close to each other with the same computa-
tional complexity. In addition, it is also seen that the optimal
biased parameter σ opt

∗ will increase monotonously with SNR.
Given the biased parameters σ∗, the biased distribution

p(n; σ∗) for event generation can be expressed according
to (14). Then, we can apply the AIS-aided scheme to esti-
mate the SER for the considered uplink SCMA system.
Fig. 1 shows the efficiency of our proposed fast simulation
compared to standard MC simulation in estimating the SER
performance. Each curve is plotted at different SNRs with a
stop condition on the relative error κ = 0.1. It is seen that the
results obtained by our proposed scheme closely match with
those of the MC scheme at low SNR regimes. Moreover, our
proposed scheme is capable of estimating the extremely low
detection error rate at high SNRs when the conventional MC
scheme is not feasible due to the prohibitive simulation time.
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TABLE 2. Suboptimal biased parameters with different algorithms.

FIGURE 3. Simulation overhead caused by the MC and the proposed
scheme.

To evaluate the accuracy of our proposed simulation
scheme, we employ the relative error defined by κMC in (6)
and κIS in (11) as the metric. By assuming the SCMA system
is operated at SNR = 3dB, Fig.2 depicts the variations of the
relative errors versus the number of simulation trials. From
Fig.2, we observe that the relative error will decrease as the
number of simulations increase for both MC and IS esti-
mators. Moreover, our proposed IS estimator exhibits higher
accuracy given the same number of trials.

The superiority of our proposed AIS-based scheme com-
pared with the conventional MC scheme can be further
reflected using the simulation overhead, which refers to the
required number of trials for estimating the SER given κ =
0.1. The comparison result is reported in Fig. 3. It is evident
that the number of trials that need to be performed using
our proposed scheme can be significantly reduced compared
with the MC scheme especially at high SNRs. Furthermore,
such simulation gain brought by our proposed scheme will
increase as the SNR increases.

VI. CONCLUSION
In this paper, we have proposed a fast simulation scheme
based on adaptive importance-sampling (AIS) theory to esti-
mate the detection error rate in the uplink SCMA systems.
Different from the conventional Monte Carlo (MC) sim-
ulation, we have proposed to modify the original density
distribution of random events, which aims at increasing the
occurrence frequency of the rare event. Particularly, we have
considered to restrict the biased distributions to Gaussian
distributions with alterable noise variance. Toward this end,
two algorithms have been offered to determine the suboptimal
biased parameters such that the estimated variance or the
cross-entropy is minimized respectively. Simulation results

have shown that our proposed fast simulation scheme is
feasible of estimating the extremely low detection error rate.
Moreover, it is also shown that our proposed scheme outper-
forms the standard MC scheme in term of both accuracy and
simulation overhead.

REFERENCES
[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-

vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[2] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research opportu-
nities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec. 2016.

[3] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,
‘‘Deep learning for physical-layer 5G wireless techniques: Opportunities,
challenges and solutions,’’ IEEE Wireless Commun., to be published.

[4] M. Moltafet, N. Mokari, M. R. Javan, H. Saeedi, and H. Pishro-Nik,
‘‘A new multiple access technique for 5G: Power domain sparse code
multiple access (PSMA),’’ IEEE Access, vol. 6, pp. 747–759, 2018.

[5] S. Hu, H. Guo, C. Jin, Y. Huang, B. Yu, and S. Li, ‘‘Frequency-
domain oversampling for cognitive CDMA systems: Enabling robust and
massive multiple access for Internet of Things,’’ IEEE Access, vol. 4,
pp. 4583–4589, 2016.

[6] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
K. Higuchi, ‘‘Non-orthogonal multiple access (NOMA) for cellular future
radio access,’’ in Proc. IEEE 77th Veh. Technol. Conf. (VTC Spring),
Jun. 2013, pp. 1–5.

[7] R. Hoshyar, F. P. Wathan, and R. Tafazolli, ‘‘Novel low-density signature
for synchronous CDMA systems over AWGN channel,’’ IEEE Trans.
Signal Process., vol. 56, no. 4, pp. 1616–1626, Apr. 2008.

[8] B. Lyu, Z. Yang, and G. Gui, ‘‘Non-orthogonal multiple access in wireless
powered communication networks with SIC constraints,’’ IEICE Trans.
Commun., vol. E101.B, no. 4, pp. 1094–1101, 2018.

[9] H. Sari, A. Maatouk, E. Caliskan, M. Assaad, M. Koca, and G. Gui,
‘‘On the foundation of NOMA and its application to 5G cellular networks,’’
in Proc. IEEEWireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[10] H. Nikopour and H. Baligh, ‘‘Sparse code multiple access,’’ in Proc. IEEE
24th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC),
Sep. 2013, pp. 332–336.

[11] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, ‘‘SCMA code-
book design,’’ in Proc. IEEE 80th Veh. Technol. Conf., Sep. 2014, pp. 1–5.

[12] L. Yang, Y. Liu, and Y. Siu, ‘‘Low complexity message passing algorithm
for SCMA system,’’ IEEE Commun. Lett., vol. 20, no. 12, pp. 2466–2469,
Dec. 2016.

[13] J. Dai, K. Niu, C. Dong, and J. Lin, ‘‘Improvedmessage passing algorithms
for sparse codemultiple access,’’ IEEETrans. Veh. Technol., vol. 66, no. 11,
pp. 9986–9999, Nov. 2017.

[14] C. Zhang, Y. Luo, and Y. Chen, ‘‘A low-complexity SCMA detector
based on discretization,’’ IEEE Trans. Wireless Commun., vol. 17, no. 4,
pp. 2333–2345, Apr. 2018.

[15] W. H. Tranter, T. S. Rappaport, K. L. Kosbar, and K. S. Shanmugan, Prin-
ciples of Communication Systems Simulation with Wireless Applications,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[16] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method. Hoboken, NJ, USA: Wiley, 2016, vol. 10.

[17] S. Juneja and P. Shahabuddin, ‘‘Rare-event simulation techniques: An
introduction and recent advances,’’ in Handbooks in Operations Research
and Management Science, vol. 13. Amsterdam, The Netherlands: Elsevier
B.V., 2006, pp. 291–350.

[18] S. Chakraborty and R. Chowdhury, ‘‘Hybrid framework for the estimation
of rare failure event probability,’’ J. Eng. Mech., vol. 143, no. 5, May 2017,
Art. no. 04017010.

20544 VOLUME 8, 2020



F. Han et al.: Low-Overhead Evaluation of Multiuser Detection Performance for Physical-Layer Multiple Access Systems

[19] Z. I. Botev, P. L’Ecuyer, and B. Tuffin, ‘‘Markov chain importance sam-
pling with applications to rare event probability estimation,’’ Stat Comput,
vol. 23, no. 2, pp. 271–285, Mar. 2013.

[20] R. Srinivasan, Importance Sampling: Applications in Communications and
Detection. Berlin, Germany: Springer, 2013.

[21] S.-K. Ahn and K. Yang, ‘‘Importance sampling for performance estimation
of LDPC codes over Rayleigh fading channels,’’ in Proc. 7th Int. Symp.
Turbo Codes Iterative Inf. Process. (ISTC), Aug. 2012, pp. 86–90.

[22] V. Elvira and I. Santamaria, ‘‘Multiple importance sampling for efficient
symbol error rate estimation,’’ IEEE Signal Process. Lett., vol. 26, no. 3,
pp. 420–424, Mar. 2019.

[23] D. Remondo, R. Srinivasan, V. Nicola, W. Van Etten, and H. Tattje,
‘‘Adaptive importance sampling for performance evaluation and parameter
optimization of communication systems,’’ IEEE Trans. Commun., vol. 48,
no. 4, pp. 557–565, Apr. 2000.

[24] C. Feng and Y. M. Marzouk, ‘‘A layered multiple importance sam-
pling scheme for focused optimal Bayesian experimental design,’’ 2019,
arXiv:1903.11187. [Online]. Available: https://arxiv.org/abs/1903.11187

[25] H. Roelofs, J. Thijs, and R. Srinivasan, ‘‘Performance and cellular capacity
of M-ary PSK in co-channel interference,’’ in Proc. 11th IEEE Medit.
Electrotech. Conf., Jun. 2003, pp. 204–208.

[26] S. Dey and S. Juneja, ‘‘Efficient estimation of density and probability
of large deviations of sum of IID random variables,’’ in Proc. Winter
Simulation Conf. (WSC), Dec. 2011, pp. 3800–3811.

[27] Z.Wang and J. Song, ‘‘Cross-entropy-based adaptive importance sampling
using von Mises-Fisher mixture for high dimensional reliability analysis,’’
Struct. Saf., vol. 59, pp. 42–52, Mar. 2016.

[28] G. Romano and D. Ciuonzo, ‘‘Minimum-variance importance-sampling
bernoulli estimator for fast simulation of linear block codes over binary
symmetric channels,’’ IEEE Trans. Wireless Commun., vol. 13, no. 1,
pp. 486–496, Jan. 2014.

[29] S.-K. Ahn, K. Yang, and D. Har, ‘‘Evaluation of the low error-rate per-
formance of LDPC codes over rayleigh fading channels using impor-
tance sampling,’’ IEEE Trans. Commun., vol. 61, no. 6, pp. 2166–2177,
Jun. 2013.

[30] J. Míguez, I. P. Mariño, and M. A. Vázquez, ‘‘Analysis of a nonlinear
importance sampling scheme for Bayesian parameter estimation in state-
space models,’’ Signal Process., vol. 142, pp. 281–291, Jan. 2018.

[31] M. F. Bugallo, L. Martino, and J. Corander, ‘‘Adaptive importance sam-
pling in signal processing,’’ Digit. Signal Process., vol. 47, pp. 36–49,
Dec. 2015.

[32] J.-M. Cornuet, J.-M. Marin, A. Mira, and C. P. Robert, ‘‘Adaptive multiple
importance sampling,’’ Scandin. J. Statist., vol. 39, no. 4, pp. 798–812,
Dec. 2012.

[33] R. Holzlohner, A. Mahadevan, C. Menyuk, J. Morris, and J. Zweck, ‘‘Eval-
uation of the very low BER of FEC codes using dual adaptive importance
sampling,’’ IEEE Commun. Lett., vol. 9, no. 2, pp. 163–165, Feb. 2005.

[34] Y. Liu, W. Chen, J. Yang, and T. Dong, ‘‘Improved dual adaptive impor-
tance sampling method for LDPC codes,’’ in Proc. 18th Asia–Pacific Conf.
Commun. (APCC), Oct. 2012, pp. 975–979.

[35] L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, ‘‘Non-
orthogonal multiple access for 5G: Solutions, challenges, opportuni-
ties, and future research trends,’’ IEEE Commun. Mag., vol. 53, no. 9,
pp. 74–81, Sep. 2015.

FENGXIA HAN received the B.S. degree from
the University of Electronic Science and Technol-
ogy of China, Chengdu, China, in 2015. She is
currently pursuing the Ph.D. degree with Tongji
University, Shanghai, China. From 2017 to 2019,
she was a Visiting Student with the Department
of Electrical Engineering, Columbia University,
New York City, NY, USA. Her research interests
include machine-type communications, multiple
access, and massive MIMO.

SHENGJIE ZHAO (Senior Member, IEEE)
received the B.S. degree in electrical engineer-
ing from the University of Science and Technol-
ogy of China, Hefei, China, in 1988, the M.S.
degree in electrical and computer engineering
from the China Aerospace Institute, Beijing,
China, in 1991, and the Ph.D. degree in electrical
and computer engineering from Texas A&M Uni-
versity, College Station, TX, USA, in 2004. He
is currently the Dean of the College of Software

Engineering, a Professor with the College of Software Engineering and
the College of Electronics and Information Engineering, Tongji University,
Shanghai, China. In previous postings, he has conducted research with
Lucent Technologies,Whippany, NJ, USA, and the China Aerospace Science
and Industry Corporation, Beijing. His research interests include artificial
intelligence, big data, wireless communications, image processing, and
signal processing. He is a Fellow of the Thousand Talents Program of China.

HAO JIANG (Member, IEEE) received the B.S.
and M.S. degrees in electrical and information
engineering from the Nanjing University of Infor-
mation Science and Technology, Nanjing, China,
in 2012 and 2015, respectively, and the Ph.D.
degree from the National Mobile Communications
Research Laboratory, Southeast University, Nan-
jing, in 2019. From 2017 to 2018, he was a Visiting
Student with the Department of Electrical Engi-
neering, Columbia University, NewYork City, NY,

USA. Since April 2019, he has been a Professor with the College of Artificial
Intelligence, Nanjing University of Information Science and Technology.
His current research interests include general areas of vehicle-to-vehicle
communications, massive multiple-input and multiple-output channel mod-
eling, signal processing, communications, machine learning, and AI-driven
technologies.

HONG CHEN (Senior Member, IEEE) received
the B.S. and M.S. degrees in process control from
Zhejiang University, Zhejiang, China, in 1983 and
1986, respectively, and the Ph.D. degree in system
dynamics and control engineering from the Uni-
versity of Stuttgart, Stuttgart, Germany, in 1997.
She is currently a Professor with the School of
Automotive Studies, Tongji University. Her cur-
rent research interests include model predictive
control, optimal and robust control, and nonlinear

control and its applications in mechatronic systems focusing on automotive
systems.

CHENXI ZHANG received the B.S. and Ph.D.
degrees from the National University of Defense
Technology. He is currently a Professor with the
School of Software Engineering, Tongji Univer-
sity. His research interests include computer archi-
tecture and distributed computing.

VOLUME 8, 2020 20545


	INTRODUCTION
	SYSTEM MODEL
	MONTE–CARLO (MC) SIMULATION
	IMPORTANCE-SAMPLING (IS) SIMULATION

	STOCHASTIC APPROXIMATION BASED ALGORITHM
	PROBLEM FORMULATION
	STOCHASTIC APPROXIMATION (SA) BASED ALGORITHM

	CROSS-ENTROPY BASED ALGORITHM
	PROBLEM FORMULATION
	CROSS-ENTROPY (CE) BASED ALGORITHM

	NUMERICAL RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	FENGXIA HAN
	SHENGJIE ZHAO
	HAO JIANG
	HONG CHEN
	CHENXI ZHANG


